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Dynamic properties of molecular motors whose motion is powered by interactions with specific lattice bonds
are studied theoretically with the help of discrete-state stochastic “burnt-bridge” models. Molecular motors are
depicted as random walkers that can destroy or rebuild periodically distributed weak connections (“bridges”)
when crossing them, with probabilities p1 and p2 correspondingly. Dynamic properties, such as velocities
and dispersions, are obtained in exact and explicit form for arbitrary values of parameters p; and p2. For the
unbiased random walker, reversible burning of the bridges results in a biased directed motion with a dynamic
transition observed at very small concentrations of bridges. In the case of backward biased molecular motor
its backward velocity is reduced and a reversal of the direction of motion is observed for some range of
parameters. It is also found that the dispersion demonstrates a complex, non-monotonic behavior with large
fluctuations for some set of parameters. Complex dynamics of the system is discussed by analyzing the
behavior of the molecular motors near burned bridges.
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1. Introduction

In recent years an increased attention has been devoted to investigations of molecular motors,
also known as motor proteins, that are crucial in many cellular processes [1]. They transform
chemical energy into the mechanical motion in non-equilibrium conditions. For most of molecular
motors their motion along linear molecular tracks is fueled by the hydrolysis of adenosine tri-
phosphate (ATP) or related compounds. It was suggested that a different mechanism is employed
to power the motion of a protein collagenase along collagen fibrils |2, 13]. It probably utilizes the
collagen proteolysis, cleaving the filament at specific sites. As the collagenase molecule is unable
to cross the already broken bond, it leads to the biased diffusion along the filament. However, full
understanding of mechanisms of collagenase motion is still not available.

It was proposed that a good description of the collagenase dynamics could be provided by
the so-called “burnt-bridge model” (BBM) [2-9]. In this model, the motor protein is depicted as
a random walker that translocates along the one-dimensional lattice that consists of strong and
weak bonds. While the strong bonds remain unaffected if crossed by the walker in any direction,
the weak ones (termed “bridges”) might be broken (or “burnt”) with a probability 0 < p; < 1
when crossed in the specific direction, and the walker cannot cross the burnt bridges again, unless
they are restored, which can occur with probability 0 < pa < 1. In [6, [7] an analytical approach
was developed which permitted us to derive the explicit formulas for molecular motor velocity
V(e,p1) and diffusion constant D(c,p1) for the entire ranges of burning probability 0 < p; < 1
and concentration of the bridges 0 < ¢ < 1 which were also confirmed by extensive Monte Carlo
computer simulations. This theoretical method has been applied to several problems with periodic
bridge distribution. However, the results in [6, 7] have been obtained only for irreversible bridge
burning (bridge recovery probability was taken to be pa = 0), and also for unbiased random walker
between bridges (equal forward and backward transition rates). In present work, we generalize
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our approach to allow for the possibility of bridge recovery as well as unequal hopping rates on
the sites between bridges. It is more realistic to consider systems with reversible action of motor
proteins since they are catalysts that equally accelerate both forward and backward biochemical
transitions [1].

2. Model

According to our model, we view a motor protein as a random walker moving along an infinite
one-dimensional lattice with forward and backward transition rates being v and w correspondingly,
as illustrated in figure Il The lattice spacing size is set to be equal to one. The lattice is composed
of strong and weak bonds. There is no interaction between the random walker and strong bonds.
However, crossing the bridge in the forward direction (from left to right) leads to its burning with
the probability p;, while the particle moves with the rate u. After the weak link is destroyed, the
walker is assumed to be on the right side of it. When the particle is trying to cross a broken bond,
the bridge can be recovered with the probability ps, while the particle moves to the left with rate
w. It is assumed that initially, at ¢ = 0, all bridges are intact.
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Figure 1. A schematic picture of the motion of a molecular motor in the reversible burnt-
bridge model. Thick solid lines depict strong links, while thin solid lines represent periodically
distributed weak links (bridges). Dotted lines are for already burnt bridges.

The details of breaking weak bonds in BBM have a strong effect on the dynamic properties
of motor proteins [6]. There are two different possibilities of bridge burning. In the first variant
(the so-called “forward BBM”), the weak bond is broken when crossed from left to right, but the
intact bridge is not affected when the particle moves from right to left. Thus the bridge recovery
may occur if the walker attempts to cross a burnt bridge from right to left. In the second variant
(named “forward-backward BBM”), the weak link is destroyed if crossed in either direction [4, [5].
Both variants are identical for p; = 1, however for p; < 1 the dynamics is different in two burning
scenarios, as was shown in py = 0 case [6], although mechanisms are still the same. For reasons
of simplicity, below we will only consider forward BBM, even though forward-backward BBM can
also be solved using the same method.

There are five parameters that specify the dynamics of molecular motors in BBM: the prob-
abilities p1, p2, the concentration of bridges ¢, as well as transition rates v and w. The dynamic
properties of the walker are also strongly effected by the distribution of weak bonds [5]. Below we
will study the case of periodically distributed bridges, when their concentration is ¢ = 1/N and the
weak bonds are located between the lattice sites with the coordinates kN — 1 and kN, with integer
k (see figure [Il). This description is more realistic for collagenases’ dynamics [2, [3]. The model
below will be studied using continuous time analysis as it better describes chemical transitions in
motor proteins [6].

3. Dynamic properties for BBM with bridge recovery

3.1. Velocity

To find the walker’s velocity, we generalize the method used in [6] (for irreversible bridge
burning, i.e. po = 0) to allow for non-zero probability p,. We introduce a probability R;(t) that
the random walker is found j sites apart from the last burnt bridge at time ¢. The probabilities
R;(t) arise if the system is viewed in moving coordinate frame with the last burnt bridge always
at the origin, as illustrated by a reduced chemical kinetic scheme shown in figure
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Figure 2. Reduced kinetic scheme for continuous-time forward BBM with bridge recovery (only
transition rates not equal to u, w are shown). The origin is the right end of the last burnt bridge.
Parameters are described in detail in the text.

