© 2010

Член-корреспондент НАН Украины Ю. Г. Стоян, Е. С. Сосюрка

Покрытие компактной многогранной области конечным семейством прямых параллелепипедов

Розглядається задача покриття компактної багатогранної області з непустою внутрішністю скінченною кількістю прямих паралелепіпедів. На базі техніки Γ -функцій побудована математична модель задачі та досліджені її основні властивості. На основі цих властивостей запропоновано стратегію розв'язку задачі. Наведено результати чисельних експериментів.

Пусть задано конечное семейство параллелепипедов

$$\Lambda = \{ P_i = \{ (x, y, z) \in \mathbb{R}^3 : -a_i \leqslant x \leqslant a_i, -b_i \leqslant y \leqslant b_i, -c_i \leqslant z \leqslant c_i \}, i \in I = \{1, 2, \dots, n\} \},$$

где \mathbb{R}^3 — трехмерное арифметическое евклидово пространство, и многогранное множество $\Omega \subset \mathbb{R}^3$ такое, что $\Omega = \bigcup_{j=1}^m \Omega_j$,

$$\Omega_j = \{(x, y, z) \in \mathbb{R}^3 : A_{jk}x + B_{jk}y + C_{jk}z + D_{jk} \le 0, k \in I_{\varpi} = \{1, 2, \dots, \varpi_j\}\},\$$

 $\operatorname{int}(\Omega_j) \neq \varnothing, j \in J = \{1, 2, \dots, m\}, \operatorname{int}(\cdot)$ — внутренность множества (·) [1]. Полагаем, что местоположение Ω в \mathbb{R}^3 фиксировано. Параллелепипед P_i , транслированный на вектор $u_i = (x_i, y_i, z_i)$, обозначим $P_i(u_i)$, а семейство транслированных параллелепипедов — через $\Lambda(u)$, где $u = (u_1, u_2, \dots, u_n) \in \mathbb{R}^{3n}$.

Определение [2]. Семейство $\Lambda(u)$ называется покрытием области Ω , если существует вектор $u^0 \in \mathbb{R}^{3n}$, такой, что

$$\Omega \bigcap \left(\bigcup_{i=1}^{n} P_i(u_i^0) \right) = \Omega. \tag{1}$$

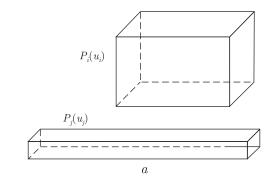
Задача. Необходимо определить, существует ли вектор $u \in \mathbb{R}^{3n}$ такой, что выполняется (1).

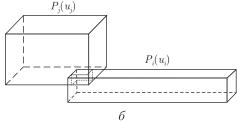
Пусть $u^0 \in \mathbb{R}^{3n}$ — некоторый фиксированный вектор. Тогда множество $P(u^0) = \bigcup_{i=1}^n P_i(u_i^0) \subset \mathbb{R}^3$. Построим $H(u^0) = \mathbb{R}^3 \setminus \operatorname{int} P(u^0)$. На основании двойственности тео-

ретико-множественных операций [3]: $H(u^0) = \mathbb{R}^3 \setminus \bigcup_{i=1}^n \operatorname{int} P_i(u_i^0) = \bigcap_{i=1}^n (\mathbb{R}^3 \setminus \operatorname{int} P_i(u_i^0))$. Тогда условие (1) может быть записано в эквивалентном виде:

$$\Omega \cap H(u^0) = \varnothing. \tag{2}$$

Рассмотрим параллелепипеды $P_i(u_i)$ и $P_j(u_j)$. Пусть параллелепипеду $P_k(u_k), k=i,j$ соответствует набор вершин $\{v_p^k, p=1,2,\dots,8\}$, набор ребер $\{e_p^k, p=1,2,\dots,12\}$, набор





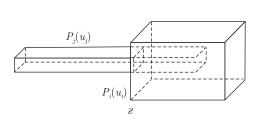
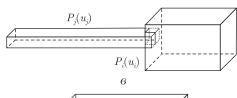
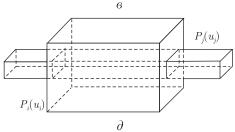


Рис. 1





граней $\{f_p^k, p=1,2,\ldots,6\}$. Тогда взаимное размещение параллелепипедов $P_i(u_i)$ и $P_j(u_j)$ может быть одним из видов, представленных на рис. 1.

