Л.С. Сікора, д.т.н., НУ «ЛП», Д. Єлізаров, асп., НУ «ЛП», Львів

ФОРМУВАННЯ ПЛАНІВ РОЗВ'ЯЗАННЯ КОНФЛІКТІВ В СИСТЕМАХ НА ОСНОВІ СТВОРЕННЯ МОДЕЛЕЙ ПРИЧИННО-НАСЛІДКОВИХ ЗВ'ЯЗКІВ З ФАКТОРАМИ ВПЛИВУ

Аннотація. В статті розглянуто задачу створення стратегій і планів антикризового управління на основі інтелектуального тренування персоналу.

Аннотация. В статье рассмотрено задачу создания стратегий и планов антикризисного управления на основе интелектуальной тренировки персонала.

Annotation. In this article is considered the task of creating strategies and plans for crisis management based on staff intellectual training.

Ключові слова. Стратегія, конфлікт, план, модель, причинно-наслдіковий зв'язок, тренування.

Актуальність. Сучачний стан функціонування складних систем характеризується ростом виробничих навантажень (фізичних, психологічних) на оперативно-управлінський персонал. Непідготовленість членів оперативних команд (виконавців і управлінців) приводить до зриву планів виробництва, конфліктів психологічних і системних, наслідком яких є породження аварійних ситуацій. Відповідно аналіз причин виникнення таких ситуацій і прийняття концентрованих і адекватких мір є актуальною науковоприкладною задачею.

Аналіз задачі формування планів розв'язання конфліктних ситуацій в інтегрованих автоматизованих системах управління (IACY)

В процесі функціонуваня ІАСУ можливі появи за рахунок загроз, конфліктних ситуацій для ліквідації яких необхідно сформувати план дій на основі стратегії управліня в умовах кризи. План ліквідації (розрішення) ситуації включає наступні оперативні дії:

- Набід відомостей констатуючих фактів типу загроз;
- Впорядкування факторів впливу по важливості впливу і термінах прийняття рішень виявлення причин криз і загроз;
- Забезпеченя конструктивності і глибини плану дій для команди і оператора за коротки термін часу, та розроблення планів використання ресурсів;

Ігрова модель розв'язання конфліктів, кризи

В описі конфліктної ігрової ситуації використовуємо наступні параметри і характеристики, які описують стан ІАСУ

$$Conf_{T_{low}}Sit_{DS}(t_{\ell}) = \langle I_{gg}^{vdl}(DSxF_{\ell}, \forall t_{\ell} \in T_{R}, V_{\ell}(\ell) \in V_{FL}) \rangle$$

де i – індекс ситуації; τ_{dl} – директивний термін часу розрішення ситуації; T_{mnl} – час ліквідаціїї ситуації; V_{dl} – вага ситуації по аварійних

наслідках; $T_{\mathbb{R}}$ – реальний час; $F_{\mathbb{R}}$ – фактори впливу і загроз.

Стратегії розрішення конфлікту відповідає послідовність активних дій згідно плану ліквідації аварійної ситуації:

$$\begin{cases} \pi R \left(Conf_{T_{n_{pl}}} Sit_{DS(t_{l})} \right) \equiv \exists \left(StratRL \left(\bigcup_{i=1}^{m} A_{Di(i)} \right) \right) \\ \Rightarrow \left\{ \exists DR_{m,e}^{S}, \exists Strat \left(\frac{U_{A}}{C_{i}} \right) : Z_{S} \notin V_{AL} \right\} \end{cases}$$

де U_A — аварійне упавління; $DR_{m,e}^s$ — джерела матеріальних і енергетичних ресурсів; \mathbb{Z}_s — параметр стану системи; V_{AL} — аварійна область.

Для кожноїї стратегії прийняття рішень вводиться функція штрафу на неефективні управління

$$\begin{split} F_{sht}\left(StratU\right) &= \sum_{i=1}^{N} \eta_{i}(t) \stackrel{min}{\longrightarrow} \sum_{i=1}^{N} \eta_{i} * (t), \ \forall t \in T_{nyl} \ , \\ \text{de } \eta_{i}(t) &= \begin{cases} V_{S(G)} T_{nyl} \geq \tau_{dl} \\ 0, T_{nyl} < \tau_{dl} - \Delta \tau_{d} \end{cases}. \end{split}$$

Індекс ефективності планів дій для штатних і нештатниї ситуацій задається у вигляді [2]:

$$R_{1S} = \sum_{i=1}^{N} V_{S}\left(i\right) \cdot \left(\alpha T_{nyi}\right)^{-1} \colon R_{2S} = \sum_{i=N-1}^{N} V_{S}\left(i\right) \cdot \left(\alpha T_{nyi}\right)^{-1}$$