The dynamics of the system is determined by a set of master equations:
dRgn+i(t)

dt
fork=0,1,2,--- and¢t=1,2,--- N —2; and

= uRpN4i-1(t) + WREN1i41(t) — (v + w) Reni (1), (1)

dRrnyn-1(t)
dt

dR k41N (1)
dt

= uRpnin—2(t) +wp2f(k+1)Ro(t) + wR(k41)n (1) — (u+ w)Renyn-1(1), (2)
= (I—=p)uBRenin—1(t) + wRGq1yn+1(t) — (v + w)Rpqryn (1), (3)

with £ =0,1,2,--- for both equations () and @)). Also at the origin we have

dli)t(t) = piu ;[Rkal(t)] + wRi(t) — uRo(t) — wpsRo(t). @

In equation () we introduced a function f(k) as a probability that next to the last burnt bridge

o0
is k periods to the left from the last burnt bridge. It satisfies the condition ) f(k) = 1, which is
k=1
reflected in equation (@]). The system of equations [{I)- ) is to be solved in the stationary-state
limit (at large times) when dR;(t)/dt = 0 is satisfied, and we denote R;(t — oo) = R; in what
follows. By definition, it can be argued that

f(k) = 2t (5)

p1REN-—1
k=1
The solution of the system ([I))-() can be facilitated by rewriting equation () in a more convenient
form. To this end, we note that based on the results from [6, |8] it is reasonable to assume that
Rin i is of the form

Ringi = y" W (i), (6)

where y and W are some functions of p1, p2, u, w and N. Furthermore, y is ¢« and k-independent,
while W depends on 4 (but not on k). The advantage of the ansatz () is that it leads to a simpler
form of f(k):

flk) =y (1 —y), (7)

as follows from equation (B). We proceed to solve equations (1)) with f(k) in equation (2] given
by the expression ().
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Introducing a parameter S = u/w, it can be easily verified that
Ringi = Ci(k) + Co(k)B° (8)

with arbitrary Ci(k), Ca(k) solves equation (). Utilizing equation ), Cy(k), Co(k) can be ex-
pressed in terms of functions Ryy and Rin+1 (first two points of the period). Then equation (8]

leads to
w

Ringi = Ry — —— [1 = '] Ay, 9)
U —w
where we defined
Ay = Rgny1 — Rin (10)
In expression (@) it was assumed that k¥ = 0,1,2,--- and ¢ = 0,1,--- | N — 1. Parameters Ryn

and Ay, are to be determined from equations (2 and (B]). Substituting equation (@) in @) and (@)
yields

uw _
uRLN — — [1 —pN 2] Ay + wpgyk(l —y)Ro + wR41)n — (u+ w)Rn
1—8N-11A, —0 11
+ (At w)—— [1 =67 Ay =0, (11)
uw _
(1 —pl)uRkN - (1 —p1)u —w [1 - ﬁN 1} Ak + wR(k+1)N
w2
- (1 =Bl Ak+1 — (u+w) Ry = 0. (12)
u—w
Equation () also yields
U —w k
Ay = m [RkN - R(k+1)N — P2y (1 - y)RO] . (13)
Substituting (I3) into equation ([I2)) results in
aRen + bRy 1yn + cRproyn + (d + ey + fy°) Roy™ =0, (14)
where
1— BNfl
I
= - 1-— - 1
b u+ ( pl)ul—ﬁN wl—ﬁN’ (16)
1-p
¢ = ww ) (17)
1— ﬁN—l
1—pN-t 1-4
e = —p2(1 — pl)UW + U}pgw s (19)
and
1-p
[ = —wPQW . (20)
Using equation (@), it follows that
Rin = Roy", (21)
and equation ([[4) turns into
(c+ )y +(b+e)y+(a+d) =0. (22)
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Therefore,

—(bte)—/(b+e2—4(a+d)(c+ [)
! 2c+ /) |
where we selected the solution of ([22]) such that 0 < y < 1. With the help of ([ZI)) we obtain from
equation (I3

(23)

u—w

A = mRoyk(l —y)(1 —p2). (24)
Thus @) yields 4
Rignyi = Roy* |1 = (1= p2)(1 —y) 11:51\1 (25)

Equation (28) with y given by (23)) solves the system of equations ([I)-() in the stationary state
limit. We note that although the equation () was not used to find this solution, it was numerically
verified that every equation in the system (Il)-() is indeed solved by expressions (28] and (23)).

Parameter Ry, needed to find the velocity, is found from equation (25) combined with the
oo N—1
normalization condition > Y Rgn; = 1, which produces
k=0 i=0

Ro= (1= ) {N = (1= p)1 -9 [%ﬁ]} (26)

The mean velocity of the walker is given by [6]

00 oo N—-1
V= Z(u] —w;)R; = (u—wp2)Ry + Z (u—w)Rgn+i| — (u—w)Rp, (27)
=0 k=0 i=0
which results in a simple relation,
V =w(l —p2)Ro + (u—w). (28)

In equation ([28), Ry is given by (20) with y from the expression (23).

It can be shown that in the limit of u — 1, w — 1, and ps — 0 equation ([28) reproduces
the result obtained earlier in [6] for the BBM with u = w = 1 and p2 = 0. Also, equation (28]
considerably simplifies in the limiting case of p; = 1 (deterministic bridge burning) when y = 0.
In the case of p; = 1 we obtained V(u,w,p2, N) in [9] using the Derrida’s method [10] and our
general result given in equation (28)) agrees with it in the p; — 1 limit, as was numerically verified.

