Condensed Matter Physics 2010, Vol. 13, No 2, 23003: 1-[I0] CONDENSED
AT TER

http://www.icmp.lviv.ua/journal PRIYSIES

The second critical density and anisotropic generalised
condensation

M. Beau, V.A. Zagrebnov

Université de la Méditerranée and Centre de Physique Théorique — UMR 6207,
Luminy — Case 907, 13288 Marseille, Cedex 09, France

Received February 25, 2010, in final form March 30, 2010

In this letter we discuss the relevance of the 3D Perfect Bose gas (PBG) condensation in extremely elongated
vessels for the study of anisotropic condensate coherence and the “quasi-condensate”. To this end we analyze
the case of exponentially anisotropic (van den Berg) boxes, when there are two critical densities pc < pm
for a generalised Bose-Einstein Condensation (BEC). Here pc is the standard critical density for the PBG. We
consider three examples of anisotropic geometry: slabs, squared beams and “cigars” to demonstrate that the
“quasi-condensate” which exists in domain p. < p < pm is in fact the van den Berg-Lewis-Pulé generalised
condensation (vdBLP-GC) of the type Ill with no macroscopic occupation of any mode. We show that for
the slab geometry the second critical density pm is a threshold between quasi-two-dimensional (quasi-2D)
condensate and the three dimensional (3D) regime when there is a coexistence of the “quasi-condensate” with
the standard one-mode BEC. On the other hand, in the case of squared beams and “cigars” geometries, critical
density pm separates quasi-1D and 3D regimes. We calculate the value of the difference between pc, pm
(and between corresponding critical temperatures Tm, Tc) to show that the observed space anisotropy of the
condensate coherence can be described by a critical exponent v(T") related to the anisotropic ODLRO. We
compare our calculations with physical results for extremely elongated traps that manifest “quasi-condensate”.
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1. Introduction

One can rigorously show that there is no a conventional Bose-Einstein condensation (BEC) in
the one- (1D) and two-dimensional (2D) boson systems or in the three-dimensional squared beams
(cylinders) and slabs (films). For interacting Bose-gas it results from the Bogoliubov-Hohenberg
theorem [1, 2], based on a non-trivial Bogoliubov inequality, see e.g. [3]. For the Perfect Bose-
gas this result is much easier, since it follows from the explicit analysis of the occupation number
density in one-particle eigenstates. A common point is the Bogoliubov 1/¢-theorem [1,4, 5], which
implies destruction of the macroscopic occupation of the ground-state by thermal fluctuations.

Renewed interest to eventual possibility of the “condensate” in the quasi-one-, or -two-dimen-
sional (quasi-1D or -2D) boson gases (i.e., in cigar-shaped systems or slabs) is motivated by recent
experimental data indicating the existence of the so-called “quasi-condensate” in anisotropic traps
[6-8] and BKT crossover [9].

The aim of this letter is twofold. First we show that a natural modeling of slabs by highly
anisotropic 3D-cuboid implies in the thermodynamic limit the van den Berg-Lewis-Pulé generali-
zed condensation (vdBLP-GC) [10] of the Perfect Bose-Gas (PBG) for densities larger than the
first, i.e., the standard critical p.(3) for the inverse temperature 5 = 1/(kgT). Notice, that a
special case of this (induced by the geometry) condensation was for the first time pointed out by
Casimir [11], although the theoretical concept and the name are due to Girardeau [12]. So, for
the PBG, the “quasi-condensate” is in fact the vdBLP-GC. Here we generalize these results to
the highly anisotropic 3D-cuboid with anisotropy in one-dimension, which is a model for infinite
squared beams or cylinders, and “cigar” type traps.
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Second, we show that for the slab geometry with exponential growing (for a > 0 and L — o0)
of two edges, L1 = Ly = Le®", L3 = L, of the anisotropic boxes: A = L1 x Ly x L3 € R3, there
is a second critical density pm(8) := pc(8) + Qa//\%, > pe(B) such that the vdBLP-GC changes its
properties when p > pp,(5). This surprising behaviour of the BEC for the PBG was discovered by
van den Berg [13], developed in [14], and then in [15, [16] for the spin-wave condensation.