Для функцій штрафу $F_{\rm skl}$ можна скласти план дій згідно алгоритму Сахи-Горвіца [1] на основі оптимального розкладу дерева рішень яке проблемно-орієнтовано на об'єкт. При цьому множину ситуацій розбивається на множини, які можна розв'язати в директивний час що вимагають додаткового терміну $S_{\rm these}(t_{\rm l} \in T_{\rm st})$

для яких загальний термін розв'язання проблеми і штраф визначаються: $\overline{\eta_m} = \sum_{i=1}^n \eta_i(t)$: $\overline{\tau} = \sum_{i=1}^n T_{mpi}$, а дерево рішень будується у вигляді рис. 1, де F_i — фактор впливу, t_k — час конфлікту, t_d — час початку дій, t_1 … t_c — моменти проходження дерева рішень, t_c — вхід в цільову область

Структура алгоритму рішень визначає послідовність множин: $\mathbf{H} \in \mathbb{N}$, $S_l = (\eta_l, \tau_l)! Alg [\{S_0, S_1, ..., S_T\}] (\tau - T_{nyl} < \Delta \tau_{nl})] \equiv Strat U_{n.5}$, якщо $S_l = U$, то ситуація розрішима в директивний час згідно стратегії (Strat $U_{n.5}$), тобто маємо відповідність $Alg_{\pi,n}(S_l) = \{Strat_{n.5}(U_l)\}^{-1}\}$ послідовності на дереві рішень, яка згідно правила \mathbf{M} відповідно формується $\mathbf{K}\mathbf{I}$ – управлінська процедура \mathbf{W}_n . Тобто, для того щоб розв'язати ситуацію в систему в тому числі і конфліктну, необхідно сформувати процедурні блоки (СППР) в ІАСУ та відповідно навчити персонал, де:

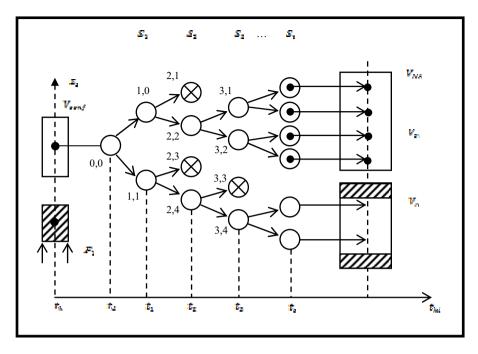


Рис. 1. Дерево рішень виходу з конфлікту в цільову область системи

- Блок інформаційної підтримки, який включає:
 - о Розпізнавання ситуацій, їх класифікацію на нормальну, передаварійну, конфліктну, аварійну;
 - Формування плану дій з директивним терміналним інтервалом часу ліквідації загроз;
 - о Генерація гіпотез про можливі причини конфлікту і граничних ситуацій (механізми породження);
 - Формування плану перевірки, прогнозу реалізації рішень згідно стратегії на основі виявлення причинних зв'язків дії факторів.
- Блок навчання оператора, який відповідно включає наступні процерури і субблоки:
 - о Логічний інтелектуальний процесор;
 - Блок навчання розпізнаванню ситуації;
 - Блок формування гіпотез про можливі моделі конфліктних ситуацій в об'єктах і агрегатах системи;
 - Блок формування (моделей перевірки) гіпотез з використанням причинно-наслідкових ланцюгів;
 - о Блок знань наповнений відомостями (інформативними) про ознаки і характеристики об'єктів на яких можливо виникнення аварійних і конфліктних ситуацій, їх причини і ранг важливості факторів.

Тобто до вище наведеного, ієрархія рішень в ІАСУ включає наступні рівні: IR_2 — опис ознак конфліктної ситуації; IR_1 — узагальнена база моделей можливих ситуацій і правил їх розв'язання; IR_2 — модель формування гіпотез про причини виникнення кризових ситуацій і конфліктів; IR_2 — перевірка гіпотез і вибір рішень та їх реалізація для ліквідації загроз.

Формування гіпотез про причини виникнення конфлікту в динамічних системах.

Методи і алгоритми формування гіпотез суттєво залежать від специфіки ситуацій в яких приймаються рішення. Для систем реального часу відсутня повнота статистичних достовірних даних про рішення, які приймаються операторами в різних граничних режимах і конфліктних ситуаціях. Рішення ці будуються на комплексах ознак про поточну ситуацію, і вони часто є евристичними. Необхідна інформація для формування гіпотез може бути одержана логічним способом аналізу.

