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For a Bose atom system whose energy operator is diagonal in the so-called number operators and its ground
state has an internal two-level structure with negative energies, exact expressions for the limit free canonical
energy and pressure are obtained. The existence of non-conventional Bose-Einstein condensation has been
also proved.
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1. Introduction

We use an approach based on a suitable expression obtained for the limit free canonical energy
in order to determine the limit pressure of a Bose-atom system with internal two-level structure.
This enables us to recover some results, related to non-conventional Bose-Einstein condensation
(BEC), obtained in [1] in the framework of the approximating Hamiltonians method (]2]).

In section [2] we present a description of the main mathematical features associated with this
model. In section [3] we obtain the limit free canonical energy of the model. It leads via Legendre
transform to the limit pressure, recovering the previous results obtained in [1]. Finally in section [
it is proved that the system undergoes non-conventional BEC (independent of temperature BEC).

2. The model
The one-particle free Hamiltonian corresponds to the operator S! = —A /2 defined on a dense
subset of the Hilbert space H' = L2(A;), being A; = [—1/2,1/2]* € R a cubic box of boundary

OA; and volume V; = (4. In other words, the particles are confined to bounded regions. We assume
periodic boundary conditions under which S’ becomes a self-adjoint operator.

We consider a system of Bose atoms with an internal two-level structure analogous to the SU2
spin symmetry. In this case any one-particle wave function has the form ¢ ® s where, ¢ € L2(A;)
and s € C? represents the internal state. Therefore, the vector space associated with this system
is in fact, H, = L2(A;) ® C2.

We shall study a model of Bose particles whose Hamiltonian is given by:

2 2 a N N Y. .
H = H + 4 > @), + Vi 0.0+ (1)
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where 0 = 4+ or — depending on the corresponding internal level. The second term at the right
hand side of equation (II) represents the intrastate collisions (self-scattering term), the third term
represents the interstate collisions (cross-scattering term).

This model has been exhaustively studied in [1] by using the so-called method of approximating
Hamiltonians developed in [2]. Here we shall obtain an analytical expression for the limit pressure
of our model as the Legendre transform of the free canonical energy.

The sum in ({) runs over the set AY = {p = (p1,...,pa) € R : po = 27n4/l,n0 € Zyax =
1,2,...,d}. d;f,’g, Gp,o are the Bose operators of creation and annihilation of particles defined on
the Bose Fock space Fg and satisfying the usual commutation rules: [dq,o, dLm] = dq,gld;@ —
dLqu,al = 0p,q001,00- Np,oc = &L,a&p,a is the number operator associated with mode p and

internal level o. In this case H? = Z N(pP,0)ipo, a>0, yER N = Z al

p.olp,o 18 the
o 9p,

PEA[, 0 PEA},0
O ~ A~ . . .
total number operator, N = E ai)’gap,(7 is the total number operator with exclusion of
pPEA\{0},0
’IAZ(),_, TAL07+ and

)\1(0,0') <0, p=0,
P*/2, p#0,
where Xj(0,—) = —A = OV, "%), N(0,+) = =X+ O(V,; %) with s > 0, A > 0 and \(0,0) —

A0,0) = =Xas V, = .
Note that the boson Fock space Fg is isomorphic to the tensor product ®g, peay ]:30 where ]:30

)‘l(p7 U) = {

is the boson Fock space constructed on the one-dimensional Hilbert space Hp » = {7€P*®e, }yec,
where e_ = (0,1) and e; = (1,0).

Let

1 N .
(B, 1) = 7 InTrz, exp (-5(Hl - MN)) (2)
BV

be the grand-canonical pressure, at finite volume, corresponding to ﬁl, where 8 = 071 is the inverse
temperature.

If Hy (1) = Hy— pN, the equilibrium Gibbs state (grand canonical ensemble) (—) g () is defined
as

(A = [Tom exp (~880)] Tz, Aexp (~BH(w) 3)

for any operator A acting on the symmetric Fock space.
Finally, the total density of particles p(u) for infinite volume is defined as

A <Vz> o = i puu) = p(p), (4)
Hi(p)
and the density of particles po - (53, i) associated with the energy A(0,0) = —A\ is defined as
. ﬁO,o’ .
lim <—> = lim pooi(8, 1) = po,s (B, 1)- (5)
Vi—roo Vl I:IL(/-") Vimroo

We shall say that the system undergoes a macroscopic occupation of the single particle mode
(0,0) (BEC) if po.»(811) > 0.