3.2. Diffusion coefficient

The diffusion coefficient is found by generalizing the method developed in [7] (where we found
dynamic properties of the random walker in BBM with v = w = 1, po = 0 and periodic bridge
distribution), allowing for 0 < p2 < 1 and u # w. We define Pynyim(t) as the probability that at
time ¢ the random walker is located at point © = kN +i (i =0,1,--- , N — 1), the right end of the
last burnt bridge being at the point m/N. Parameters m and k > 0 assume integer values.

The dynamics of the system is described by a set of Master equations:

APy N (1) —
— T = 0P (t) = (u+ pow) Py m (1) + pru ; Prn—1.m(t), (29)
for k=1i=0,
deNJrkN;t(N_UM(t) = WPuN+ (ke 1)Nm (t) + uP NN+ (N —2),m ()
+p2wf(k+ 1) PNy (ks 1)Nmakr1(t) — (0 + W) PN kN (v—1),m(t), (30)
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for k> 0and i = N — 1 [with f(k + 1) the same as in ()],

AP N+kN,m(t)
det

for k>1and i =0, and

= wPnNtaN+1,m () + (1 — p)uPmNien—1,m(t) — (u + W) Ponian,m(t)  (31)

APy N4kN+im(t)
de¢

fork>0andi=1,---,N — 2.
‘We observe that

= WP N+kN+i+1,m () +F UPnNteNti—1,m (t) — (U 4+ W) PoNten+im () (32)

+oo
Rinyi(t) = Z Piniryntim(t), (B=0;1=0,1,--- N —1), (33)

m=—0o0

where Ry 4i(t) is the probability for the random walker to be found kN + i sites apart from the
last burnt bridge at time ¢, which was used above to find the walker’s velocity and is given by

equation (20)). Plugging [B3) into equations 29)-(B2) results in the equations [I)—) for Rin,
thus obtained by a different method.
In accordance with [7, [10], we introduce auxiliary functions Sy (),

+oo
Skn+i(t) = Z (mN + kN + i) Py tkn+im(t), (F=0i=0,1,--- N —1). (34)

m=—0oQ

The system of equations describing the time evolution of the functions Siy;(t) results from
equations (34)) and 29)-(B2)). It was obtained that

dSo(?)
dt

= wS1(t) — (u+ paw)So(t) + pru Z San—1(t) + pru Z Ron—1(t) —wRy (1), (35)

a=1 a=1

ds _n(t
dSknvn(t) - _ WSk 1)N (8) + uSkn + (v—2) (t) + pawf (k + 1)[So — Ro]

dt
= (u+w)Sen+(v—1)(t) = wRt1)N (1) + uRkny(v—2) (1),  (36)

for k > 0,

dSen(®) _ g S S

4 =w kN+1(t)+(1—p1)U kN_l(t)—(u—i—w) kN(t)—i—(l—pl)uRkN_l(t)—kaN+1(t) (37)
for £ > 1 and

dSkN_;,_i(t) _

—a WSkNti+1(t) + uSknti—1(t) — (u+ w)Skn4i(t) + uRN4i—1(t) —wREN4i+1(t) (38)

fork>0andi=1,---,N — 2.
At t — oo the solutions of equations ([BH)—(38]) are sought in the form

Sj (t) = a]-t + Tj y (39)

where a; and T are time-independent coefficients. Plugging equation ([B9)) into equations (B5)—(B8)
leads to,

o0
way — (u + paw)ag + pru Z aan—1 =0, (40)
a=1
War41)N + uarN4(N—2) + p2ewf(k + 1)ag — (v + w)apyy(n-1) =0 (41)
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for k>0
wagn+1 + (1 — p1)uarn—1 — (u +w)arny =0 (42)
for k> 1 and
WAKN+i+1 + UGN +i—1 — (U + w)agn4; =0 (43)
fork>0andi=1,--- N —2.
Clearly, equations ([@0)—(@3)) are identical to the system of equations (1)) for the functions R;

in the t — oo limit, where dR;/d¢ = 0. Thus their solutions should coincide up to the multiplicative
constant, namely,

agnti = CRpnyi, (44)
co N—1
with Rxn44 given by equation (23]). The normalization condition Y > Rgny; = 1 implies that
k=0 i=0
co N—1
C =3 > agnti To find the explicit expression for C, we utilize the equations for T; obtained

k=0 i=0
by plugging equation ([B9) into equations (3131,

ag = wTy — (u+ pow)Ty + pru Z Tan—_1+ P10 Z Ron—1—wRy, (45)
a=1 a=1
apn4(n—1) = Wlggnn +uTenev—2) +p2wf(k+1)[To — Ro] — (u+ w)Tkn(n—1)
+uRkN(N—2) — WRGE1)N (46)
for k > 0,

agn = wTgnt1 + (1 = p1)uTen—1 — (u 4+ w)Tkn + (1 — p1)uRkn—1 — WREN+1, (47)

for £ > 1 and
agN+i = WlkNti+1 + uTeN+ic1 — (w4 W) Ten4i + UREN+i—1 — WRENi41, (48)

o0
fork>0andi=1,---,N—2. Summing up equations ([@I)-{Y) and using > f(k+1) =1 yields
k=0

N—

o0
sz arNti = w(l —p2)Ro+ (u—w) =V, (49)
k=0 i=0

,_.

where the walker’s velocity V is given by (28)). Hence, in accordance with equation (44)
agN+i = VRgpN+i (50)

where Ryn4; and V are given by equations ([25]) and (28).
Now we are able to obtain the expression for the random walker’s velocity [7]. The mean position
of the particle is given by

+oo co N-—1

@®) = > D (MmN +EN+0)Puy iy im(t)

m=—00 k=0 =0
N—

—1 “+o0 o
{ Z mN + kN + i)PmN+kN+i,m } Z Z SkN-H (51)
k=0 i= m=—oo k=0 i=0

which results in the mean velocity

S TURS

k=0 i=0

,_.

I
Mg

N—

,_.