Возможны следующие типы взаимного размещения $P_i(u_i)$ и $P_i(u_i)$:

- 1) $P_i(u_i) \cap P_j(u_j) = \emptyset$ (рис. 1, a);
- 2) существует $v_p^j \in P_i(u_i)$ и $v_h^i \in P_j(u_j)$, и для любого g верно, что $e_g^j \not\subset P_i(u_i)$ (в зависимости от номеров вершин, возможно восемь типов) (рис. 1, δ);
- 3) существует $e_p^j \subset P_i(u_i)$ и для любого h верно, что $f_h^j \not\subset P_i(u_i)$ (в зависимости от номера ребра, возможно двенадцать типов) (рис. 1, θ);
- 4) существует $f_p^j \subset P_i(u_i)$ и $P_j(u_j) \not\subset P_i(u_i)$ (в зависимости от номера грани, возможно шесть типов) (рис. 1, ε);
- 5) для любых h, p, g верно, что $v_h^j, e_p^j, f_g^j \notin P_i(u_i)$, а $\operatorname{int} P_i(u_i) \cap \operatorname{int} P_j(u_j) \neq \varnothing$ или $P_j(u_j) \subset P_i(u_i)$ (возможно четыре типа) (рис. $1, \partial$).

Таким образом, существует не более чем 31 тип взаимного расположения параллелепипедов $P_i(u_i)$ и $P_j(u_j)$. Тогда

$$H_{ij}(u_i, u_j) = (\mathbb{R}^3 \setminus \operatorname{int} P_i(u_i)) \bigcup (\mathbb{R}^3 \setminus \operatorname{int} P_j(u_j))$$

можно представить в виде объединения подсемейств $H^k_{ij}(u_i,u_j), k \in L = \{1,2,\ldots,31\}$ [4], каждое из которых состоит из множеств одного типа. Это значит, пространство параметров размещения параллелепипедов P_i и P_j можно разбить на такие подмножества R^k_{ij} , что если

 $(u_i, u_j) \in R_{ij}^k$, то множество $h(u_i, u_j) \in H_{ij}^k$. Следовательно, $R^6 = \bigcup_{k=1}^{31} R_{ij}^k$, где каждому множеству R_{ij}^k соответствует H_{ij}^k , $k \in L$.

Определение [2, 4]. Если $h(u_i^1, u_j^1), h(u_i^2, u_j^2) \in H_{ij}^k(u_i, u_j),$ то говорим, что $h(u_i^1, u_j^1)$ и $h(u_i^2, u_j^2)$ имеют пространственную форму k-го типа.

Пусть теперь $H(u) = \bigcup_{i=1}^{n} (\mathbb{R}^3 \setminus \operatorname{int} P_i(u_i)), \ u \in \mathbb{R}^{3n}$. По аналогии со случаем двух параллеленинедов, рассматриваем взаимное расположение каждой пары параллеленинедов семейства $\Lambda(u)$, т. е. каждому множеству $h \in H(u)$ может быть поставлена во взаимнооднозначное соответствие следующая матрица:

$$M_q = \begin{pmatrix} m_{12}^{k_1} & m_{13}^{k_2} & \dots & m_{1n}^{k_{n-1}} \\ 0 & m_{23}^{k_n} & \dots & m_{2n}^{k_{2n-2}} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & m_{n-1,n}^{k_{n(n-1)/2}} \end{pmatrix},$$

где $m_{ij}^{k_t} \in \{R_{ij}^{k_t}, k_t \in L\}, t = 1, 2, \ldots, n(n-1)/2, q = 1, 2, \ldots, 31,$ если, $k_2 = k_3 = \cdots = k_{n(n-1)/2} \in L; q = 1, 2, \ldots, 31^2,$ если $k_1, k_2 \in L, k_3 = \cdots = k_{n(n-1)/2} \in L;$ $\ldots; q = 1, 2, \ldots, 31^{n(n-1)/2},$ если $k_1, k_2, \ldots, k_{n(n-1)/2} \in L.$

Определение [2, 4]. Множества $h(u^1)$ и $h(u^2)$ имеют одинаковую пространственную форму, если они определяются одинаковыми матрицами M_q .

