OCHOBHOI TOKa3aTellb TOYHOCTH W JIOCTOBEPHOCTH: ¢ BeposiTHOCThI0 0,95
omuOKa oOmpeieicHUs KOOpAMHAT yTeuek He Oomee 0,5 M Ha ydacTkax
TpyOOIPOBOZOB TerutoceTer umHoW n0 600 M u guamerpom mo 1200 MM mpu
YCIIOBUM TIPUMEHEHHsI OPUTUHAJIbHOW METOAMKH KOMIUIEKCHOTO HCITOJIb30BaHMUS
tedeuckateneit K-10 u A-10. [Ipyrue xapakTepUCTUKH TeUEUCKATENs IPUBEIECHBI B
Tabm.1.

Tabnmma 1. Texanueckne xapakTepucTuku Tedenckarens K10-3M.

Ne | HauMeHoBaHM€e XapaKTEpUCTUKU 3HadueHHNE
1 JamsHOCTR JAeHCTBHUS paanokaHanoB (B ropoackux | 900 + 900 m
YCIIOBHSIX)

2 | Bpemsa paboter pammokanama ©6e3 momzapsanku | 30/6 gacos
AKKYMYJIITOPOB ITpUeM/Iepeaada

3 | TemmeparypHbIi Bubpomatunk -30 ... +85°C
4 JTMaIta3oH BrrHocHbIe paano0I0Ku -10 ... +65°C
5 CucTeMHbI# 0JI0K +10 ... +65°C
6 | dmumnHa xabens Karymku 25M
7 Bubponarunka 10Mm
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A. Korostilv, Kyiv

THE KELDYSH FORMALISM IN THE TIME-DEPENDENT
DENSITY-FUNCTIONAL THEORY

We have considered application the Keldysh formalism in time-dependent
density functional theory. It is shown that effects of electron-electron interaction can
be taken systematically into account in the framework of the Kadanoff-Baym
equations for Green functions determined on the Keldysh contour for the second-order
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self-energy approximation. With the help of these Green functions we have derived
the time-dependent Kohn-Sham potential from an action functional. The Keldysh
formalism in a similar way leads to response functions that obey the causality
principle that is illustrated on the case of the time-dependent optimized effective
potential equations.

1. Introduction

We will consider the Keldysh formalism [1], which is an extremely useful
tool for firstprinciples studies of nonequilibrium many-particle systems. Of
particular interest to time-dependent density functional theory (TDDFT) is the
relation to non-equilibrium Green functions (NEGF), which allows to construct
exchange-correlation potentials with memory by the variational derivative method
[2]. For many problems, such as, e.g., quantum transport or atoms in intense laser
pulses, one needs exchange-correlation functionals with memory, and Green
function techniques offer a systematic method for developing these.

The Keldysh formalism is also necessary for defining response functions in
TDDFT and for defining an action functional needed for deriving TDDFT from a
variational principle. The formalism does not differ much from ordinary
equilibrium theory, the main difference being that all time-dependent functions are
definied for time-arguments on a contour, known as the Keldysh contour.

The Green function, G(r,t;r't") is a function of two space- and time-

coordinates, and is obviously more complicated than the one-particle
density n(r,t) , which is the main ingredient in TDDFT. However, the advantage of

the NEGF methods is that we can systematically improve the approximations by
taking into account particular physical processes. The Green function provides us
directly with all expectation values of one-body operators (such as the density and
the current), and also the total energy, ionization potentials, response functions,
spectral functions, etc. In relation to TDDFT, this is useful not only for developing
orbital functional and exchange-correlation functionals with memory, but also for
providing insight in the exact properties of the non-interacting Kohn-Sham system
[5.6].

In the following, we shall focus on systems that are initially in thermal
equilibrium. We will start by introducing the Keldysh contour and the
nonequilbrium Green functions, and then explain how to combine and manipulate
functions with time variables on the contour. While we in TDDFT take exchange-
and correlation-effects into account throughv  (n), the corresponding quantity in

Green function theory is the self-energy X(G). Just like v _(n), the self-energy
functional must be approximated. For a given functional X(G), it is important that

the resulting observables obey the macroscopic conservation laws, such as, e.g., the
continuity equation. These approximations are known as conserving, and will be
discussed briefly. In the last part of this section we will discuss the applications of
the Keldysh formalism in TDDFT, including the relation between £ and v_, the

xc
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derivation of the Kohn-Sham equations from an action functional, and the
derivation of an f,  functional. As an illustrative example, we will discuss the
time-dependent exchange only optimized effective potential approximation.