Notice that the exponential anisotropy is not a very common concept for the experimental
implementations. Therefore, it appeals for a re-examination of the standard vdBLP-GC concept
in Casimir boxes [17] and the corresponding version of the Bogoliubov-Hohenberg theorem [18].

Our original observation concerns the coexistence of two types of the vdBLP-GC for p > pm(3)
(or for corresponding temperatures T < Ty, (p) for a fixed density, see figure [[]) and the analysis
of the coherence length (ODLRO) in this anisotropic geometry. We also extend our observations
to obtain another new result proving the existence of the second critical density in the squared
beam and in the “cigar” type traps for exponentially weak harmonic potential confinement in one
direction. We use these results to calculate the temperature dependence of the vdBLP-GC particle
density for the case of two critical densities, py, (8)>pc(3) and to apply the recent scaling approach
[17] to the ODLRO asymptotic in this case.

2. Conventional BEC of the Perfect Bose-Gas

It is known that all kinds of BEC in the PBG are defined by the limiting spectrum of the
one-particle Hamiltonian T /(\N:D = —h2A/(2m), when cuboid A T R3. In this paper we make this
operator self-adjoint by fixing the Dirichlet boundary conditions on JA, although our results are
valid for all non-attractive boundary conditions. Then the spectrum is the set

R
& =5 Z(FSJ‘/LJ‘)Q (1)
J=1 s; €N
and {¢sa(z) = H?Zl V/2/Ljsin(ns;xj/Lj)}s,en are the eigenfunctions. Here N is the set of the
natural numbers and s = (s1, s2, $3) € N3 is the multi-index.

In the grand-canonical ensemble (T,V,u), here V. = LiLyL3 is the volume of A, the mean
occupation number of the state ¢, A is Ns(3, 1) = (e8(=#) —1)~1 where yu < inf e, 5. Then,
for the fixed total particle density p the corresponding value of the chemical potential pa (8, p)
is a unique solution of the equation p = > s Ne(3,1t)/V =: Na(B,1)/V. Independent of the
way A T R®, one gets the limit p(3, 1) = limy . Na(8,1)/V, which is the total particle density

for p < limy . infs ey = 0. Since pe(B) = sup, <o p(3, 1) = p(B,u = 0) < o0, it is the (first)
critical density for the 3D PBG: p.(8) = C(3/2)/)\%. Here ((s) is the Riemann (-function and

Ag := hy/2m3/m is the de Broglie thermal length.

3. The second critical density for generalised BEC in slabs

For A = Le®l x Le*" x L one gets (|13, 114]) that for any p < 0 the limit of Darboux-Riemann

sums
: NS (67 /j/) _ 1 dSk’
Jm oY T = G / PR TEm = 1 @
S#(Sl,SQ,l) ]R3

We denote by ur(3,p) := €@,1,1) — AL(B,p), where Ap(B,p) > 0 is a unique solution of the
equation:
Ny (8, 1) Ny(8, 1)
p > vt ) v (3)

s=(s1,82,1) s#(s1,52,1)
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Figure 1. For the slab geometry, the blue curve p.(1/(ksT)) is the first critical line for the BEC
transition as a function of T, the red curve pm(1/(ksT)) = pc(1/(ksT)) + 2a/A% is the second
critical line. Notice that above the red curve there is a coeristence between “quasi-condensate”
(vdBLP-GC of type III) and the conventional condensate in the ground state (vdBLP-GC of
type I), between two curve there is only “quasi-condensates” phase and below the blue curve
there is no condensate.

Since by @): imp oo D245, 55,1 Vs (B, 10 =0)/VL = pe(B), for p > pe(B3) the limit L — oo of the
first sum in @) is equal to

| NG 11 &k
Lh_r,r;o Z v LILII;OZ (27)2 / eB(R2k?/2m+AL(B.p)) — 1
s=(s1,s2,1) R2
. 1

This implies the asymptotics:

1
AL(B,p) = 5 e MBp—pe(BNL .. (5)

Notice that representation of the limit (@) by the integral (see ([IJ)) is valid only when )\% (p—
pc(B)) < 2a. For p larger than the second critical density: pm(8) := pc(8) + Qa/)\% the correction
AL (B, p) must converge to zero faster than e~2*F. Now to keep the difference p — p(3) > 0 we
have to return to the original sum representation [B)) and (as for the standard BEC) to take into
account the impact of the ground state occupation density together with a saturated non-ground
state (i.e. generalized) condensation pp,(8) — pc(6) as in ). For this case the asymptotics of
AL(B,p > pm(B)) is altogether different from () and it is equal to Az (3, p) = [B(p—pm(B8)) VL]~ .