&~

SkN+i(t) (52)
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In the t — oo limit equations [B9) and {@9) therefore yield

oo N—-1
V= arN+i = w(l —p2)Ro+ (u —w) =V. (53)
k=0 i=0

As expected, equation (B3]) reproduces the expression ([28)) for V' obtained above with the use of
the reduced chemical kinetic scheme method.
For the purposes of computing the diffusion coefficient D, functions Tjny; need to be found

from {@S)—ES) |7, [10]. In {@5)—-ES), arn+i should be expressed according to (B0). In analogy with
finding Ry i from ([I)—(), we start with solving [A8]). In the expression (28] for Rin+i, we denote

_(A=p)1-y)
C=—7 v (54)
so that _
Rinyi = Ren (1 —€(1 - 6Y)], (55)

where Ry = Roy®, with Ry, y given by (28], [23]). With the use of (53], [@J) takes the form
WTin+it1 + UTeN1io1 — (u+w) Tengi + (u—w —V)Rpn (1 =€) + (w —u — V) RpnéB = 0. (56)
We seek the solution of (B6]) in the form
Tinyi = Cr(k) + Ca(k)B' +iA(k) +iB(k)S". (57)

In (B1), C1(k) + C2(k)B" part is the solution of homogeneous equation [the part of (G6) which
involves only Tin+i, Tkn+i+1], in analogy with equation (§). Substituting equation (57 into equa-
tion (B6]) gives these expressions for A(k) and B(k):
u—w-—-V u—w+V
Ak) = ——Ren(1 — B(k) = —— RiknE. 58

="V rya-0 BE="""Vr (58)
Plugging Txn, Tin+1 instead of Tiny; into (B7), one can express Cp(k) and Co(k) in terms of
A(k), B(k) as well as Tin and Tpyy1 (first two points of the period). Substituting the resulting
expressions for C1(k) and Cy(k) together with the expressions (B8] for A(k), B(k) in (B1) gives

after some rearrangement

B 1—p° u—w-—V o 1-p
Tinti = TkN+9k15+R’“Nﬁ(1_§)[l_1ﬂ]
v—w4+V [ . 1-4
+ Rin py—— f{lﬂ 51_6}7 (59)
where
Or = Triny1 — Thn - (60)

Equation (59) solves (B6) [i.e., the equation 8] for arbitrary Tyy and 6. Parameters Ty and
0y, are to be determined from the equations (@) and {T). To get a less cumbersome result for
Tkn+i, it is convenient to rewrite equation (6] by adding and subtracting wTin+n, WRKkN+N
[we note that Tynin, Rinyn are given by (BY) and {B35) with i = N, ie., Tinin # TN,
RinynN # Ruy1)n]:

agN+(N—1) = WIgenyny — wTinen +wTinen + uTeny(v—2) + p2wf(k + 1)[To — Ro]
— (w4 w) TNy (v—1) FuREN+(N—2) — WREN N + W(RekNy N — Rey1yn), (61)

which gives

W(T(pr1yny — Tenvyn) +W(Ren N — Repyn) + paw f(k +1)[To — Ro] = 0, (62)
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as follows from (48) which was formally extended to include ¢ = N — 1. In (62), the function
f(k+ 1) is expressed according to equation ([f]). Plugging (B9), (Bh) (with appropriate k, ) into
(62) permits us to express 0y, in terms of T in this way,

1-p

O = 1-pN {Tks1yn — Tin — FRen +p2y*(1 — 9)To } (63)
where v 1 ﬁN +V 1 51\/
_u—w-Voo _1- e N
F=2"2""q 5)[1\7 1,6’]+ E[Nﬂ 61*5 : (64)

It should be mentioned that substituting (59)) and (G5 into original equation (@8] leads to a more
involved expression connecting 0y, and Ty which turns out to be identical to equation (G3)), as was
numerically verified.

To find Ty, we substitute (B9) and (B3 (with appropriate &, ¢) in equation [#7), with 6 in
(E9) replaced according to (G3]). After some algebra, this results in

aTyn + 0T (i 1)n + Tryayn + {d+ ey + 4?3 Toy" + xy* =0, (65)
where coefficients a, b, ¢, d, e, f are given by equations (IB)—(20) and

_ pN-1
X = —RoF [wylﬂﬁN + (1 —pl)uﬁ} +R0{(1 —p1)ug —wy[l — §(1 — B)]

+(1 = pr)u[l — €01 - Y] = V. (66)
In equation () it was found that

u—w—V 1—pgN-1
¢:7 S —

1-p

1—ﬁN_1]+u—w+V (67)

A L

e[ -ne-p

u—w u—w

and F is given by (64)).
Comparison between ([65]) and (4] shows that they are identical (with replacement R — T),
with the exception of yy* term in (65]). This implies that

T — By (68)

with arbitrary constant B solves homogeneous equation [equation (6] without xy* term)], since y
given by (Z3)) is constructed for Rix = Roy"* to solve specifically equation (I4]).
To account for yy* term, we look for solution of (65)) of the form

T3 = 2, (69)
where
—b—vb2 -4
oo VP (70)

with a, b, ¢ given by ([I&)-(I7); parameter C is to be determined. Parameter z is the solution of
equation cz? 4+ bz + a = 0 such that 0 < z < 1. Plugging (63)) into (G5) gives

CzF(a+bz+cz®) + (d+ ey + fy)Cy* + xy* = 0. (71)

The first term in (7)) vanishes since z is given by (7)), thus (1)) yields

~ —X
C = — 2~ 72
d+ ey + fy? (72)

The T, 1§12\; given by (69) with C specified by (T2) therefore solves equation (G3). More generally, (5]
is solved by the sum of contributions (G8) and (69), i. e.

