
выравнивается до начала следующего выпуска, и поверхность чугуна и шлака становится горизонтальной. При низкой прочности и дренажной способности кокса шлак медленно перетекает из зоны с более высоким уровнем в зону с низким уровнем поверхности. Депрессионная воронка не успевает выровняться до следующего выпуска. По мере накопления расплава в горне уровень шлака со стороны, противоположной летке, достигает оси воздушных фурм. Шлак отбрасывается потоком воздуха из периферийной зоны горна с высокими температурами в его центральную часть, где температуры ниже. В результате охлаждения вязкость шлака повышается и загромождение горна усугубляется. Уровень чугуна со стороны летки, через которую производился выпуск,

поднимается быстрее, чем в других зонах, и может достичь воздушных фурм. Касание чугуном фурмы приводит к ее немедленному прогару. Этим объясняются достаточно частые прогары фурм над леткой. Спаренный выпуск позволяет удалить скопившийся с противоположной стороны шлак и вернуть горизонтальную поверхность чугуна и шлака. При этом снижается вероятность прогара воздушных фурм над леткой и прекращается переброска шлака в центральную непрогретую часть горна. По сути, вторая чугунная летка при спаренном выпуске выполняет функции шлаковой летки. При спаренном выпуске следует ожидать преимущественного выхода шлака через вторую летку.

ЛИТЕРАТУРА

1. Новохатский А. М. Проблемы доменного производства Украины // Сборник научных трудов Донбасского горнометаллургического института. – Алчевск, 2001. – Вып. 13. – С. 156-158.

2. Маханек Н. Г., Онорин О. П., Коновалов К. Д. О соотношении сил, действующих на столб шихтовых материалов в доменной печи // Изв. ВУЗов. Чер. металлургия. – 1966. – № 10. – С. 8-10.

3. А. М. Новохатский. Аналитический метод определения изменения размеров шлаковой депрессионной воронки в период выпуска продуктов плавки из горна доменной печи // Металл и литье Украины. – 2008. – № 5.– С. 47-50.

УДК 621:658.58

Ю. Н. Белобров, В. С. Плугатарь, С. В. Матвейков, В. М. Пильгаев, Ю. В. Бурлачка (ЗАО «НКМЗ»)

Создание АО «НКМЗ» новых высокоэффективных металлургических агрегатов

ерная металлургия относится к базовым отраслям промышленности Украины, обеспечивая вакуумий поступлений от экспорта продукции. Выживание и стабильная работа предприятий в условиях современной экономики немыслима без модернизации энергоемкого металлургического производства с целью снижения затрат и увеличения выхода готовой продукции.

Завод работает с 1934 г., площадь - 339 га, численность трудящихся 15 тыс.

В последнее время на АО «НКМЗ» остро стал вопрос о модернизации мартеновского производства с целью увеличения выплавки высококачественного металла. Данный проект также актуален и для страны в целом из-за постоянно растущих цен на природный газ.

В области создания ДСП АО «НКМЗ» обладает следующими разработками:

На основании выполненных исследований в области производства стали ЗАО «НКМЗ» созданы отечественные ДСП, УКП, установки вакуумирования стали и МНЛЗ для получения сортовой и слябовой продукции

Таблица 1 **Основные параметры ДСП-50**

Наименование параметров	Показатели
Емкость печи по жидкой стали	56 т
Средний вес плавки	50 т
Продолжительность плавки	55 мин
Температура выпуска металла	1610 °C
Выход годного стали	89 %
Насыпная плотность металошихты	0,6-0,8 т/м ³
Установленная мощность печного трансформатора	40 MBA
Переключение ступеней напряжения	под нагрузкой
Токоограничивающий реактор	встроенный
Количество бадей на плавку	2-3 шт
Производительность печи	545 т/час
Система выпуска	эксцентричный донный (EBT)
Диаметр электродов	508 мм
Диаметр распада электродов	1050 мм

Таблица 2 Гарантируемые показатели ДСП-50

Наименование параметров расхода	Показатели
Электроэнергии	360 кВтч/т
Электродов	1,6 кг/т
Кислорода	37 нм³/т
Природного газа	6 нм³/т
Извести	40 кг/т
Угля	12 кг/т

Таблица 3 Гарантируемые параметры для УКП

Наименование параметров	Показатели
Скорость нагрева	4-5 ⁰С/мин
Расход электроэнергии	0,3-0,4 кВтч/т*С
Расход электродов	10-12 г/кВтч

- 1. Создание базового проекта ДСП-120 (2004 г.). Разработка комплексной программы расчета конструктивно-технологических параметров печи.
- 2. Реконструкция ДСП-120 АПО «Узметкомбинат» (2005 г.).
- 3. Разработка современной ДСП-50 для сталеплавильного цеха АО «НКМЗ».