Since Vi, = L3e**L | we obtain:
) Ny (B, 1) . 1 0
Jim > Vv, Jim NI In[BAL(B, p)] = 2a/A3
s=(s1>1,s2>1,1)
= pu(B) = pc(B), (6)
and the ground-state term gives the macroscopic occupation:
. 1 1
p—pm(B) = lim — (7)

L—oo VI, eBleary—rr(Bp) _ 17

Notice that for p.(8) < p < pm(8) we obtain the vdBLP-GC (of the type III), i.e., none of the
single-particle states are macroscopically occupied, since by virtue of (Il) and (B]) for any s one has:

1

o
ps(Bp) = Jim o e ma =1 = (8)
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On the other hand, the asymptotics Az (3, p > pm(8)) = [B(p — pm(B))VL] ™! implies

. 1 1
LIEI;O VL eBles—pr(B,p) — 1

Ps;é(1,1,1)(ﬁ, p) = =0, (9)
i.e., for p > pm(B) there is a coezistence of the saturated type III vdBLP-GC, with the constant
density (@), and the standard BEC (i.e., the type I vdBLP-GC) in the single state ().

4. The second critical density for generalised BEC in beams and “cigar”
harmonic traps

It is curious to note that neither Casimir shaped boxes [10], nor the van den Berg boxes A =
Le®l x I x L, with one-dimensional anisotropy produce the second critical density puw(3) # pe(83)-
To model the infinite squared beams with BEC transitions at two critical densities we propose
the one-particle Hamiltonian: T/gN:1) = —h2A/(2m) + mw?a? /2, with the harmonic trap in the
direction z1 and, e.g., Dirichlet boundary conditions in the directions x2, z3. Then, the spectrum

is the set
R 3

€5 := hwi(s1 4+ 1/2) + Z (ws;/L;)* . (10)

seN

Here multi-index s = (s1, s2, s3) € (NU{0}) x N?, and the ground-state energy is €(o,1,1). Then for
pr(B,0) = €01, — AL(B, 0), the value of Ar(3,0) > 0, is a solution of the equation:

&= Z “1 L(zﬁLLau) * Z “ L2L3)’ (1D

s=(s1,1,1) s#(s1,1,1)

where N, (8, 1) = (ePles—1) — 1)1
Let wy := h/(mL3) and Ly = L3 = L. Here L is the harmonic-trap characteristic size in the
direction 1. Then for any s; > 0 and p <0

— T Ns(Bop) 1 T d2k
o(Bp) = lim > ow Lols — (@n) /dp/eﬁ(hﬁmym,#) —- (12)

s#(s1,1,1) 0 R2

Therefore, the first critical density is finite: o.(8) = Sup,<o o(Bypn) = o(Byu = 0) < oo. If
0 > 0c(8), then the limit L — oo of the first sum in (I is

. s(ﬁa /JL) _ 1 dp
D D A Y
52(81,1,1) 0
. 1
= théo “RALE In[BAL(B, 0)] = 0 — 0c(5). (13)

This means that the asymptotics of Ar(S, p) is

1 2
Ap(B0) = 5 e Moo (14)

Let Ly := Le“’L2, for v > 0. Then, similar to our arguments in section[2] the representation of the
limit ([I3]) by the integral is valid for A3(0—o0.(3)) < 27. For g larger than the second critical density:
om(B) = 0c(B) + 2v/(hB) the chemical potential correction (4] must converge to zero faster than
e~ 27L" By the same line of reasoning as in section @l to keep the difference p— oy, (8) > 0 we have to
use the original sum representation (1)) and to take into account the input due to the ground state
occupation density together with a saturated non-ground state condensation o, (3) — oc.(3) ([@3).
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The asymptotics of AL(8, 0 > om(3)) is then equal to AL(8,0) = [fm(o — 9111(5))L4e27L2/h]_1
Hence,

i Y DO L maan(8.0] = 2L = on(B) - e(B).  (15)