Теорема 1 [4, 5]. Для семейства прямых параллелепипедов $\Lambda(u)$ разбиение пространства \mathbb{R}^{3n} имеет вид:

$$\mathbb{R}^{3n} = \bigcup_{q=1}^{\eta} R_q^{3n}, \qquad R_q^{3n} = \bigcup_{j>i=1}^{n} \bigcup_{t=1}^{n(n-1)/2} S_{ij}^{k_t}, \tag{3}$$

где
$$\eta = 28^{\sigma_1} \cdot 19^{\sigma_2} \cdot 13^{\sigma_3} \cdot 9^{\sigma_4}$$
, $\sigma_l \in \{0, 1, 2, \dots, n(n-1)/2\}$, $l = 1, 2, 3, 4$, $\sum_{l=1}^4 \sigma_l = n(n-1)/2$, $S_{ij}^{k_t} - n$ рямая призма с основанием $R_{ij}^{k_t}$.

 S_{ij}^{kt} — прямая призма с основанием R_{ij}^{kt} . В [6] показано, что $h(u) \in H(u)$ представимо в виде конечного объединения базовых множеств, а именно: полупространств C_{δ}^{0} , $\delta=1,2,\ldots,6$, двугранных углов C_{δ}^{2} , $\delta=7,8,\ldots,18$, трехгранных углов C_{δ}^{3} , $\delta=19,20,\ldots,26$, полубесконечных цилиндров с прямоугольным основанием C_{δ}^{4} , $\delta=27,28,\ldots,32$, цилиндров с прямоугольным основанием C_{δ}^{5} , $\delta=32,33,34$ и прямых параллелепипедов C^{1} . То есть, $h(u)=\bigcup_{i=1}^{\delta}C_{j}(w_{ij})$, где

$$C_i \in \widetilde{C} = \{C_{\delta}^0, C_{\delta}^2, C_{\delta}^3, C_{\delta}^4, C_{\delta}^5, C^1, \delta = 1, 2, \dots, 35\},\$$

 w_{ij} состоит из не более чем 6 соответствующих компонент вектора u.

Заметим, если $u \in R_q^{3n} \subset \mathbb{R}^{3n}$, то $H_q(u)$, $q \in Q = \{1, 2, \dots, \eta\}$ состоят из множеств одной и той же пространственной формы и отличаются только метрическими характеристиками.

В терминах Ф-функции [7, 8] соотношение (2) может быть описано неравенством:

$$\Phi(u^0, v) \geqslant 0,\tag{4}$$

45

где $\Phi(u^0,v)$ — Φ -функция множеств $H(u^0)$ и $\Omega(v)$ [9, 10], $v=(x_v,y_v,z_v)$.

ISSN 1025-6415 — Доповіді Національної академії наук України, 2010, № 8

Поскольку Ф-функция для $h(u^0) \in H_q^{3n}(u)$ и Ω имеет вид: $\Phi_q(u^0,v) = \min\{\Phi_{qj}(u^0,v), j \in I_\lambda\}$, где $\Phi_{qj} - \Phi$ -функция множеств C_j и Ω , то Φ -функции для любого $u \in \operatorname{int} R_q^{3n}$ имеют один и тот же вид [2,8] и отличаются только значениями коэффициентов. Следовательно, взяв $u \in \operatorname{int} R_q^{3n}$ в качестве переменной в Φ_q , получим следующую функцию: $F_q(u,v) = \min\{F_{qj}(u,v), j \in I_\lambda\}$, $F_q(u,v)|_{u=u^0} = \Phi_q(u^0,v)$. Легко видеть, что если $F_q(u^*,v^*) \geqslant 0$, то $\Omega \bigcup h(u^*) = \varnothing$. Принимая во внимание (3), положив v = 0, построим Γ -функцию (функцию покрытия) [2,9]: для множеств Ω и H(u)

$$\Gamma(u) = \begin{cases} \Gamma_1(u), & u \in R_1^{3n}, \\ \Gamma_2(u), & u \in R_2^{3n}, \\ \dots \\ \Gamma_{\eta}(u), & u \in R_{\eta}^{3n}. \end{cases}$$
(5)

Таким образом, если найдется вектор $u^* \in \mathbb{R}^{3n}$ такой, что $\Gamma(u^*) \geqslant 0$, то $\Omega \bigcup \operatorname{int} H(u^*) = \varnothing$.