Основные параметры ДСП-50 представлены в табл. 1.

В табл. 2 представлены гарантируемые показатели ЛСП-50

Установки «ковш-печь», разработанные и введенные в эксплуатацию АО «НКМЗ», награждены золотыми и платиновыми знаками всероссийской ярмарки качества. Создано 6 установок «ковш-печь», еще 1 находится в стадии разработки.

Гарантируемые параметры для УКП представлены в табл. 3.

Созданные нами установки вакуумирования стали VD-VOD также отмечены золотыми и платиновыми знаками качества. Оснащены как пароэжекторными вакуумными насосами (АО «НКМЗ», ОАО «ВМЗ»), так и сухими насосами (Молдавский метзавод, ОАО «ЭМСС»). Основные технологические параметры установок и достигнутые эксплуатационные показатели приведены в табл 4

В области создания сортовых МНЛЗ АО «НКМЗ» реализовано 7 проектов сортовых МНЛЗ, построенных по собственной концепции, в том числе шестиручьевые МНЛЗ производительностью более 1 млн. т в год, 1 трехручьевая и 1 двухручьевая. Основные параметры сортовых МНЛЗ приведены в табл. 5.

В области создания слябовых МНЛЗ реализовано 7 проектов (как создание новых машин, так и реконструкция существующих); выполнены как самостоятельные разработки, так и в сотрудничестве с фирмой VAI.

Таблица 4 Основные технологические параметры установок вакуумирования стали VD-VOD

Показатели
5-10 мин
20 ppm
35 ppm
1,5 ppm

Таблица 5 **Основные параметры сортовых МНЛЗ**

Наименование параметров	Показатели	
Базовый радиус	6-10 м	
Достигнутая скорость	до 4,0-5,5	
разливки, квадрат 100×100		
Достигнутая скорость	до 2,8-3,5	
разливки, квадрат 150×150		
Механизм качания	рачажный;	
	рессорный	
	гидравлический;	
	электромеханический	
	стопорная разливка	
Способ разливки	«под уровень»;	
	открытая струя	

Основные параметры слябовых МНЛЗ приведены в табл. 6.

Таблица 6 **Основные параметры слябовых МНЛЗ**

Наименование параметров	Показатели
Сечение заготовки	(200-260)×(800-1850)
Производительность	не менее 2,5 млн. т
Скорость разливки	до 2
Базовый радиус	8 м

Технический уровень как сортовых, так и слябовых МНЛЗ постоянно повышается. Основные направления совершенствования:

- повышение производительности машин;
- повышение качества заготовок;
- создание новых потребительских свойств.

Необходимо отметить, что на данный момент очень тяжело выходить на рынок новых слябовых машин без поддержки государства, в т. ч. таким крупным предприятиям как АО «НКМЗ». Дешевые банковские кредиты очень часто становятся решающим аргументом в пользу иностранных конкурентов. Поэтому сегодня основным для нас пока является рынок реконструкции слябовых МНЛЗ. Однако мы готовы не только реконструировать существующие слябовые МНЛЗ, но и проектировать, изготавливать новые. Разработана собственная оригинальная концепция, имеются ряд интересных разработок узлов, механизмов МНЛЗ.

Спроектирован, изготовлен и отгружен заказчику первый комплекс оборудования для прямого восстановления железа.

Комплекс предназначен для отработки технологий прямого восстановления железа из рудных окатышей с использованием плазменных технологий, а также выплавки жидкого полупродукта в плавильном агрегате.

Основным элементом установки является реактор твердофазного восстановления, его параметры приведены в табл. 7.