. 10272 . 2
L OOs:(sl>071,1) m Lte Lo hﬁL hﬁ
and the ground-state term gives the macroscopic occupation:
h 1
0= om(B) = lim (16)

LS00 mL4e2vL? oB(e,1,1),—1L(B0) _ 1"

With this choice of boundary conditions and the one-dimensional anisotropic trap, our model
of the infinite squared beams manifests the BEC with two critical densities. Again for o.(3) < 0 <
om () we obtain the type III vdBLP-GC, i.e., none of the single-particle states are macroscopically

occupied:
h 1
0:(8,0) = lim ~0. (17)

Looo mLAe2vL? eB(es—nr(B0)) — 1

When o, (8) < o there is a coexistence of the type III vdBLP-GC, with the constant density (I3),
and the standard type I vdBLP-GC in the single state (I0]), since

1

h
oszon (B 0) = i T e =1 (18)

Finally, it is instructive to study a “cigar”-type geometry ensured by the anisotropic harmonic
trap:
VY = —r2a/m) + ) mw? (19)
1<j<3
with wy = A/(mL?),ws = w3 = h/(mLQ) Here Ly,Ly = L3 = L are the characteristic sizes of the
trap in three directions and ns = ;(s;+1/2) is the corresponding one-particle spectrum.

Then the same reasoning as in (EIZI) (63), ylelds for pr(8,n) == n0,0,0) — Ar(B,n) and auxiliary
dimensionality factor x > 0:

k3R

lm ) wwwwnwsNa( ) = lim — o

Ll,LHOO
s=(51,0,0)

In[BAL(G,n)] =n —n(B). (20)

Here the finite critical density n.(3) := n(8, u = 0) is defined similarly to ([I2]), where the particle
density is

3
n(B, 1) == lim Z KBwiwnwaNo (B, 1) = / r>dwidwadws ' (21)

Li,L—o00 eﬁ[h(w1+w2+w3)*ﬂ] -1
s;é(sl,0,0) R3+

Equation (20) implies for Az (3,n) the asymptotics similar to (I4):

1
AL(B,n) == e—ﬁ(n—nc(ﬁ))77l2L4/(ﬁH3) . (22)

If we choose Ly := Le'" for§ > 0, then the second critical density nm(3) := ne(3)+(Fhx3)/(Bm?2).
For n.(f8) < n < ny(B) we obtain the type III vdBLP-GC, i.e., none of the single-particle states
are macroscopically occupied:

KB WiWwaws

ns(B,n) = lim —o—mm oy~ =0 (23)

Although for n,, (8) < n there is a coexistence of the type IIT vdBLP-GC, with the constant density
nm(8) — nc(B), and the standard type I vdBLP-GC in the ground-state:

Iﬁs WiwaWws

n—ny(B) = lim

L—oo eBM0,0,0)—1L(Bm)) _

(24)
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5. The second critical temperature and coexistence of condensates

In experiments with BEC, it is important to know the critical temperatures associated with
corresponding critical densities. The first critical temperatures: Te(p), Tc(p) or Tc(p) are well-
known. For a given density p they verify the identities:

p= pc(ﬂc(p)) ) 0= QC(BC(Q)) ) n= nc(Bc(n)) ) (25)

respectively for our models of slabs, squared beams or “cigars”. Since the definition of the critical
densities yields the representations: p.(8) =: T%? Iy, 0c(8) =: T? Iy, ne(B) =: T? I.q, the expres-
sions for the second critical densities, one gets the following relations between the first and the
second critical temperatures:

T3%(p) + 7% To(p) = T3/*(p) (slab),
Aii(@) +7 Tm(@) = T?(Q) (beam) ,
T3(n)+7% Tm(n) = T2(n) (cigar).

Here 7 = [amkp/(7h?14)]?, T = 2vkp/(hly) and 7T = [(Fhr3kp)/(m?I.4)]Y/? are “effective”
temperatures related to the corresponding geometrical shapes. Notice that the second critical
temperature modifies the usual law for the condensate fractions temperature dependence, since
now the total condensate density is p — pc(8) = po(B8) = poc(B) + pom(B). Here pom(3) =
(P = pm(B3)) O(p — pm(B))-

1.0
08}
06F
04F

02F

2.x1078 4.x1078 6.x1078 8.x1078 1.x1077

Figure 2. The first (blue fit), The second (pink fit) and the total (green fit) condensate fractions
as a function of the temperature for ¥ Rb atoms in the slab geometry with 7., = 1077 K and
T=443x107".

