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The new criterion of arc stability and instability is introduced, which enables one to find arc duration dependently 
on given circuit parameters and properties of contact material. The mathematical model of phase transformations 
inside electrodes during arcing is elaborated which describes dynamics of arc erosion in metallic and gaseous arc 
phases. Increasing of arc duration and erosion with inductance occurs on account of enlarging of gaseous arc 
phase, while variation of metallic phase is relatively small. 
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Introduction 
 

Investigation of dynamical arc phenomena in opening electrical contacts is very important for 
performance build-up of circuit breakers by means of decrease of arc duration and erosion. Mayr’s and 
Cassie’s models [1] and their generalization [2] based on the power balance method are not applicable to 
describe arc temperature field at the initial arc stage just after arc ignition. Elenbaas-Heller equation gives 
information about radial distribution of the arc temperature however it is correct for stationary arcs only [3]. 
Arc dynamics should be described by transient heat equation taking into account nonlinear arc 
characteristic. It is the first intent of this paper. The second one is to device a method for calculation of arc 
erosion in dynamics.       
 

Mathematical model of arc temperature and conductivity  
at metallic arc phase 

Equation for the temperature 
 

The arc temperature θ  in opening contacts just after ignition is less than the threshold value 
required for gas ionization, , however it is sufficient to ionize metallic vapours in the contact gap, 

which takes place at the temperature : 

( , )r t

igθ

imθ
 θim < θ <  θig. 

This initial stage, called metallic arc phase, has very short duration and occurs in a small  contact  gap.  
Therefore  the  arc  takes the form of a disk, which  thickness is much less than radius, and the axial 
temperature component can be neglected in comparison with radial component. In this case the heat 
equation for the arc should be written in the form 
 

2θ 1 θ(λ ) σ rC r E
t r r r

W∂ ∂ ∂
= + −

∂ ∂ ∂
,                                    (1) 
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where  C  and λ are thermal capacity and density, λ and σ are heat and electrical conductivities of the arc 
plasma,  is electrical field and  is power loss due to arc radiation and heat conduction from arc 
column to electrodes. The initial temperature distribution along radius 

E rW
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r
 

θ( ,0) ( )r f=                                                  (2) 
can be found from the solution of the heat equation for metallic vapours at the pre-arcing stage [4, 5]. We 
can approximate the function                                                  f(r) = θoJo(μ1r / rA)  by parabola  

2

0 2( ) θ (1 )
A

rf r
r

= −  

or by the Bessel function 
f(r) = θoJo(μ1r / rA) ,                                          (3) 

where  is the first root of the Bessel function and  is the temperature maximum at the centre 
of arc disc.  

1μ 2, 405= 0θ

The temperature on the interface  r = rA between ambient air and arc plasma should be equal to 
threshold of metal ionization 

θ(rA, t) = θmi.                                                (4) 
It should be noted that thermal and electrical plasma conductivities,  and σ , depend essentially on the 
temperature and this dependence can not be averaged. In contrast the arc radiation can be neglected 
for metallic arc phase, which temperature is relatively low : < ≈ 5000 oC (fig. 1).  

λ
rW

imθ igθ
 

Equation for electrical conductivity σ  
To solve the heat equation (1) we use the Kirchhoff’s substitution 

mi

θ

θ
(θ) (θ) θS = ∫ λ d .                                             (5) 

Then the equation (1) transforms to 
21 ( ) σ

λ r
C S Sr E

t r r r
W∂ ∂ ∂

= + −
∂ ∂ ∂

.                               (6) 

Solving the equation (5) with respect to θ , get  

miθ θ ( )g S= + .                                             (7)  
Since  the  function  σ  = σ (θ)  is given (fig. 1),  can write this function in  term  of   using  (6),  i. e.  

. Linearization  of  this  function gives the expression (fig. 2) 
σ

σ σ ( )S=

σ bS= ;  g

gi

σ
tan φb

S
= = ,                                    (8) 

where  is given electrical conductivity at the transition from metallic arc phase to gaseous arc phase, 
when θ = θgi, and 

gσ

mi

θgi

θ
λ(θ) θgiS = ∫ d .                                          (9) 
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Fig. 1. Temperature dependence of  λ, σ and 
Wr: 1 — , Wm-1 K-1; 2 — C, ·102 Jm-3 K-1; 
3 — Wr, ·1011 Wm-3 [6]. 