3. Pressure

Let f1(8, o) be the free canonical energy at finite volume V;, inverse temperature 8 and density

o, corresponding to Hamiltonian given by equation (). Let fl(ﬁ, 0), f14(B,0), fi4 (B, 0) be the
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finite free canonical energies associated with I~{l, H lid, and H lid , respectively. These operators are
given by
~ ~id a .9 Yo .
H =H"+ = Z Np.o + T 10,~M0 +
e Vi
pEAl 0

where

Hi' = =Aio - +i0)+ Y M(P,0)ipo,
PEA;\{0}.0

ﬁlid = Z )\l (pa O—)ﬁp,a .
peAS\{0},0

Let f(8,0), f(ﬁ, 0), f14(B,0), fid/ (8, 0) be the corresponding limit free canonical energies.
Let o = N/V;, o= lim g = constant. We shall use the symbol ¢ when referring to g; or g

Vi,N—oo
indistinctively, avoiding excessive notation.

The strategy developed in |3] enables us to prove the following theorem.

Theorem 1.

fBo)=~ ~ if_ { — Moo, + eo+) +agy — + agg 4 + 0000t + [ (B, 0 - Qo)}- (6)

©0,—,00,4+ €

Proof. Being np» =0,1,2,..., go,— = no,—/Vi, 0o,+ = no,+/Vi, the finite canonical free energies
48, 0), fi(B, 0), can be written in the following form,

; 1

ld(ﬂa Q) = 7% In Z exXp (75 Z Al (pv U)np,a) 5EpeA7,g np,e=[0Vi] » (7)
Np,e=0,1,2,...,pEA} ;0

. 1

fi(B,0) = ~ In Z e BVilu(e.e0,—00.4) | (8)

g ot =[oVi]

where

hi(0, 00,— 00.+) = —A(0o,— + 00.+) + 0 1 + a0g 4 + V00,— 00 +

1 a
~ oy > exp [_5 (Z M (P, 0)np,o + Vlnfmﬂ O’ =[evil-leovi) (9)

7”Lp7<-,=0,1,...,p6/\7\{0},0'

and N' = Z Np,s. The following inequality
pEAF\{0},0
_ fl(ﬁ, o) = 1 In Z e PVihi(e.0o—00.4) | > 1 In (e_BVth(QvQO,fvgo,+))
v ~Hnp ot =[eVi] v
= —hie,00,~,00,+), (10)

holds for go,—, 00,+ € [0, 0], being [b] the integer part of b. Equation (I0) implies that,

fl(ﬁ7 Q) < inf hl(ga Q07_7(QO,+)' (11)
00,—,00,+€[0,0]
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On the other hand, being ng = ng,+ + no,—, we have,
hi(e, 0o, Qo,+))

R 1 [eVi]
— , < ——1In exp | -8V inf
JiB.0) BV Z/ p< b lgo,f7go,+e[0,g]
no=0,N"=0
1 [eV1]
< ——=In|exp| -5V inf hi(o, 00,—, 1
BV p< p lgo,77go,+e[0,g] 1(e: oo, QO’JF)) Z/
no=0,N"=0
. 2 [oVi](1 + [QVz]))
< - inf hi(0, 00.—, +—h({l4+———-—*
00,—,00,+€[0,0 1(e: 0.~ 00.+) BV, < 2
< — bk )+ —— ([oVi] + 1) (12)
S 00, 00,4 €[0,0] 19, 0o,—, 00,+ BW ovi .

Thus, we obtain the inequalities
4 = .
2o In([eVi] +1) < fi(B, 0) < inf_ 7(o, 00,—,00,+) (13)
00,—,00,+€[0,0]

hi(o, 00,—, 00,+) — 3V,

inf
00,—,00,+€[0,0
Therefore, in the thermodynamic limit it follows that,
f(B,0) = lim inf_ (0,00, 00+)- (14)
Vi—00 go,—,00,+€[0,0]
hi(o, 00,—, 00,+) can be rewritten as
hi(0,00,—,00+) = —Meo—+ 0o+4)+ a0y _ + a0y, + 700, 0o+
1 Ba . id’
Vlln<exp W A*ZO 2 5 > / + fi% (B,0— 00), (15)
PEAI\O} o H* (8,0—¢0)