For example, in the case of the slab geometry the type III vdBLP-GC (i.e. the “quasi-conden-
sate”) poc(3) behaves for a given p like (see figure 2))

pOC(ﬂ) o 1- (T/TC)3/27 Tm < T < Tc s
p VT T/TE? T < T -

— (26)
Similarly, for the type I vdBLP-GC in the ground state pom(8) (i.e. the conventional BEC) we
obtain:

<T K
pOm(ﬁ) _ { 0 Trn X T X Tc; (27)

p L= (T/T)*P(L+ /7/T), T < T,
see figure [2l The total condensate density po(3) := poc(8) + pom(5) is the result of coexistence of
both of them: it gives the standard PBG expression po(3)/p = 1 — (T/T.)3/2.

For the “cigars” geometry case the temperature dependence of the “quasi-condensate” ro.(53)
is

noe(B) _ [ 1= (1)1, Ta<T<T., (28)
n T/TS T<Ty -
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The corresponding ground state conventional BEC behaves as follows:

n()m(ﬂ) _ 0) j: T < AC7
n { L= (@B 0+ PTY), T< T, )

and again for the two coexisting condensates one gets n — n.(8) := ng(8) = noc(8) + nom(B) =
(1 —(T/T.)3?)n.

Notice that for a given density, the difference between two critical temperatures for the slab
geometry can be calculated explicitly:

(Te — Tw)/Te = g(pa/p) » (30)

where p,, := 8a3/((3/2)? and g(x) is an explicit algebraic function. For illustration consider a quasi-
2D PBG model of 87Rb atoms in trap with characteristic sizes Ly = Ly = 100 ym, L = 1um and
with typical critical temperature T. = 10~7 K. The anisotropy parameter is o = (1/L)In(L,/L) =
4,6-10% m~t. Then for 7 =4,4-10~" K we find T}, = 3,7- 1078 K and (T. — Tyn)/T. = 0, 63.

6. Localisation of anisotropic generalised BEC and coherence length

Another physical observable to characterize this second critical temperature is the condensate
coherence length or the global spacial particle density distribution. The usual criterion is the
ODLRO, which is going back to Penrose and Onsager [19]. For a fixed particle density p it is
defined by the kernel:

z)¢s,a(Y)
K(x,y) = hm Kp(x,y) = hm Zeﬁ(eb it ;p)) 1 (31)

The limiting diagonal function p(x) := K (x,x) is local x-independent particle density.

To detect a trace of the geometry (or the second critical temperature) impact on the spatial
density distribution we follow a recent scaling approach to the generalized BEC developed in [17]
(see also [10, [14]) and introduce a scaled global particle density:

- |ps,a (L1u1, Lous, Lyus)|?
W T (32)
with the scaled distances {u; = z;/L; € [0,1]};=1.23.
For a given p the scaled density [32)) in the slab geometry is
s 1
pl,L(u) = Z ) 1 H I, [sin(ms;u;)]?. (33)

Since 2[sin(ms;u;)]? = 1—cos{(27ws;/L;)u;L;} and limy, o pr(3, p < pc(B)) < 0, by the Riemann-
Lebesgue lemma we obtain that limy §Z{A(u) = p for any u € (0,1)%. If p > p.(), one has to
proceed as in [@B)-(E). Then for any u € (0,1)3:

. 1 )
dm > e H I [sin(ms;u;)]” =

s=(s1,s2,1)

2[sin(mu3))? Hj:l(l — cos(2k;ju; L;)dk

— 3 o . 9
= oL B Ao — 1 = (P~ pe(B)) 2sin(ruz)]”, (34)
2
lim > ; H 2 fsinmsyu,)]? = pe(5) (35)
L—o0 eBes—pr(B:0) — 1 L; jUj c .
s#£(s1,82,1)
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Then the limit of 33 is equal to

&) = (p = pe(B)) 2[sin(mus)]* + pe(B) - (36)

It manifests a space anisotropy of the type III vdBLP-GC for p.(8) < p < pm(f) in ugz direction.
For p > pm(0) one has to use representation [B]) and asymptotics (@), ([{)). Then following the
arguments developed above we obtain

3
&) = (p = pu(®) [T 2lsin(ru;)]* + (om(8) = pe(8)) 2sin(rus)]® + pe(5).- (37)

J=1

So, the anisotropy of the space particle distribution is still in us direction due to the type III
vdBLP-GC.