λ
Fig. 2. Linear approximation of . giσ( )S

 

 
Substituting (8) in (7) and using notation 

2;  τ
λ

x Cr
E bE b

= = ,                                        (10) 

can write the equation with respect to  σ
2

2

σ σ 1 στ
t x x x

∂ ∂ ∂ σ= + +
∂ ∂ ∂

.                                      (11) 

It should be noted that  can be considered as constant because the thermal diffusivity  is 
approximately constant (fig. 1). The domain for this equation is 

τ 2 / λa C=

00 x x< <  , where 0 Ax r E b= . 
 The boundary conditions (2)—(4) transform to the type 

 
σ( ,0) ( )x F x=                                            (12) 

with 

mi

( / )

θ

( ) (θ) θ
f x E b

F x b d= ∫ λ ,  .                          (13) 0σ( , ) 0x t =

The solution of the problem  (11)—(13) can be found in the form of Fourier-Bessel series  

 2
0 0

1
σ( , ) exp[ ( 1) / τ] ( )n n

n
x t C k t J k

∞

=

= − −∑ x  ,                       (14) 

where 

                          
0

02 2
0 1 0

2 ( ) ( )
(μ )

x

n n
n

C F x J k x xdx
x J

= ∫ 0μ /n nk x,  = , 

 

and  μ  are roots of the Bessel function: n 0 (μ ) 0,     1,2,3,...nJ n= = .  
For approximation (3)  

                                               0 0 1 0σ( ,0) σ (μ / )x J x x=         
 

and the solution (14) takes the simple form 

                                 
2

1
0 02

0

μσ( , ) σ exp[ ( 1) / τ] (μ / )1 0x t t J
x

= − − x x ,       
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Taking into account (10), we get finally the expression for arc electrical conductivity in the form 

 
2

2 2 2
0 1 0 12σ( , ) σ exp[ (μ ) ] (μ / )A A

A

a tr t E br J r r
r

= − − .                  (15)  

The arc temperature can be found now from the expressions (5) and (8). 
Let us introduce the criterion of arcing 
 

2 2
1ξ AE br 2μ= − .                                            (16) 

 

We should distinguish three cases (fig. 3): 
1) ξ . Rise of arc conductivity, power and  temperature due to Joule heating.  0>
2) ξ .  Maximum value of arc conductivity and power. 0=
3) ξ . Arc conductivity, power and temperature decrease, thus the arc should extinguish. 0<
 

Interaction between arc and contact surface 
 

At the first stage of contact opening and then changes the sign. To find the critical point ξξ 0> 0=  
we need to know the dynamics of arc radius rA, which expands during arcing. Then using formula 

2π σA

IE
r

=                                                 (17) 

and the expression (16) we can find the critical time crt t=  at which ξ 0= . For this  purpose  we  consider 
the region  DA occupied  by arc interacting with contact surface (fig. 4). This interaction results into phase 
transformations of contact material and formation of three zones: 
1. The zone of evaporated material:  
                                           : 0 ( ),   0 σ ( , )b b bD r r t z r t≤ ≤ ≤ ≤ . 
2. The zone of melted material:   

Dm : σb (r, t) ≤ z ≤ σm (r, t),   if  0 ≤ r ≤ rb (t), 0 ≤ z ≤ σm (r, t),   if  rb (t) ≤ r ≤ rm (t). 
3. The solid zone:  

:  σ ( , ) ,   if  0 ( ),   0   if  ( )  s m m mD r t z r r t z r t r≤ ≤ ∞ ≤ ≤ ≤ ≤ ∞ ≤ ≤ ∞ . 

The contact temperature can be presented as the sum  ( , , )CT r z t
 

 ( , , ) ( , , ) ( , , )C J ST r z t T r z t T r z t= + ,                               (18) 
 

where  and  are the temperature components due to volumetric Joule  heating  and  
due  to surface arc flux heating respectively. The expression for calculating of the first component is 
given above. It can be shown that the Joule component  is important at the pre-arcing stage 
only, and it can be neglected after arc ignition. The expression for the second component can be found 

similarly in the form           .             