Ty = Byk + C’Zk, (73)
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where B remains undetermined. Plugging (73) in equation (B3) for 6, gives

_1-8
=1

O {By’“(y — 1)+ Cz*(z — 1) — FRoy* + pay®(1 — y)[B + 0]} : (74)

Substituting (73) and (74) into (5J) results in the final expression for Tin 44,

Tovsi = By CoF 4 1= {Buby = 1)+ O = 1) = FRay* + pa* (1~ )| + 1}
u—w-—V o 1-p uv—w+V _|[ 1—p
—i—Royk{ﬁ(l—f)[i—lﬂ}‘f’ py—— 5[25—515}}- (75)

Although equation (@) was not utilized to obtain (73)), it was numerically checked that every
equation in the system [@5)—-([X) holds for Tk, Ren+i given by ([0) and (25]).
To compute the diffusion coefficient D, we need to consider additional auxiliary functions [7,10],

—+oo
Usnit) = Y (mN+EN +i)°Pounisnviim(t), k>0, i=0,1,---,N—1.  (76)

m=—0oQ

A system of equations which determine the time evolution of U;(t) is derived with the use of

equations (70), 34) and B3) for Ugn+i(t), Skn+i(t) and Ren+i(t), as well as equations (29)—(B2]).
It follows that

d({ft(t) = wUi(t) — (u+ pow)Uo(t) — 2wS; () + wR1(t) + pru az::l Uan—1(t)
+ 2p1u Z SaNfl(t) + pru Z RaNfl(t), (77)

dU, _(t
Wiwev-n) - _ wU 1) (1) + uUpny (v —2)(t) — (v + 0)Upn y(v—1)(2)

dt
+pow f(k + 1)Uo(t) — 2wSi1)n (1) + 2uSk N (v—2) (1)
—2pawf(k +1)So(t) + wRp1yn (t) + uRpn(n—2)(t)
+ pawf(k + 1)Ro(t) (78)
for k > 0,
dUn (t
%() = wUin+1(t) + (1 = p)ulin—1(t) — (u+w0)Upn (t) — 20Skn11(t)

+2(1 = p1)uSkn-1(t) + wREN 1 () + (1 — pr)uRpn—1(t) (79)
for k> 1, and

dU, i(t
’“(;’7;() = wUgpNtit1(#) + vUpnti-1(t) — (u+ w)Upnyi(t) — 2wSkn it (t)

+ 2uSkNti—1(t) + WREN+i41(t) + uRkN+i—1(2) (80)

fork>0andi=1,--- /N —2.
The diffusion constant is to be found from

d

D= Jim < [(a(0?) ~ (2(0))7]. (s1)
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Using (70) and summing up equations (77)—(80) results in

“+o0 co N-—1

d d

2y _ 2 _
a<gs(t) ) = pr m;@; ; (mN + kN + )2 Py intim(t)
co N-—1 co N—1
d dUkn+i(t)
= 5 Z Urn+i(t) = Z d;r (
k=0 =0 k=0 =0
oo N-—-1
= (u+w)—w(l—pa)Ro(t) + 2w(l = p2)So(t) +2(u—w) Y > Sensi(t), (82)
k=0 i=0

thus we do not need to find Ugn44(t) from the system ([T7)—(@0) to obtain the diffusion coeflicient.
oo N—1 0

To derive (82) we used the normalization conditions, Y~ > Ryn+i(t) =1 and > f(k+1) =
k=0 i=0 k=0

In the t — oo limit, Spn4i(t) — axn+it + Tkn+i, Ro(t) — R, thus ([82) becomes

oo N-—1

—(@(t)?) = (u+w) —w(l—pa)Ro+2w(l—pa)agt+To] +2(u—w) > Y [arnyit+Tenal. (83)
k=0 i=0

oo N—1

Given that in the stationary-state limit <$(z(t)) = 3> 3 apnii = w(l —p2)Ro + (u —w) =V
k=0 i=0

[equation (B3))] and utilizing (z(t)) given by (&Il), it follows that

oo N—
L = 20) L) =2 a0 =2V S S Suvealt — o0
o Nflk: =
= 2[w(l —p2)Ro + (u— Z {apntit + Thenti} - (84)
k=0 =0

Plugging (83)) and (84) into (BI]) gives the diffusion constant,
N-1

1 o0
Dzi (U+U)) *w(]. 7p2)R0 +2w(1 7p2)[a0t+T0] 72’[0(1 7p2)Roz {akNHtJerNH}] .
k=0 i=0

The time-dependent part of (83)) is

N-1

- 1 >
D(t) = 3 lZw(l — pa2)aot — 2w(1 — p2)Ro Z AkN+i ] . (86)

k=0 i=0

co N—1
Using >, > arn+i =V [equation (B3)] and ag = V Ry [equation (&0)], it follows that according
k=0 i=0
to [Ba) D(t) = 0. Therefore, as anticipated, the diffusion constant does not contain time-dependent
terms, and it is given by

1
D=

o]
2 (u + w) — ’U)(l — pg)Ro + 2’(1}(1 — pg)TQ — 2w(1 — pg)RO Z TkN+'L'

k=0 1

I
=]

in (7). Using equation (73 for Txn; yields,

oo N-—1 ~

BN CN N 1 - - RoF ~
> D Tivi= 1 +1Z+[16N—16H—B—C—10 —i—pg(B—i—C)}—i—)\, (88)
k=0 i=0
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where

N = Ry {u—w—V(l_g)[N(NQ—l)_ 1 (N_11—ﬁN)]

1—y U —w 1-p 8
u—w+V [=NBN + (N —1)pN+) 4+ g I} 1—-pN
= -y 5 (-EF)]) e

In deriving (88]), we used the fact that 0 <y < 1, 0 < z < 1. Next, we consider the last two terms
in (87),

N-1 BN

o0
2w(1l — p2)Ty — 2w(1 — p2)Ro Z Tinti = 2w(1 — p2) {B +C - Ry <1

k=0 =0
CN N 1 _ . RyF .
+1—z+[1—ﬁN1—ﬁ} {B L=y (Bw)]H)}’ 0

where we used (88) and Ty = B + C [equation (Z3)]. The contribution from terms o< B in (@0) can
be shown to be