It is instructive to compare this anisotropy with a coherence length analysis within the scaling
approach [17] to the BEC space distribution. To this end let us center the box A at the origin of
coordinates: z; = Z; + L;/2 and y; = §; + L;/2. Then the ODLRO kernel (31 is:

(o)
Kn(3,§) = Y elfme0e) R RV (38)
=1

where after the shift of coordinates and using ([Il) we put

RZ(Q)(,“%(Q)?@@)) = Z THBea e (72551,52, (’12'1,3?2) ¢51752,A(g17g2)a (39)
s=(s1,82)
2 TS:= L- 2 s L-
(G4 5a) — 8oy | 2 (753 (o B3N S 2 (T (n o e 4
R, (Z3,73) S§s3)e 3 Lssm(L3 <:cs+ 2>> L3S1D<L3 <y3+ 2>) . (40)

Similar to @), for pe(8) < p < pm(B) we must split the sum over s = (s1, s2, s3) in (B) into
two parts. Since by the generalized Weyl theorem one gets:

hm R(Q)( 2) ”(2)) LQ efvrlli<2>¥(2)||2/l>\§’
NG

by (B8] for the first part we obtain the representation:

Lh—I}go elﬁﬂL(ﬁ,P) Z eflﬁ651,52,1¢51’52 lA( ) ¢51,52,1A(y)
=1 s=(s1,s2,1)
- 1 ; 2 L L
_ th};o > e*lﬁAL(ﬁ,P)@ e,ﬂ.”z&), @2 /l)\2 7 51n<7[r/ (:fs + 5)) sin(% <g3 + 5)) . (41)

For the second part we apply the Weyl theorem for the 3-dimensional Green function:

o0

lim olBuL(B.p) Z e G A (&) Pon(§ Z o= /105 (42)

L—oo
=1 s7#(s1,82,1)

m\

If in (@I we change I — I AL(B8, p), then it gets the form of the integral Darboux-Riemann sum,
where |2 — §(@)|]? is scaled as || — §P)||2 AL(B,p). Therefore, the coherence length L, in
the direction perpendicular to x3 is Len (8, p)/L := 1/\/AL(B, p). A similar argument is valid for
p > pm(f) with obvious modifications due to BEC for s = (1,1, 1) (@) and to another asymptotics
@) for AL(B,p). To compare the coherence length with the scale Lq o = Le®L, let us define the
critical exponent (T, p) such that limy, o (Len(B, p)/L)(L1/L)~7T?) = 1. Then we get:

YT, p) = Aj (p— pe(B)) /20,  pc(B) < p < pm(B) = A% (pm(B) = pe(B))/20,  pm(B) < p. (43)
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For a fixed density, taking into account (28) we find the temperature dependence of the exponent
A(T) := (T, p), see figure B

= { YOG T Tt (14)

Notice that in the both cases the ODLRO kernel is anisotropic due to impact of the type III
condensation () in the states s = (s1, s2,1), whereas the other states give a symmetric part of
correlations ([@2]), which includes a constant term p.(/3).

1.0

0.6F

04F

02F

2.x107 4.x107% 6.x107 8.x107% 1.x1077

Figure 3. Exponent «(T') for evolution of the coherence length for the quasi-condensate with
temperature corresponding to 3'Rb atoms in the slab geometry with 7. = 1077 K and 7 =
443 x 1077 K.

Numerically, for Ly = Ly = 100 pym, L3 =1 pm and Ty, < T = 0.757, the coherence length of
the condensate is equal to 2.8 um < 100 pm. This decrease of the coherence length is experimentally
observed in [6].

7. Concluding remarks

In conclusion, we add several remarks about a possible impact of particle interaction. Since the
“quasi-condensate” is observed in extremely anisotropic traps [6-8], we think that the geometry
of the vessels is predominant. So, the study of the PBG is able to catch the phenomenon and so
it seems to be relevant. Next, in this letter we did not enter the details of the phase-fluctuations
6, 7], although we suppose that for the vdBLP-GC it can be studied by switching different Bogoli-
ubov quasi-average sources in condensed modes. Finally, since a repulsive interaction is capable of
transforming the conventional one-mode BEC (type I) into the vdBLP-GC of type 111, |20, [21]], it is
important to combine the study of this interaction with the results already obtained for interacting
gases in [6-8] and in [18].