the canonical Gibbs state associated with H. lid (B, 0— 00). Since the limit free

being <_>1:12d/ (B,0—00)
canonical energy of the free Bose gas is the Legendre transform of the corresponding pressure, we

get,
lim fi* (8,0) = f' (8, 0) = sup{ag — p'* (8,0)}, (16)
Vi—oo a0

being pidl (8, ) the limit grand canonical pressure associated with H lld

From the Jensen inequality we get
Ba . np,
<eXp A Z nZ o > exp | —BaV; Z ;2‘7 , . (17)
PEAT\ {0} 1 (B,0-00) peA;\{0}o \ L/ i (8,0-c0)

For p and Vj fixed and » > 1, » € ZT, the moments
r
<np"’>ﬂl‘d (8.0~ 00)

in the canonical ensemble, are monotonously increasing functions of o (see [4, |5]). Therefore,

a2 A2 )
< 1;72 = / % Ky, (¢ = 00, dx)
! sz (1(e—00)) [0,00) ! I:Izd (B,x)
n .
> V2 KVL(Q_ QO7dX)
lo—oooc) V1 (B
nZ , .

> V2 Ky, (¢ — 00, [0 — 00,0)),

Lol Ei (8,0—00)

43003-4



Model of Bose-atoms with internal structure

where (-) is the Gibbs state associated with H, lid in the grand-canonical ensemble given by

A ()
equation (@) and Ky, (0 — 0o,dx) is the so-called Kac measure of the perfect Bose gas at finite
volume V; (|4, 16]) given by,

Ky, (0,dx) = d(x — 0)dx

for 0 < 0.(B), being o, 0.(8) = 2(27) ¢ Jza (eBp2/2 —1)"dp, the density and the critical density
of the perfect Bose gas (the case of atoms with internal structure), respectively, and

0, for z < ¢c(P),

Ry, (o, da) = -
vile,dz) {@gc(ﬂ))lexp(%zéé?)“v for 2 > ¢:(8)

for 0 > o.(B).
Using the latter inequality and taking into account that

lim Kv; (¢ — 00, [0 — 00,)) # O,
Vi—oo

n .
Vlh—r>n<>o Z ‘/22 Y - 07
pEAT\{0},0 Hi4 (p(e—0e0))

we get

g
Jm o> {5 =0
pEAF\{0},0 Hid (B,0—00)

Then, equations (1)) and (7)) imply that,

lim inf hi(0,00,—,00,4) < inf  {—=A(00,— + 00,+)
Vi—00 go,— ,00,+€[0,0] 00— ,00+€0,0]

+agg , +agg , + 700,00+ + f4 (B,0—00)}. (18)

On the other hand, since exp { — Ba/V, Z nfxg} < 1 from equation () we get,

pGA;‘\{O},a
lim inf hi(e,00,~,00+) > lim inf  {~A(go_ +00.+)
Vi—00 00, ,00,+ €[0,¢] Vi—00 g0, ,00,+€[0,0]

’

+ ag%,, + a@%,Jr +700,-00.+ + fi* (B,o—00)}. (19)
Equations ([I8), (I9) imply

W oo, @0 0) = i gt Moo )
+ ag%,_ + a93,+ +700,—00,+ + fzid/ (B,0—00)}. (20)
([l
Theorem 2. R
f(B,0) = f(B,0). (21)

Proof. Let ﬁl(N) and I:II(N) be the restrictions of the self-adjoint operators H, and H; defined
on D C Fp to the N-particles symmetrized Bose-space. In this case the following well-known
Bogolyubov inequalities for free energies,

AH(N) B AH(N)
< L > < filB,0) — fi(B,0) < < ! > , (22)
a"™ (o) a2 (0)

Vi Vi
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hold, where AH(N) Hl(N) - ﬁl(N), (—) are the Gibbs states in the canonical