Теорема 2 [6, 10]. $\Gamma(u) - \kappa y c o u h o - \pi u h e \ddot{u} h a s \ \phi y h \kappa u u s, претерпевающая разрыв <math>I$ рода $n p u \ u \in \bigcup_{q=2}^{31} \bigcup_{i>j=1}^{n} \left(\operatorname{fr} R_{ij}^{1} \bigcup \operatorname{fr} R_{ij}^{q}\right).$

Оценка числа функций, описывающих $\Gamma(u)$, имеет вид:

$$\theta = \sum_{q=1}^{\eta} \varphi_q N_q,$$

где

$$\varphi_{q} = \sum_{\delta=1}^{12} \mu_{q2\delta} + \sum_{\delta=1}^{8} \mu_{q3\delta} + \sum_{\delta=1}^{6} \mu_{q4\delta} + \sum_{\delta=1}^{3} \mu_{q5\delta} + \mu_{q1},$$

$$N_{q} \leqslant N = \vartheta_{1}^{\mu_{91}} \prod_{\delta=1}^{12} \vartheta_{2\delta}^{\mu_{q2\delta}} \prod_{\delta=1}^{8} \vartheta_{3\delta}^{\mu_{q3\delta}} \prod_{\delta=1}^{6} \vartheta_{4\delta}^{\mu_{q4\delta}} \prod_{\delta=1}^{3} \vartheta_{5\delta}^{\mu_{q5\delta}},$$

 $\mu_{q2\delta},\ \mu_{q3\delta},\ \mu_{q4\delta},\ \mu_{q5\delta},\ \mu_{q1}$ — число базовых множеств $C^0_{\delta},\ C^2_{\delta},\ C^3_{\delta},\ C^4_{\delta},\ C^5_{\delta},\ C^1$, участвующих в формировании множества $H(u^0)$ [6], $\vartheta_{j\delta}$ — число функций, участвующих в формировании Ф-функций для C^j_{δ} и $\Omega,\ j=1,2,3,4,5$.

Как следует из построения функции $\Gamma(u)$, решение поставленной задачи может быть сведено к

$$\Gamma(u^*) = \max_{u \in \mathbb{R}^{3n}} \Gamma(u). \tag{6}$$

Тогда, если $\Gamma(u^*) < 0$, то (2) не выполняется, если $\Gamma(u^*) \geqslant 0$, то (2) выполнено и u^* — искомый вектор параметров размещения.

Решение задачи (6) сводится к решению последовательности задач линейного программирования: $\max_{q \in Q} \Gamma_q(u^*)$, где $\Gamma_q(u^*) = \max_{u \in R_q^{3n}} \Gamma_q(u)$.

v_{1t}	1	2	3	4	5	6
x_{1t}	-120	-110	-80	-10	-80	-80
y_{1t}	0	100	120	-110	0	0
z_{1t}	0	0	0	0	-40	40
v_{2t}	1	2	3	4	5	6
x_{1t}	-110	-60	120	-40	-20	_
y_{1t}	30	120	100	90	90	_
z_{1t}	0	0	0	50	-40	_
v_{3t}	1	2	3	4	5	6
x_{1t}	100	60	140	110	110	_
y_{1t}	-100	120	40	30	-20	_
z_{1t}	0	0	0	-50	50	_
v_{4t}	1	2	3	4	5	6
x_{1t}	-50	30	120	40	40	_
y_{1t}	-100	-50	-70	-70	-70	_
z_{1t}	0	0	0	-40	40	_

Таблица 2

Размер параллелепипида	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
\overline{a}	50	40	60	50	60	50	40	30	30	50
b	50	40	40	50	50	50	40	40	50	50
c	60	50	50	30	60	50	60	60	50	40

Для решения задачи $\max_{u \in R_q^{3n}} \Gamma_q(u)$ строится дерево решений. Каждой p-й концевой вершине этого дерева соответствует функция $\Gamma_{qp}(u), \ u \in R_q^{3n}, \ p \in \{1,2,\ldots, N_q\}.$

Поскольку задача (6) является многоэкстремальной, NP-полной и NP-трудной [11], то, в общем случае, в настоящее время глобального максимума можно достичь только теоретически.