The pioneer calculations of a crossover in a trapped 1D PBG are due to [22]. It is similar to
the vdBLP-GC in our exact calculations for the “cigars” geometry and it apparently persists for
a weakly interacting Bose-gas as argued in [§]. Although the ultimate aim is to understand the
relevance of these quasi-1D calculations for the Lieb-Liniger exact analysis of a strongly interacting
gas |23]. We return to these issues in our next papers.
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Apyra KpuTu4Ha rycTmHa Ta aHi3oTponHa y3arajibHeHa
KOoHAeHcauiqa

M. bo, B.A. 3arpebHos

CepenaeMHOMOpPCbKUiA yHiBepcuTeT i LieHTp TeopeTuyHoi disnku, Mapcenb, ®paHuis

Y ujii cTaTTi MM 06roBOPIOEMO BaXXMBICTb KoHAeHcaLii 3D ineansHoro bose rasy (PBG) B ekcTpemMansHo
BUOOBXEHMX NOCYAMHAX AJ1S1 BUBYEHHS KOrE€PEHTHOCTI aHi30TPOMHOrO KOHAEHcaTy i “kBadikoHAeHcaTy .
Jns uporo My aHani3yeMo BMNaaoK eKCNOHEHLINHO aHi30TponHuX (BaH AeH bepr) 6okciB, Konu € ABi Kpu-
TUYHI TYCTUHU pe < pm, OJ19 y3aranbHeHoi koHaeHcauii Bose-EnHwTenHa (BEC). Tyt p. — ue ctangaptHa
KputnyHa ryctrHa ans PBG. Mu posrnsgaemo Tpy npukiaam aHi3oTPOMHOI FreoMeTpii: LWinvHW, KBaapaTHi
Opycui “curapn” 3 METOIO NPOAEMOHCTPYBATH, L0 “KBa3ikoHAEHcaT”, AK1i icHye B 06nacTi pe < p < pm, €
dakTMYHO y3arasibHEHO KOHAEeHcauie BaH aeH bepra-Jiesica-Myne (vdBLP-GC) tuny Ill, wo makpocko-
niYHO He 3alriMae XoaHoi moan. My nokasyemo, Lo 4SS reoMeTpii WiNnMHW apyra KpUTUYHaA rycTuHa pm
€ NMOpOrom Mix kBasiasosumipHnm (kBazi-2D) konpeHncatom i TpusumipHm (3D) pexumom, Konum € cnis-
iCHYBaHHs “kBasikoHaeHcaTy” i3 ctaHgapTHol ogHomoaoBsoto BEC. 3 iHworo 6oky, y BunaaKy ksagpaTHUX
OpyciB i “curap”, KpUTUYHA FYCTUHA pr, BIOOKPEMITIOE pexmMu kBagi-1D i 3D. My 0BYMCIIOEMO 3HAYEHHS
PI3HUL MiX pc, pm (TA MiX BIGNOBIOHUMU KPUTUYHUMK TemnepaTypamu Ty, T¢) Ans Toro, wob nokasartu,
LLIO crocTepexeHa NPOCTOPOBa aHi30TPONMis KOrePeHTHOCTI KOHAeHcaTy Moxe 6yTu onncaHa KpUTUYHUM
inoekcom ~(T'), nos’a3aHnM i3 aHizoTponHuMm ODLRO. My nopiBHIOEMO HaLli 0B64MCNEHHS i3 Qi3UYHUMMN
peaynbTaTamun Ans eKCTpeManbHO NOAOBXEHMX NacTOK, WO AEMOHCTPYIOTh “KBasikoHaeHcat”.

KniouoBi cnoBa: y3arasbHeHa aHi30TporiHa bo3e-KkoHAeHcal s, KoHAeHcaLlis BaH AEH
Bepra-Jlesica-Ilyne tuny I, Bnive ekcrioHeHWiiHOI aHi30Tponii, Apyra KpUTNYHa To4ka aJ1s1 KoHAeHcau i
Bose-EviHiTeriHa
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