(19) 

( , , )JT r z t ( , , )ST r z t

( , , )JT r z t

1 1 1 1 1 1 1 1 1 1
0 0

( , , ) [ ( , ) ( , ) ( , )] ( , , , )
t

S c b mT r z t dt P r t P r t P r t G r r z t t r dr
∞

= − − −∫ ∫ 1

Here is the total heat flux (power per unit area) entering the contact surface during arcing, ( , )cP r t
( , )bP r t and ( , )mP r t are portions of this  flux consumed  for 
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Fig. 3. Evolution of arc conductivity. 
 
evaporation and melting of contact material, which 
can be found by the expressions  

σ ( , )( , ) b
b b

r tP r t L
t

∂
=

∂
γ ; σ ( , )( , ) m

m m
r tP r t L
t

∂
=

∂
γ ; (20)

 

0ξ <

0ξ =

0ξ >

(0, )tσ

0σ

t

0ξ <

0ξ =

0ξ >

(0, )tσ

0σ

t  

σ(0, t)

ξ > 0 

σo 

ξ = 0 

ξ < 0 

where and are specific heat for evaporation and melting, bL mL γ is density of contact material. 
It reasonable to assume that the isothermal surfaces σ ( , )bz r t=  and mσ ( , )z r t=  are ellipsoids of 

revolution that can be found from the equations 
 

                               
2 2

2 2 1;
( ) ( )b b

r z
r t z t

+ =      
2 2

2 2 1
( ) ( )m m

r z
r t z t

+ = ; 

in other words 
2 2σ ( , ) ( ) 1 / ( ) ;b b br t z t r r t= −  2

mσ ( , ) ( ) 1 / ( )mr t z t r r t= − 2
m .                 (21) 

The functions , ,  and  should be found from the equations ( )br t ( )bz t ( )mr t ( )mz t

C ( ( ),0, )b bT r t t T= ;   T zC (0, ( ), )b bt t T= ;   T r ; C ( ( ), 0, )m mt t T=

mC (0, ( ), )mT z t t T= ,                                             (22)  
where T  is the melting temperature of the contact material.  m

If the heat fluxes P r , obeys the normal Gauss’s radial distribution ( , )c t ( , )bP r t ( , )mP r t
2

2( , ) ( ) exp( )
( )c c

A

rP r t P t
r t

= − ;  
2

2( , ) ( ) exp( )
( )b b

A

rP r t P t
r t

= − ;  

2

2( , ) ( )exp( )
( )m m

A

rP r t P t
r t

= − ,                                (23) 

 

then the integral with respect to r in the formula (19) can be calculated and the expression for the contact 
temperature becomes more simple form 

2 2 2
1 1 1 1

2 2 22 2
1 1 10 1 1 1

[ ( ) ( ) ( )] ( )( , , ) exp[ ] τ.  (24) 
4 ( ) ( ) 4 ( )λ π [ ( ) 4 ( )]

t
c b m A

S
AA

P t P t P t r ta z rT r z t d
a t t r t a t tr t a t t t t

− −
= − −

− + −+ − −∫

t

The heat flux  should be calculated taking into account positive components due to arc radiation, 
electron (or ion) bombardment of anode (cathode) contact surface, inverse electrons from the arc column, 
and negative components due to power  losses   for  evaporation,  radiation,  electron   emission   cooling  
and  heat conduction inside the contact body. The expressions for all these components can be found in the 
paper [7]. However the model in considered case can be simplified because the information about current, 
voltage and displacement is available from experiment. Therefore it is more convenient to calculate power 
generated by arc W  directly from the measured values of arc voltage U , arc current 

( )cP t

A ( )A ( )AI t  and then  
arc heat flux entering contact is 

      
2

( ) ( ) ( )( )
2π ( ) 2π ( )

A A A
c

A A

I t U t P tP t
r t r t2

⋅
= = .                                 (25) 
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This expression is the final 

equation, which enables in the 
aggregate with other cited above 
equations to calculate dynamics of 
contact    melting,    evaporation,    arc   
radius    and  arc  power  . ( )Ar t ( )AP t

 

 
Fig. 5 and fig. 6 depict dynamics of arc power and temperature for AgCdO contacts calculated using 
above considered model at the conditions: supplied voltage 0 14 V,U =  current  inductance 

 opening velocity  [2]. One can see that critical time in this case is 
0 20 A,I =

47,5 mH,L = 0,2 m / sV = cr 10 mst = , 
however  the  maximum  of  arc temperature occurs a little bit later, at 15 mst =  due to thermal inertia. 
 
