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BOUND STATES IN 2D FERMION SYSTEMS OF GRAPHEN 
 
Analytical solutions for the zero-energy modes of two-dimensional massless Dirac fermions 
confined within the one-dimensional Lorentz-like potential, which provides а reasonable 
fit for potential profiles of existing top-gated graphene structures is performed. On the basis 
of obtained hypergeometrical equations we have studied the conditions for formation of 
quantum bound states providing an one-dimensional fermion localization. А simple 
relations between the potential parameters and number of modes within the potential are 
established. Possibility of realization of the external controlled charge transport in the 
studied 2D system is considered. 
 

1. Introduction 

Carriers within graphene behave as two-dimensional (2D) massless Di1rac 
fermions, exhibiting relativistic behavior at sub-light speed owing to their linear 
dispersion, which leads to many optical analogies (see [1]). For them as for 
relativistic particles there is the known problem of the spatial localization (see [1-
5]). The relativistic particles do not experience exponential damping within а 
barrier like their non relativistic counterparts and that as the barrier height tends 
towards infinity, the transmission coefficient approaches unity. This inherent 
property of relativistic particles makes confinement non-trivial. Carriers within 
graphene behave as two-dimensional (2D) massless Dirac fermions, exhibiting 
relativistic behavior at sub-light speed owing to their linear dispersion, which leads 
to many optical analogies. Features of particle tunneling through р-n junction 
structures in graphene has been studied both theoretically and experimentally (see 
[1,5,6]). Quasi-bound states were considered in order to study resonant tunneling 
through various sharply terminated barriers (see [1,5,7]). 

In the presented paper the changed geometry of the problem is considered in 
order to study the propagation of fully confined modes along а smooth electrostatic 
potential, much like photons moving along an optical fiber (see [1,8,9]). The 
Lorentz-like potential is used for confinement of carriers within graphene. The 
bound modes within such а channel are analyzed on the basis of the 
hypergeometrical equations describing wave states of fermions.  

Recently quasi-one-dimensional channels have been achieved within 
graphene nanoribbon (see [4]), however the control of their transport properties 
requires precise tailoring of edge terminations, currently unachievable. The 
solution of this problem can be with the help of truly bound modes creating within 
bulk grapheme by top gated structures (see [1]). 

The key to the realization of truly bound modes within а graphene waveguide 
as zero-energy modes is related to possibility to control of the Fermi level using the 
back gate. Then as in an ideal graphene sheet at half-filling, the Fermi level is at 



 
the Dirac point and the density of states for a linear 2D dispersion vanishes. Cannot 
escape into the bulk as there are no states to tunnel into. 

The model Lorentz potential allows leads an exact analytical solution of 
bound modes within а smooth electrostatic potential at half-filling, count the 
number of modes and calculate the conductivity of the channel. The conductivity 
carried by each of these modes is comparable to the minimal conductivity of a 
realistic disordered grapheme system (see [2]). For the considered model potential 
there are threshold potential parameters for which bound modes appear. 

Thus we present an exact analytic solution for the fully confined zero-energy 
modes of massless 2D Dirac fermions in a model smooth potential vanishing at 
infinity and then describe the experimental geometry required for the observation 
of confined modes within such grapheme waveguides. 
 

2. The Hamiltonian and dispersion 
 

The two-dimensional system of the graphene is consisted of carbon atoms 
arranged in hexagonal structure via atomic sp2 bonds (see [1,10]). The structure 
can be seen as a lattice with a basis of two atoms per unit cell, and two lattice 
vectors    1 23 / 2, / 2 , 0,a a a a   , as shown in Fig.1.  

 
 

Fig.1. A plane structure of the graphene. The circles represent carbon 
atoms, 1e  and 2e  represent lattice vectors. 

 
The reciprocal lattice vectors are given by  1 2 / ( 3),0b a and 

 2 1/ ( 3),1/b a a . The tight-binding Hamiltonian for electrons in graphene 

considering that electrons can hop to both nearest- and next-neighbor atoms can be 
represented in the form 
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where ( )i ia a 
 annihilates (creates) an electron with spin ( , )     on site iR  on 

sublattice A  (an equivalent definition is used for sublattice B ); ( 2.8 )t eV is the 



 
nearest-neighbor hopping energy (hopping between different sublattices), 't  is the 
next nearest -neighbor hopping energy (hopping in the same lattice). The Fourier 
expansion of the mentioned second quantization operators: 
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where wave vector integration operators is executed within the first Brillouin zone 
(Bz) and introduction of  the two-component operators 

( ) ( ( ), ( )) , ( ) ( ( ), ( ))Tk a k b k k a k b k 
    

allow rewrite the Hamiltonian (1) in the form  
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where 'H  is a two-dimensional matrix dependent on a wave vector k .  
The eigenvalue of the Hamiltonian (2) determines the dispersion of the 

studied system  
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where the plus sign applies to the upper ( * ) and the minus sign the lower ( ) 
band corresponding to electrons and holes.  

The dispersion (3) is characterized by the linear dependence close of six 

vertex points of the type 4(0, )
3 3

K
a


    (so-called by Dirac points) in the first 

Brillouin zone of the hexagonal reciprocal lattice. Such the linear dispersion is 
described by the expression [w]  

  2( ) | | [( / ) ],FE q v q O q K q k K      ,                               (4) 
where  | | | |q K� , 3 / 2Fv ta  is the Fermi velocity [w]. 