Задача формування гіпотез для множини поточних ситуацій при яких необхідно приймати протиаварійні рішення є нечіткою як параметрично, так і структурно. Нахай прийнято що j=1 відповідно буде першою причиною, тоді $H_f = \{S_f \mid S_f = f - \text{множина факторів впливу, тоді ймовірність фактора буде при виявленні причинно-наслідкових зв'язків: <math>Frab = \{S_{f-1,0}H_1S_{ff}\} \le 1$.

Для складних гіпотез будуються ростучі пірамідалььні сітки (рис. 1) взаємопов'язаних факторів які діють а об'єкт управління.

Після вибору оператором гіпотези про можливу причину конфлікту, йому необхідно виконати послідовність дій, які підтверджують гіпотезу. Підтвердження гіпотези фактично приводить до реалізації дій по ліквідації надзвичайної, конфліктної ситуації в технічній системі.

При виборі моделі прийняття рішень ОПР — необхідно враховувати психологічні властивості особи, які ϵ найбільш важливою компонентою при формуванні поведінки людини (оператора) яка сформувалась в процесі тренування на тренажерах:

- Свідому направленість на виконання службових обов'язків;
- Структурність процедур прийняття рішень на основі логічних ланцюгів і сценаріїв розвитку подій;
- Стохастичність, яка виникає в момент стресової ситуації, при низькому рівні психічної стійкості.

Виходячи з вище викладеного можна побудувати загальну схему розв'язання задачі прийняття рішень. Процес формування процедури прийняття рішень представляється у вигляді ланцюга послідовного перетворення і опрацювання даних в ході якого формується вихідна структура переваг альтернатив і варіантів.

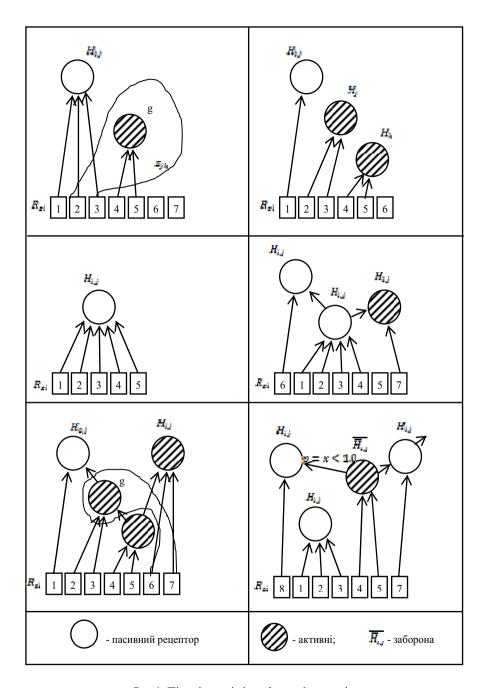


Рис 1. Пірамідальні сітки факторів впливів

Структурна схема антикризового управління будується згідно стартегій подолання конфліктів на основі бази даних і знань в системі підтримки прийняття рішень (СППР), які створюються на основі моделей причинно-наслідкових зв'язків з факторами впливу. Ця інформація накопичується в процесі експлуатації і впорядковується експертами. Персонал допускаться до роботи після того як він пройде відповідний тренінг та засвоїть навики антикризового управління.

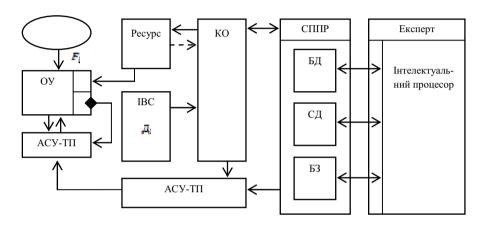


Рис 2. Схема антикризового управління

Висновок. В статті обгрунтовано підхід до тренування антикризової стійкості персоналу ІАСУ на тренажерах що входять в структуру СППР.

- 1. *Сікора Л.С.* Системологія прийнятя рішень в складних технологічних системах Львів ЦСД,. ЕБТЕС
- 2. *Романов А.Н., Жабеев В.П.* Иммитаторы и тренажеры в системах отладки АСУ ТП М. Энергоатомиздат. 1987 112 с.
- 3. *Ткачук Р.Л., Сікора Л.С.* Логіко-когнітивні моделі формування управлінських рішень інтегрованими системами в екстремальних умовах Львів : ЛігаПрес, 2010. 404 с.
- 4. *Самойлов В.Д., Березников В.П., Писаренко А.П., Сметана С.И.* Автоматизация построения тренажерров и обучающих систем Киев: Наук. думка, 1989. 2000 с.

Поступила 1.09.2010р.