H™ (o) <f>H;N)<g>
ensemble associated with the Hamiltonians H. l(N), H l(N), respectively.
Being Ang = fig,+ — Ng,—, this leads to the following inequalities,

fl(ﬂag) = f(ﬂ Q VQZ npa H(N)(g) T<AﬁO>H;N)(g)’ (23)
p,o
OV, ") /ns
fl(ﬁa Q) g 6 Q V2 Z np, (N)(g) + Tll <An0>I:IL(N)(g) . (24)
Noting that,
. 1 .
Vlh—I>n<>o V2 Z npv H(N)(g) Vlh—I>n<>O W pz; <np7‘7>I:IL(N)(g) =0, (25)
. (V) v, )
. OWV) e O A _
yim = (o) v o) = Jim == (Ato) oo ) =0, (26)
we obtain
hm fi(B,0) = hm fi(B,0) = lim inf hi(o, 00,—, 00,+)- (27)
Vi—0 00, ,00,+€[0,0]
This completes the proof. O

This result enables us to derive an explicit expression for the limit pressure p(f, 1) given by
p(B,p) = lim pi(B, p).
Vi—oo
Let q(x,y) : R? — R be the symmetric quadratic form defined by,

q(z,y) = (u+ V(@ +y) —a(@® +y?) — yay. (28)
Let A=qpu€R:q¢" = sup gqx,y) <oo,.
z,y€[0,00)
Definition 1. The domain of stability D(p) of p(B8, i) is defined as,
D(p) ={(B,n) ER*: B> 0,p€ AN (—00,0]}. (29)
Corollary 1. For (8, u) € D(p),
p(B,p) = sup o ){(u +A)(o,— + 00,+) — al0p,— + 0o.+) — V00,004 } + P (Bp).  (30)
©0,—,00,+€[0,00

Proof. Since f(B,p) is a convex function of p, its Legendre transform coincides with the grand
canonical limit pressure p(g, u), i.e.,

p(B, 1) =Sglo>{u@—f(ﬁ, 0)} —Sup{ug— f(8,0)}. (31)
Q/ Q/
Therefore
p(B,u) = sup {ug - inf { — Xeo,— +0o.+) +alog_ +05)
00 ©0,—,00,+€[0,0]

+700,-00,+ + [ (B,0— 00)}

= sup sup {(,u + M) (00,— + 00,4) — GQ(Q),f - G’KQ%,JF
220 o, ,00,4 €[0,0]

— oo, 00+ — ¥ (B,0— 00) + o — go}}

= sup {(u + A (0o, +0o+) —alog , +05.) — 790,7go,+} +p' (B, ). (32)

00,—00,+€[0,00)

O

43003-6



Model of Bose-atoms with internal structure

This corollary implies that, the derivation of the limit pressure and demonstration of the oc-
currence of non-conventional Bose-Einstein condensation (independent of temperature) can be
reduced to the study of the occurence of extreme values of the symmetric quadratic form ¢ given

in equation (28).
Proposition 1. ¢* = sup q(z,y) satisfies ¢* = +o0, for v € (—o0, —2a) ,pu € (—A,0].

z,y€[0,00)
x 07 14 € (700, 7>‘]7
= +oo, pe (=0,

for v = —2a.
. 0, p € (—o0,—Al,
! { % € (=A,0],
for v € (—2a,2a).
. 0, p € (—oo, —A],
! { WA e (-20),

for v € [2a, 0).

Proof. Let us introduce some basic notions concerning minimization and maximization of convex
and concave quadratic functions. Let f : R™ — R be the quadratic form given by:

F0) = 5xQx" +ex",

where @) is a symmetric n x n- matrix of real entries and ¢ € R™. The function f is a convex
(concave, respectively) function if and only if it is a symmetric and positive (negative,respectively)
semidefinite function, i.e. x@QxT > 0, (x@xT < 0, respectively) for all x € R". Then, being f a
convex (concave, respectively) function it attains its global minimum (global maximum, respec-
tively) at x* if and only if x* solves the equations system V f(x) = QxT + ¢ = 0. In this case the
Hessian matrix H(x) satisfies H(x) = Q.

For the quadratic form ¢(z,y) given by equation (28] we have

o= (2 7). e=wrn

Therefore, ¢ is a strictly concave function (x@QxT < 0) if a,~ satisfy the following condition:

2a

_ Yol 42 2
detQ—‘ v 2 |” 4a* 4+ ~* <0,

i.e., v € (—2a,2a), and it is a strictly convex function (x@xT > 0) if
det Q = —4a® +~% > 0,

ie., v € (—o00,—2a) U (2a,0).