2wt - pB {1 - 2 (N - = p1-) |12 - 125 ) (91)

Utilizing equation () for Ry, it follows from (@I)) that B-contribution in (@) equals 0, thus
undetermined constant B cancels out in (87) and it has no effect on the diffusion coefficient.
Without B-terms equation (@) becomes

oo N—-1 CN
2w(1 — po) TOfRO;;TkNH 2w(1p2){0 R0<1_

Plugging [@2)) into (7)) gives

D= % {(u+w) —w(l —p2)Ro + 2w(l — p2)C — 2w(l — p2) Ry <1C_NZ
[1_N6N1i5] [fif;Jr(po)C‘]Jr/\)}, (93)

In equation ([@3) we have § = u/w, and parameters Ry, C,y, z, F, X are given by equations 4l),
@), @3), @), ©4), [89), correspondingly. Other useful parameters [on which D in ([@3) implicitly

depends| are a — f, x, &, V given by equations ([[&)-20), 68), B4), and 28]), correspondingly.
With the help of these parameters equation ([@3]) gives the exact expression for D as a function of

transition rates u, w, probabilities pi, ps, and concentration of bridges ¢ = 1/N.

It was verified numerically for various p; and c¢ values that in the limit of v — 1, w — 1,
p2 — 0 equation (@3) reproduces the diffusion constant obtained in [7] for BBM with u = w =1
and po = 0. In the limiting case of p; = 1 we obtained D(u,w, p2, N) in [9] using Derrida method
[10] and it also agrees with our general result ([@3)) in the p; — 1 limit, as was numerically checked.

4. Discussions

To illustrate our findings, we plot the dynamic properties of the molecular motor using equati-
ons (28) and ([@3). We first consider the case of the unbiased molecular motor with transition rates
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Figure 3. Dynamic properties of the unbiased molecular motor with « = w = 1 and with the
probability of burning p; = 0.1: (a) The mean velocity as a function of the concentration of
bridges for different recovery probabilities; (b) the dispersion as a function of the concentration

of bridges for different recovery probabilities.
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Figure 4. Dynamic properties of the unbiased molecular motor with « = w = 1 and with the
recovery probability p2 = 0.4: (a) The mean velocity as a function of the concentration of bridges
for different burning probabilities; (b) the dispersion as a function of the concentration of bridges

for different burning probabilities.
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Figure 5. Dynamic properties of the unbiased molecular motor with u = w = 1 and with the
concentration of bridges ¢ = 0.2: (a) The mean velocity as a function of the burning probability
for different recovery probabilities; (b) dispersion as a function of the burning probability for

different recovery probabilities.
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u=w = 1 (figures BHA). Equations (28) and ([@3) cannot be used directly when f = u/w = 1.
Whereas it is possible to find the ©w — 1, w — 1 limit of equation (28] (although it leads to a cum-
bersome expression) and thus to plot the velocity, it is problematic in the case of equation ([@3]).
Thus we plotted the diffusion constant for v = 0.999 and w = 1 (see figures Bl (b), @ (b), Bl (b)).
Using u values closer to 1 generates numerical instability. This is a good approximation of the
u = w = 1 case, as was judged from comparison with known limiting cases. Namely, comparing
p2 = 0 case [figures Bl (b), B (b)] with the result from [7] for v = w = 1 showed the discrepancy in
D values of the order of ~ 0.001 for almost entire range of parameters ¢ and p;, with the exception
of small ¢ £0.02, and p; < 0.01, where discrepancy exceeded 0.008 and 0.006 correspondingly. For
figure @ (b), we compared p; = 1 case (not shown) with the corresponding case for u = w =1
obtained in [9]: typical discrepancy in D values between u = 0.999 and u = 1 cases was ~ 0.0005
for all ¢ values except ¢ < 0.001, where discrepancy exceeded 0.007.

As anticipated, when the recovery probability po — 1 and the presence of bridges has no effect,
V —>u—w=0and D — $(u+w) =1 for all ¢ (and p;) values (figuresBland[]); the same happens
in the limit of the burning probability p; — 0 (figure [)). Increasing p; and the concentration of
weak links ¢ leads to increasing velocity [as shown in figures 3] (a),Hl (a), Bl (a)], whereas increasing
pa reduces the velocity [figures [ (a), Bl (a)].

T T T T T
P, =

0.8 2 7

- p2=0.1

| —--p,=03

N p,=0.7

\ 2
0.6 \ c—e p,=09[
\
TSI ]
D A~ e T T
041 el T
\ =
N T -l
NGO T T =
< T Trmrmee e L
~
0.2 S~ ]
0 ) 1 . 1 . 1 .

0 0.2 0.4 0.6 0.8 1

(b)

Figure 6. Dynamic properties of the backward biased molecular motor with v = 0.3 and w =
0.7, and with the burning probability p; = 0.3: (a) The mean velocity as a function of the
concentration of bridges for different recovery probabilities; (b) the dispersion as a function of
the concentration of bridges for different recovery probabilities.

The diffusion constant plotted in figures Bl (b) and @ (b) is a decreasing function of the bridge
concentration ¢ because the presence of bridges lowers the fluctuations of the motor protein (the
motor protein cannot cross back the already burned bond). We observed that in the limit of low
¢ there is a gap in the dispersion [figures Bl (b) and @ (b)]: D(c¢ — 0) differs from the expected
D(c = 0) value of 1(u+ w) = 1. This phenomenon corresponds to a dynamic transition between
unbiased and biased diffusion regimes as was argued earlier in [9]. Figure 3(b) is similar to the
corresponding plot in [9] for p; = 1 case, but for p; = 0.1 the gap is prominent only for small po
values, and for po > 0.1 it practically disappears. We note that for p; = 0 case in figure Bl (b) the
correct ¢ — 0 limit must be D(c — 0) = 2/3 [7]. However, it did not reach this value because of
the emerging numerical instability for very low ¢ < 0.001 (see also our discussion above).