Таблица 7 Параметры реактора твердофазного восстановления

Наименование параметров	Показатели
Тип реактора	вертикальный
Общий объем реактора	44 m ³
Общая годовая	107 000 т
производительность реактора	107 000 1

АО «НКМЗ» замкнул цепочку в создании комплекса основного технологического оборудования сталеплавильных цехов как на инжиниринговом уровне, так и в действующих агрегатах. Он в состоянии осуществлять

комплексные реконструкции существующих сталеплавильных цехов, строительство новых ЭСПЦ и минизаводов полного металлургического цикла.

УДК 621:658.2.016

В. Н. Каплан, В. С. Вакула (ОАО «ППКИ «Металлургавтоматика»), Ю. В. Садовник, Х. Ян (НМетАУ)

Внедрение автоматизированных технологических комплексов конвертеров ГКР для производства коррозионностойких сталей на металлургических предприятиях КНР

азработанная в 80-х годах в Проблемной лаборатории новых металлургических процессов Днепропетровского металлургического института (ныне Национальная металлургическая академия Украины – НМетАУ) техно-

Республике.

демия Украины – НМетАУ) технология газокислородного рафинирования для получения коррозионностойких сталей в последние годы получает широкое распространение в Китайской Народной

Основные моменты технологии газокислородного рафинирования коррозионностойких сталей заключаются в следующем: выплавленный в дуговой электросталеплавильной печи высоколегированный полупродукт, не имеющий ограничений по содержанию углерода, заливают в агрегат ГКР, который представляет собой конвертер с донным подводом дутья, в днище которого имеются три фурмы типа «труба в трубе».

Рафинирование расплава состоит из двух окислительных и одного восстановительного этапов.

На первом этапе от исходного содержания углерода до его концентрации, примерно 0,15–0,20 %, продувку ведут кислородом с подачей по кольцевым щелям фурм природного газа. Основной технологической задачей этого этапа является достижение требуемых концентраций углерода и значений температуры расплава в соответствии с маркой выплавляемой стали. В этот период окисляется большая часть углерода расплава, формируется шлаковый и температурный режимы процесса, проводится подготовка конвертерной ванны к последующим стадиям рафинирования.

На втором этапе расплав продувают аргонокислородной смесью. При этом по ходу продувки доля кислорода в дутье уменьшается, а доля аргона возрастает в соответствии со специальной программой, обеспечивающей глубокое обезуглероживание расплава при минимальном угаре хрома. Именно на этом этапе продувки обеспечивается заданное конечное содержание углерода в готовом металле, и создаются условия для предохранения от чрезмерного окисления хрома

Усовершенствована технология газокислородного рафинирования и разработана автоматизированная система управления процессом, что позволило экспериментально определить основные принципы построения автоматизированной системы управления процессом газокислородного рафинирования

при относительно невысоких температурах процесса рафинирования.

В третьем, восстановительном периоде плавки, металл продувают чистым аргоном. Одновременно осуществляется присадка в конвертерную ванну раскислителей.

При выплавке сталей, легированных азотом, последний полностью или частично заменяет в дутье аргон. В процессе продувки могут выполняться повалки конвертера, во время которых производят замер температуры и отбор пробы металла. Перед заливкой в конвертер исходного полупродукта или по ходу продувки выполняют загрузку твердой металлошихты и извести. По ходу продувки возможны другие присадки в конвертер шлакообразующих материалов, охладителя и раскислителей. Перед сливом стали выполняется присадка в конвертер или сталеразливочный ковш корректирующих добавок.

Основными отличиями этой технологии от распространенной на Западе технологии аргоннокислородного рафинирования (AOD-процесс) являются:

- конструкция конвертера;
- наличие первого периода продувки, в котором металл продувается кислородом без нейтрального газа;
- использование природного газа для охлаждения донных дутьевых устройств и футеровки прифурменной зоны;
- непрерывное изменение окислительного потенциала дутья путем изменения соотношения расходов кислорода и нейтрального газа во втором периоде продувки.

Первые же серии проведенных на 1-тонном конвертере полупромышленных плавок показали, что эффективное внедрение технологии газокислородного рафинирования невозможно без автоматизированной системы управле-