The same results can be obtained by using the standard approach based on second derivatives
to study the functions of two variables.

We define the auxiliary quadratic forms q1, g2, g3 by

a1 (z,y) =(n+ M) (z +y) —alz —y)*,
@(z,y) =(u+ Az +y) —a(z +y)?,

g3(z,y) =(p+ N)(x +y) — %(Jc + )%
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a) Case pu € (—oo0,—A] (L+ A <0).

For p satisfying the condition above we have, ¢1(z,y) < 0, ¢g2(z,y) < 0 for all z,y € [0,00)
and sup q(xz,y) = sup gz(x,y) = 0. On the other hand, for v > 0, ¢3(z,y) < 0 for

;c,yE[0,00) ;c,yE[O,oo)
all z,y € [0,00) and  sup q3(z,y) = 0.
z,y€[0,00)

If v € (—o00,—2a) and z € [0,0), the following inequality holds
¢ = qx,2) = (un+ N2z — (2a 4+ y)2°.

Since —(2a + ) > 0, we get xEerrlooq(:c, x) = +o00. Then, ¢* = +o0.
If v = —2a and z,y € [0,00), we have ¢(z,y) = ¢1(x,y). Then ¢*x = 0.
If v € (—2a,2a) and z,y € [0, 00), the following inequalities,

a2(z,y) < q(z,y) < @iz, y)
hold, leading to the conclusion that ¢* = 0.
For v € [2a,+00) and z,y € [0, 00) we obtain,

g3(x,y) < q(x,y) < @2(,y),
which finally implies that ¢* = 0.

b) Case € (=X, 0] (u+A>0).

In this case, for v € (—2a,2a), ¢ is a concave function, taking a global maximum at z* =
y* = (p+N)/(2a+7), for (z,y) € [0,00) x [0, 00). Then, using these results and equation (28]
we get g+ = (1 +\)?/(2a+ 7).

For v € (=00, —2al, z € [0,00), taking into account that 4+ A > 0, —(2a +~) > 0, we have,
¢ > q(z,x) = (p+ X*)2z — (2a+ 7)a® > 0.
Then, noting that lim g¢(z,x) = 400, we obtain ¢* = +oc0.
T—r 400
For v € [2a,00) and z,y € [0,00), the following inequality holds,
q(Ia y) < QQ(% y)

It is not hard to see that, sup qo(z,y) = (u+ N\)?/4a, i.e.,
z,y€[0,00)

o B
S d4a

Since for z* = (u+ A\)/2a,y* = 0 the quadratic form ¢ satisfies q(z*,0) = (1 + \)?/4a, we
conclude that ¢* = (u + \)?/4a.

O
The above results completely determine D(p), and lead to the following theorem.
Theorem 3. For (8, u) € D(p) the limit pressure is given by
p(Bsp) = " + 9 (B, ). (33)
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4. Non-conventional BEC

From theorem 3] one easily deduces the following corollary on non-conventional BEC.

Corollary 2. Let po(p) = po,— (1) + po,+ (1) be the total amount of condensate.

i.) For pn € (—oo, =),

po(u) =0
if v € [-2a,00).
ii.) For p € (—A,0], i)
po(’u) _ 25—_;,_7) v € (_20/5 20’))
w, v € [2a,0).

Non-conventional BEC takes place only for p € (—A\, 0] provided that (8, 1) € D(p). Moreover,
the term representing interstate collisions satisfies:

2
lim <M> - (é%) , v € (—2a,2a),
> =
Vi—oo V} H;(p) 07 vy E [2@700).

For u, A fixed, with p € (=), 0], the total amount of condensate

A
po (20, +00) [“; ,+oo)

as function of v is a decreasing function, satisfying iln% po = +00, h¢r2n po = (L+N)/2a and
Y+—42a Yy a

taking the constant value (4 \)/2a when v € [2a, +00). This behavior is a direct consequence of
the fact that the symmetric quadratic form ¢ is a strictly concave function for v € (—2a,2a) and
becomes a convex function for vy € (—o0, —2a) U (2a, +00).