Analysis of figure [l (b) shows that as ps increases, the behavior of diffusion constant changes
from increasing to decreasing function of py, with D(p;) developing a minimum for p, < 0.1. Tt
should be noted that in po = 0 case, D should approach the value of 1/2 for p; — 0 according
to [7]. We see some discrepancy there which is also due to the numerical instability for small pq
values. In addition, we observed a gap between D(p; — 0) = 1/2 for p; = 0 and D(p; — 0) =1
for all nonzero po values.

As another example, we investigated the case of the backward biased motor protein (with
specific transition rates u = 0.3,w = 0.7), where bridges are inducing the molecular motor to
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Figure 7. Dynamic properties of the backward biased molecular motor with v = 0.3 and w =
0.7, and with the recovery probability p2 = 0.1: (a) The mean velocity as a function of the
concentration of bridges for different burning probabilities; (b) the dispersion as a function of
the concentration of bridges for different burning probabilities.
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Figure 8. Dynamic properties of the backward biased molecular motor with v = 0.3 and w =
0.7, and with the recovery probability p» = 0.6: (a) The mean velocity as a function of the
concentration of bridges for different burning probabilities; (b) the dispersion as a function of
the concentration of bridges for different burning probabilities.
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Figure 9. Dynamic properties of the backward biased molecular motor with « = 0.3 and w = 0.7,
and with the concentration of bridges ¢ = 0.2: (a) The mean velocity as a function of the burning
probability for different recovery probabilities; (b) the dispersion as a function of the burning
probability for different recovery probabilities.
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move in the opposite direction (figures [HJ). The analysis of dynamic properties shows that in the
p2 — 1 limit (the deterministic bridge recovery) V.— u —w = —0.4 and D — 1(u + w) = 1/2
for all ¢ and p; values (see figures [6] and [)), as it should be. The p; — 0 limit in the u < w case
is more complex than in the u > w case (when V — u —w, D — 1(u+ w) for all po # 0 and
¢ values as p; — 0). Namely, for u < w there exists pa(u,w) such that for non-zero ps < ps the
dynamic properties V(¢) and D(c) exhibit strong c-dependence in the p; — 0 limit and they are
different from the v — w and 1 (u + w) values for non-zero ¢ [figure [@ (a), (b)]. Exactly at p; = 0
(with pa < p2), V(p1 = 0,¢) = u—w and D(p; = 0,¢) = %(u + w) as obtained using the y = 1
root of equation (22)), given by equation (23) with “+” rather than “—” sign before the square
root [the second root of equation (2Z)]. Thus for pa < po there is a dynamic transition separating
p1 = 0 and p; — 0 regimes. For v = 0.3, w = 0.7, it was found that ps =~ 0.57. For py > po,
V(pi — 0,¢) =V(p1 =0,¢) =u—w = —0.4 and D(p; — 0,¢) = D(p1 =0,¢) = 2(u+w) = 0.5
for all ¢ values [figure B (a), (b)]. Physically this implies that bridges with arbitrarily low burning
probability strongly affect the dynamics of the particle which tends to move in the backward
direction provided that the recovery probability ps is less than some critical value; otherwise (in
p2 > P2 case) weak links have no effect on the particle dynamics as p; — 0. Thus in the p; — 0
limit there is a dynamic transition at ps = ps separating the regime with ps < ps when weak links
play a role in the motor protein dynamics and the regime where they are irrelevant (pa > p2). It
should be noted that the p; — 0 limit in figure @ is in agreement with that in figures [7] and B
p2 =~ 0.57 plays the same role. The dynamic transition in the p; — 0 limit also takes place for
p2 = 0 (irreversible burning of weak connections). It separates backward biased p; = 0 regime from
forward biased regime with small finite p;, when velocity V(c) is positive for all ¢ > 0, although
V(e) — 0, D(c) — 0 for all ¢ values as p; — 0 [see figure[dl (a), (b) with the specific ¢ value]. There
are therefore jumps in V(¢) and D(c) at p; = 0 for all ps < ps and all non-zero c.

Increasing the burning probability p; and concentration of weak bonds ¢ reduces the magnitude
of particle’s velocity in the backward direction; the same effect is observed when the recovery
probability ps is reduced, as expected [see figures[dl (a), [ (a), B (a), [ (a)]. For sufficiently large c,
p1 (and small ps) the velocity V' even becomes positive [figures [Gl (a), [ (a)]. We observed that for
p2 =0, V is always positive as the burning of weak bonds is irreversible in this case [figures [f] (a),
Ol (a)]. In that case, V(¢ = 0) = u — w is different from V(¢ — 0) = 0 [figure [@l (a)]. This effect was
also observed in [9] in the p; = 1 case.

Diffusion constant demonstrates a more complex behavior, with large fluctuations at small ¢
and small p; which increase with increasing p; [figures[@l (b) and [ (b)]. Figure 6(b) with p; = 0.3
is qualitatively similar to the corresponding figure in [9] with p; = 1, although the maxima in
D curves are less pronounced than in [9]. The shape of the D curve differs significantly between
figures [0 (b) and [ (b) when the threshold pg is crossed. In case of pa = 0 (irreversible bridge
burning), fluctuations are reduced (especially at low ¢) and D curve differs substantially from non-
zero py case [figures[@l (b) and 9(b)]. As was the case with the velocity, for po = 0 there is a gap in
D separating D(c = 0) = 1 (u+ w) from D(c — 0) = 0 [figure [f (b)], again illustrating a dynamic
transition. For non-zero p; the diffusion constant is D(c — 0) = 3(u+w), and there is no gap [see

figures @ (b), @ (b), B (b)].