The most striking difference between this result and the usual dispersion, 
2( ) / (2 )q q m  , is that Fermi velocity in (4) does not depend on the energy or 

momentum. The expansion of the spectrum around the Dirac point including 't  up 
to second order in /q K  is given by 

 2 2( ) 3 ' 9 ' / 4 (3 / 8)sin(3arctan( / ))F x yE q v t t a ta q q       
Whence it follows that presence of 't  shifts in energy the position of the Dirac 
point and breaks electron-hole symmetry. 

Dirac fermions can be obtained from the Hamiltonian (1) with ' 0t   using 
expanding the Fourier sum around K  and 'K . Then 
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Where the index 1i   ( 2i  ) refers to the K  ( 'K ’) point. The new operators, ina  
and inb  are assumed to vary slowly over the unite cell. Transition in (2) to 
coordinate representation in the considered case result in effective Hamiltonian of 
the form  

1 1 2 2( ) ( ) ( )FH iv dxdy r r r             , 
with Pauli matrices ( , )x y   , and ( , )i i ia b  . In first quantized language the 
two-component electron function ( )r  close to the Dirac point K  obeys 2D Dirac 
equation  

( ) ( )Fiv r E r     , 
which corresponds to the Dirac-like Hamiltonian  

FH v   . 
Note that wave function, in momentum space, for the momentum around K  has 
the form  
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where /k x yq q   and the   signs correspond to the eigenenergies FE v k  , 
that is for the *  and   bands, respectively. 
 
 

3. Equation and bond quantum states 
 
The Hamiltonian of graphene for the two-component Dirac wavefunctions in the 
presence of a one dimensional potential ( )U x can be write in the form 

  ( )F x x y yH v i i U x         

where the   sign denotes the two nonequivalent Dirac points, 61 10Fv   m/s is 
the Fermi velocity in graphene. An usage of  representation of the Dirac function in 
the form exp( )( ( ), ( ))T

y A Biq x x  ,  where  A  and B  correspond two sublattice, 
leads to coupled first-order differential equations for the wave functions, which can 
be represented in the form  
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Here ( ) ( ) / FV x U x v   and / FE v   .  



 
Carrying out symmetrization of the wave functions with the help the 

substitutions: 1 ( ) ( )A Bx i x     and 2 ( ) ( )A Bx i x    we can represent the 
last system to the system of equations  
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This system describes the potential dependent and free wave propagation along the 
x  and free directions, respectively, i.e. the propagation in a waveguide.  
 
Differentiation of the second equation of the system (5) and substitution of the 
expressions  
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allow to reduce (5) to the second order differential equation  
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If the Fermi energy is at the Dirac Point there no charge carriers within the system 
so graphene is insulator. Nonzero conductivity of the graphene waveguide can be 
caused by coupled states within the potential well that is controlled via change of 
the potential parameters (see [8]). It is shown [pro] possibility of an experimental 
fixation of the zero Fermi level. So in the equation (6) we take the value 0  . 

As known (see [8]) smooth potentials with controlled parameters which admit 
the exact solution of considered problem represent the special physical interest. To 
such a type of potential can belong of the Loretz-like potential of the form 
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where 0, 0   ; the negative value reflects a potential well for electron (see 
[Pos]. ) 

Substituting the expression (7) into the equation (6) result in the equation 
which at the condition yq   takes the form of the differential equation of the 
hypergeometrical type (see [11-13]) 
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Where 2 2( ) ( )x x   , ( ) 2x x   and � 2 2 2( )x x      . 



 
The equation (8) with the help of the substitution 1( ) ( ) ( )x x y x   where the 
function ( )x by the relation of the form '/ ( ) /x    can be reduced to the 
canonical hypergeometrical equation of the form  

( ) " ( ) ' 0x y x y y     ,                (9) 
where (see [13]) 
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Taking into account that ( )x is a first order polynomial, from the first equation of 
the system (10) we obtain two solutions: k  and 2( / )k     . In the first 

case ( )x i      and in the second case ( ) ( / )x x    . From these 
solutions ( ) ( / )x x    correspond to the localization condition.  

In according with the mentioned solution the system (9) yields 
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Polynomial solution of the equation (9) is built on the basis of the equation of 
the form  
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the equation (9) are described by the formulae of the form 
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where the function ( )x  is determined by the equation 
( ) '                                                     (13) 

In the considered case the solution of the equation (13) has the form 
2 2 /( ) ( )x x      . 

The bound modes in the system obey the condition 
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which determine the dependence of number of the bound quantum states on the 
potential parameters. From the equation (14) we can obtain corresponding relation 
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Thus change of the ratio /  , characterizing a shape of the one-dimensional 
potential ( )V x , leads to the change of the limit number of bounded quantum states 
of electron in the waveguide. Appear of the bound states occurs by discrete leading 
to increasing of the density of electron states and the increasing of conductivity of 
the waveguide/ Appear of the first bound states  is accompanied by a transition 
from the non- to conductive electron state. 
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