 
 
 
 
 
 
                                       

  
 
Fig. 5. Dynamics of arc 
power . ( )AP t
 

 
 
 
 
 
 
 
 

 
 
 
 
Fig. 6. Arc temperature:  
1 — experimental data 
[2]; 2 — calculation. 
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Transition from metallic arc phase to gaseous arc phase 
Temperature field and erosion 

The duration of metallic phase is very short, therefore the arc thickness is still small and above 
considered model can be applied to describe the transition from metallic to gaseous phase if we replace all 
parameters of metallic vapours by parameters of gaseous vapours. Dynamics of this transitions is 
represented in fig. 7. One can see, that at the first stage of arcing, when the contact gap does not exceed 
20 μm, anode temperature rises very sharp in comparison with cathode temperature.  
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Dynamics of anode and cathode 
temperature at the centre of arc root. 
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It can be explained by the fact that in a short arc, which length is comparable with the length of ionization 
zone, electron temperature  is much greater than ion temperature Ті, therefore kinetic energy of electrons  

bombarding anode, 
eT

3
2

e
e

kT j
e

, exceeds significantly kinetic energy of ions entering cathode, 3
2

i
i

kT j
e

. Moreover, 

calculation shows that in this range of contact gap electron component of current density ej  is  much  greater 
than ion component ij ,  that is an additional reason for anode overheating and material transfer from anode to 
cathode. However intensive evaporation  from  anode  and  increasing  of  anode  arc  spot  radius,  that  entails 
decreasing of current density, cause anode cooling and decreasing of its temperature, while cathode 
temperature continues to  increase. The point of intersection of anode and cathode temperature occurring at 

 corresponds to change the direction of material transfer for inverse and to beginning of 
compensation arc stage, which continues up to 

0,15 msact =

1 1,8 mst =  and transforms then into cathodic stage (fig. 8).  
Calculation enables to conclude that cathodic arc stage begins in metallic phase with temperature 

about 4700 K, that is less than threshold ionisation, however transition to gaseous phase occurs just at 
. Results of calculated erosion given in fig. 8 are evidence of the fact, that the main portion of 

erosion  in  inductive  circuits  occurs in gaseous phase. Calculated values for 
1 2 mst =
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. It was found that arc duration increases proportionally inductance and depends on current at 

relatively small values of inductance (fig. 9). However for inductance greater than 10 mH this dependence 
becomes negligible. This result correlates with experimental data observed in work [2].  

Increasing of arc duration with inductance occurs on account of enlarging of gaseous
ation of metallic phase is relatively small. The same conclusion may be proposed for increasing of 

erosion. However further increasing of inductance up to a few hundred millihenry in the range of low 
current leads to decrease arc duration and erosion due to arc-to-glow transformation, which is considered 
below. 
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Математическая модель температуры и электрической проводимости дуги в 

 
С. Н. Харин, Ю. Р. Шпади, А. Т. Кулахметова 

Получен новый критерий стабилизации дуги, который позволяет найти зависимость продолжительности 

иной 
, 

Механічна модель температури та електричної провідності дуги 

 
С. М. Харін, Ю. Р. Шпади, А. Т. Кулахметова 
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металлической и газовой фазах 

 
 

металлической фазы дуги от заданных параметров цепи и свойств контактного материала. Предложена 
математическая модель фазовых переходов внутри электродов в процессе горения дуги, которая 
описывает динамику дуговой эрозии в металлической и газовой фазах дуги. Установлено, что прич
возрастания продолжительности дуги и эрозии контактов, происходящего с ростом индуктивности цепи
является расширение газообразной фазы дуги относительно ее металлической фазы. 
Ключевые слова: математическая модель, дуговая эрозия, дуговые фазы. 
 

в металічній і газовій фазах 

От абілізації дуги, який дозволяє знайти залежність т
дуги від заданих параметрів ланцюга і властивостей контактного матеріалу. Запропоновано математичну 
модель фазових переходів в середині електродів в процесі горіння дуги, яка описує динаміку дугової ерозії в 
металічній і газовій фазах дуги. Встановлено, що причиною зростання тривалості дуги і ерозії контактів, 
яке має місце із зростанням індуктивності ланцюга, є розширення газоподібної фази дуги відносно її 
металічної фази.  
 

 слова: маКлючові
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