5. Conclusions

We have presented a comprehensive theoretical method of calculating dynamic properties of
molecular motors in reversible burnt-bridge models for periodic bridge distribution. It is a generali-
zation of the approach developed by us in [6, [7] for the unbiased molecular motors and irreversible
burning of bridges. Exact and explicit expressions for mean velocity and dispersion have been de-
rived for arbitrary values of parameters u, w, p1, p2 and c. In the known limiting cases of u = w = 1,
p2 = 0 and of p; = 1, we have reproduced our earlier findings [6, (7, 9], thereby confirming the
validity of our theoretical analysis. Some interesting phenomena have been observed as a result of
the investigation of dynamic properties of the molecular motor in BBM with bridge recovery. It in-
cludes dynamic phase transitions and reversal of the direction of the motion. In case of the unbiased
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molecular motor, increasing the concentration of bridges ¢ (or lowering the recovery probability p2)
with other parameters kept fixed results in increasing velocity and decreasing dispersion. However,
dependence of the dispersion on burning probability p; is more complex; it is determined by the
p2 value. In the limit of low ¢, gaps in dispersion plots have been observed for various p; and po
values, indicating the dynamic transition between biased and unbiased regimes. Also, a gap was
found in the limit of small p; between p; = 0 and non-zero p regimes. Thus our results obtained
in [9] for p; = 1 with u = w were generalized to cover the full range of p; values.

For the backward biased molecular motor, increasing ¢ has resulted in slowing down the back-
ward movement of the particle, and for sufficiently small py (large p;) the direction of motion has
even been reversed and the velocity became positive. In the limit of small p;, a dynamic phase
transition separating p; = 0 and p; — 0 regimes has been found provided that ps is less than
some critical value. For sufficiently small ps, broken bridges affect the particle’s dynamics even
if the burning probability p; is infinitesimal. The behavior of dispersion as a function of ¢ was
non-monotonic for some range of parameters p; and po, with large fluctuations at small ¢ and
small po. In the case of irreversible bridge burning (p2 = 0), we have observed gaps in velocity and
dispersion in ¢ — 0 limit (for p; = 0.3), with the velocity being positive for all non-zero ¢ values. It
suggests that there is a dynamic transition at ¢ = 0 separating backward biased and forward biased
diffusion. The velocity and fluctuations are suppressed for sufficiently small ¢. Hence our findings
in [9] for u < w case with p; = 1 have been extended to describe the general case of 0 < p; < 1.

The method presented above applies to the case of periodic distribution of weak bonds, which
is probably realistic for collagenases |2]. As a problem to be addressed in the future studies, one
can consider BBM with random distribution of bridges [4, |5] where a different theoretical approach
must be applied.
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AnHamMika MONeKkynsipHUX ABUT'YHIB Yy OOOPOTHIW moaeni
cnaseHux MocCTiB

M.H. Aptbomos®, A.l0. Mopo3og2, A.B. Konomeiick®

T Ximiunun dakynbTeT, MaccadvyceTTCbkuiA TEXHONOTIYHNIA iHCTUTYT, Kembpiax, CLUA
2 ®dakynbreT di3ukn i actpoHoMmii, YHiBepcuTeT KanidopHii, Jloc Anxenec, CLLA
3 XimiuHmiA dakynbTeT, YHiBepcuTeT Palica, MoctoH, CLLUA

JlMHaMmiYHi BNacTMBOCTI MONEKYNSIPHUX OBUTYHIB, YNIA PyX 3A4INCHIOETBCSA 3aBASKM B3aEMOAiSM 3 0cobnn-
BUMM I'PATKOBUMM 3B’A3KaMM1, AOCNIAXKYIOTbCA TEOPETUYHO HA OCHOBI CTOXaCTUYHUX MOAeNen “cnaneHmx
MOCTIB” 3 AUCKPETHUMM CTaHaMn. MONeKynsipHi ABUMYHU OMUCYIOTLCS SIK BUMAAKOBI B1yKaHHS, LLLO MOXYTb
3HMLLYBATU YY1 BiGHOBMIOBATW NEPIOANYHO PO3MOAINEHI 3B’A3KM (“MOCTWU” NpU iX NPOXOAXEHHI 3 MMOBIPHO-
CTAMU, BIONOBIAHO, p1 Ta p2. AnHaMiyHi BNACTMBOCTI, Taki SK WBMOKOCTI Ta AUCNEpPCii, OTPUMYIOTLCS B
TOYHI Ta sABHIN PopMi 49 AOBINBbHMX 3HAYEHb NapaMeTpiB p1 i p2. [ANa HeynepeoXXeHoro BUNagKoBoro
61yKkaHHS 060POTHE CrasieHHst MOCTIB NPUBOAWTL A0 YNepeaXeHOoro CnpsiMoBaHOro pyxy 3 AMHaMIYHUM
nepexonom, Lo CNOCTEPIraeTbCs NPW AyXe MasMx KOHLEHTpaLisix MOCTIiB. Y BUNaaKy ynepeaXeHoro mMo-
JIEKYNIAPHOr0 ABUIYHA, WO MOXE PyxaTUCb Ha3ag, Moro LWBNAKICTb 3MEHLLYETLCS Ta 3MiHa HANPSAMKY pyxy
crnocTepiraeTbes ons Aesikoi obnacti napameTpis. OTPUMaHO TakoX, L0 AUCMEPCia AEMOHCTPYE CKIaaHy
HEMOHOTOHHY MOBEAIHKY 3 BENMKUMU PnyKTyauismu ans aeskoro Habopy napametpis. CknagHa AnHaMi-
Ka CUCTEMU OBrOBOPIOETLCS 32 AOMOMOIOK aHaslidy NOBEAiHKM MONEKYNSPHUX ABUMYHIB Bing cnaneHux
MOCTIB.

Knio4oBi cnoBa: MosekysipHi ABUryHU, CTOXaCTUYHI MOAEITI, PyXUBI MPOTEIHN
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