Для поиска приближения к глобальному максимуму используется стратегия, изложенная в [12, 13].

Пример. Пусть задана двухсвязная многогранная область Ω , представленная объединением выпуклых многогранников $\Omega_j,\ j=1,2,3,4.$ Полагаем, что Ω_j задается последовательностью вершин $v_{jt},\ t=1,2,\ldots,\varpi_j$, координаты которых приведены в табл. 1.

Информация о метрических характеристиках параллелепипедов P_i , $i=1,2,\ldots,10$, приведена в табл. 2.

Вектор $u^0=((59,100,91),(43,43,86),(81,69,67),(45,95,69),(33,99,73),(94,37,95),$ (38, 90,75), (17,85,45),(40,24,32),(81,35,48)) соответствует начальному размещению параллеленинедов $P_i,\ i=1,2,\ldots,10.$

Искомый вектор параметров размещения, удовлетворяющий условию покрытия (2) — $u^* = ((-83, 88, 0), (-70, 91, 2), (75, 107, 0), (112, 30, 20), (-72, 20, 17), (-67, -71, -3), (0, -83, -10), (60, -72, 0), (111, -59, 2), (109, 30, -15)).$

- 1. Александрян Г. А., Мирзаханян Э. А. Общая топология. Москва: Высш. шк., 1979. 336 с.
- 2. Stoyan Yu. Covering a polygonal region by a collection of various size rectangles // Пробл. машиностроения. -2007. -10, No 2. C. 67–82.
- 3. *Колмогоров А. Н., Фомин С. В.* Элементы теории функций и функционального анализа: Москва: Наука, 1981. 544 с.

- 4. Сосюрка Е. С. Аналитическое описание взаимного расположения прямых параллелепипедов в задаче покрытия компактного многогранного множества // Вестн. Харьк. нац. ун-та. − 2008. − № 833. − С. 247–257.
- 5. *Романова Т. Е., Кривуля А. В.* Средства математического моделирования задач покрытия // Доп. НАН України. -2008. -№ 9. С. 48–52.
- 6. Состорка Е. С. Построение гамма-функции и ее использование для решения задачи покрытия компактного многогранного множества семейством прямых параллелепипедов // Вестн. Харьк. нац. ун-та. − 2009. № 847. С. 314–323.
- 7. Stoyan Yu., Scheithauer G., Pridatko D., Romanova T. Φ-function for primary 3D objects // Technische Universitat Dresden. 2002. P. 27.
- 8. *Стоян Ю. Г., Придатко Д. И., Романова Т. Е., Шайтхауэр Г.* Ф-функции объектов, имеющих пространственную форму границы, конус, цилиндр, параллелепипед // Доп. НАН України. 2004. № 5. С. 28–33.
- 9. Stoyan Yu., Scheithauer G., Gil N., Romanova T. Φ-function for complex 2D objects // 4QR Quarterly J. of the Belgian, French and Italian Operations Research Societies. 2004. 2, No 1. P. 69–84.
- 10. Stoyan Yu. G. Ф-function and its basic properties // Доп. НАН України. 2001. No 8. С. 112–117.
- 11. Π ападимитриу X., Cтайглиц K. Комбинаторная оптимизация. Алгоритмы и сложность. Москва: Мир, 1985. 512 с.
- 12. *Романова Т. Е., Кривуля А. В., Злотник М. В.* Трансляционное прямоугольное покрытие // Доп. НАН України. 2008. \mathbb{N} 7. С. 48—53.
- Романова Т. Е., Кривуля А. В., Злотник М. В. Математическая модель и метод решения задачи покрытия многоугольной области прямоугольными объектами // Пробл. машиностроения. – 2008. – 11, № 3. – С. 58–67.

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины, Харьков Поступило в редакцию 22.02.2010

Corresponding Member of the NAS of Ukraine Yu. G. Stoyan, O. S. Sosuyrka

The covering of a non-convex polytope by a finite family of right parallelepipeds

The covering problem of a non-convex polytope with non-empty interior by a finite number of parallelepipeds is discussed. On the ground of the Γ -function technique, a mathematical model of the problem is constructed, and its basic characteristics are analyzed. On the basis of these characteristics, the solution strategy is offered. Numerical examples are given.