Hamiltonian (I]) can be rewritten in the following form,

A . 26+ 7\ . .
D D g [ AR
PEA 0
Y s . 2 4 . . a p 2.2
—Q—W(no,——no,Jr) —Vl(no,—+no,+)+v Z (aI,J) Up o - (34)

1
PEA\{0},0

For € (—A,0] and v € (—2a, 2a), in the thermodynamic limit, only the term

2a + vy . .
( . )<n%,_+n3,+>

contributes to the emergence of non-conventional BEC. In this sense, under those restrictions,
our model is thermodynamically equivalent to the system whose energy is represented by the
Hamiltonian,

> @), (35)

pPEAF\{0},0

| e

. . 2a + R N
Y = Y wpodina+ (22 i+
PEA[,0

On the other hand, for p € (=), 0] and v € [2a, +00), the model under study is thermodynam-
ically equivalent to the model given by the following Hamiltonian,

s

. . a . .
a? = Z N(P,0)p.o + V(ng _+hg)+
pEA] o ! pEAI\{0},0

=|e
—
Q>
o+
<)
~—
[
j= %
TN
<)
—
w
D
=
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Quantum many-particle systems associated with energy operators given by equations (35)
and [B0) have been extensively studied in [1, [#H9] and references therein.

Adapting results in [6], it is easy to verify that for d > 2, the models of the type given by
equations (38]) and ([B8) undergo generalized BEC in the following sense,

n 0, < P )
lim lim 3 <@> = b P
5—0+ Vi—o00 Vi H,(p) P — Pe (ﬂ)a p > P (B)

{peA}:0<]|p||<5,0=+}

where,

oP(B) = (2%) / (% — 1) ldp

Rd

is the critical density of the perfect Bose gas (Bose-atoms with internal two-level structure).

In this sense, for the model under study, conventional condensate coexists at u = 0 with the
non-conventional condensate (see [G]).

From a physical point of view the above facts imply that for v € [2a,+00), the interstate
collisions term does not play any role in the thermodynamic behavior of the system and non-
conventional BEC is only the consequence of the presence of intrastate collisions (self-scattering
term). However, for v € (—2a, 2a), non-conventional BEC is enhanced by the presence of a cross-
scattering term (for example, the case of a cross-scattering term with a negative coupling parameter
~ close to —2a).

5. Conclusion

We have made use of a strategy based on the derivation of the limit free canonical energy
(see [3]) to obtain an analytic expression for the limit pressure of a system of Bose atoms whose
ground state has two internal levels. We have proved that negative ground state energies, for a
range of values of the chemical potential, leads to non-conventional BEC, being the amount of
condensate as a function depending on the variables -, a associated with the interstate collisions
and intrastate collisions. In this way we recover the previous results obtained in the framework of
the approximating Hamiltonians method [1].
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Model of Bose-atoms with internal structure

Po3Bs'ss3Ha moaenb bo3e-aTomiB 3 ABOPIBHEBOIO BHYTPILLHbOIO
CTPYKTYPOIO: HecTaHaapTHa bo3e-AlHLWITaNHIBCbKa
KOHOeHcauia

M. Koprin2, [1.M. Cankosidd

1 dakynsTeT MaTemMaTukn, YHiBepcuteT ae Jla CepeHa,
Na CepeHa, Yuni
2 laGopatopisi CTOXaCTUYHOrO aHaniay, Yuni
3 MaTtematuuHuin iHCTUTYT iMm. B.A. CteknoBa, Mockea, Pocis

[na cuctemn Bose-aTtomis, 4ynii onepaTop eHeprii € AiaroHanbHMM Mo Tak 3BaHOMY YMCY ONepaTopiB i
AOro OCHOBHWIA CTaH MA€ BHYTPILUHIO ABOPIBHEBY CTPYKTYPY 3 HEraTMBHUMUW EHEPTiiMU, OTPUMAHO TOYHI
BMpa3n 4ns rpaHUYHNX BiNIbHOI KAHOHIYHOI eHeprii Ta TUCKY. TakoX A0BEAEHO ICHYBAaHHS HECTAHAAPTHOI
Bo3e-AHLUTaliHIBCbKa KOHAOEHcaLji.

Knio4oBi cnoBa: mMeToz arnpokCumMyro4oro ramMiisToHiaHa, HectaHaapTHa bo3e-AlHLuTaliHIBCbka
KOoHAeHcawlis

43003-11






	Introduction
	The model
	Pressure
	Non-conventional BEC
	Conclusion