In quantum mechanics we associate with any observable quantity 0 a
hermitean operator O . The expectation value Sp{p,O} gives the value of O when
the system is described by the density operator p and the trace denotes a sum over

a complete set of states in Hilbert space. For an isolated system the Hamiltonian
H  does not depend on time, and the expectation value of any observable quantity

is constant, provided [p, H,]=0. In these notes we want to discuss how to
describe systems that are isolated for times # <0, such that H(r <0)=H,, but
disturbed by an external time-dependent field at # > 0. The expectation value of O
at >0 is then given by the average on the initial density operator p, of the
operator O in the Heisenberg representation,
O(Z):Sp{pOOH(t)}:Sp{pOS(Oat)OHS(tao)}9 (1)
where the operator in the Heisenberg picture has a time-dependence according to
0,()=2S(0,1)OS8(t,0) . The evolution operator S(¢,#") is the solution of the

equations
.d . d
l_S(tat') = H(I)S(tat')a Z_S(tst’) = _S(t’t')H(t')a
dt dr'
with boundary condition S(t,t)=1, and which can be formally written as
t t
S(t,t") = 0(t,t"T exp[—i j dtlH(tl)] +0(t",0T exp[—i j dtlH(tl)J.

where the function 6(z,¢") is defined to be 1 if ¢ is later than ¢'; T is the time-
ordering operator that rearranges the operators in chronological order with later
times to the left; T is the anti-chronological time-ordering operator. The evolution
operator satisfies the group property S(#;¢)S(z,;¢") = S(¢:¢') for any ¢,. Notice that
if the Hamiltonian is time-independent in the interval between t and t', then the
evolution operator becomes S(#;¢') = exp(—iH (t—t ')) . If we now let the system be
initially in thermal equilibrium, with an inverse temperature S =1/k,7 and
chemical potential M, the initial density matrix is
Py =exp(—B(H,—uN))/Sp(-p(H, — uN)). Inserting this expression in (1), we
find
Sp{exp(BuN)S(=ipu)S(0;1)0S(t;0);
Sp{exp(BuN)SCifw}
Reading the arguments in the numerator from the right to the left, we see that we

o(t) = )
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can design a time-contour ¥ with a forward branch going from 0 to 7, a backward

branch coming back from ¢ and ending in 0, and a branch along the imaginary
time-axis from 0 to —if. This contour is illustrated in Fig. 1.

L Y
0._‘ . 3 o

-1 [3
Fig. 1. The Keldysh contour, starting at # =0, and ending at  =—if3, with ¢ on

the backward branch and 7’ on the forward branch. By definition, any point lying
on the vertical track is later than a point lying on the forward or backward branch.

Note that the group property of S means that we are free to extend this contour up
to infinity. We can now generalize (2), and let z be a time-contour variable on y .
Letting the variable z run along this same contour, (2) can be formally recast as

Sp {exp(ﬂ,uN)TC exp (—ij. dzH(z)J 0(2)}
0(z) = -

(3)
Sp {exp(ﬂ,uN)TC exp[—i | dzH(z)j}

The contour ordering operator 7, moves the operators with “later” contour
variable to the left. In (3), O(z) is not the operator in the Heisenberg representation
(the latter is denoted with O, (¢) ). The contour-time argument in O is there only
to specify the position of the operator O on y. A point on the real axis can be
either on the forward (we denote these points ¢ , or on the backward branch
(denoted ¢, ), and a point which is earlier in real time, can therefore be later on the

contour, as illustrated in Fig. 1.

To summarize, in (5) the variable z lies on the contour y ; the r.h.s. gives the
time-dependent statistical average of the observable O when z lies on the forward
or backward branch, and the statistical average before the system is disturbed when
z lies on the vertical track.

2. NONEQUILIBRIUM GREEN FUNCTIONS
We now introduce the nonequilibrium Green function (NEGF), which is a
function of two contour time-variables. In order to keep the notation as light as
possible, we here discard the spin degree of freedom; the spin index may be

restored later as needed. The field operators y(r), w (r) destroy and create an
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electron in rr and obey the anticommutation relations [w(r),w " (r)]=30(—r").
We write the Hamiltonian H (¢) as the sum of a quadratic term

h(t)=fdrdr'l//+(r)<Vlh(t)}r'>!//+(r') “
and the interaction operator
1,0 =3 [drdr 'y O () <7 [0 M GWe) . )

Here, when describing electrons in electro-magnetic field, the quadratic term is
givenby <r|h(t)|r'>=5(r—r)([V/i+ A(r.OF /2+v(r.0)).

The definition of an expectation value in (3) can be generalized to the
expectation value of two operators. Then Green function is defined as

G(r,z;r',z") = —i<TCl//H (r,z2),, (r ',z')> ,

where the contour variable in the field operators specifies the position in the
contour ordering. The operators have a time-dependence according to the
definition of the Heisenberg picture, e.g. v, (r,z)=S(0;z)y " (r)S(z;0). The
Green function can be written

G(z;z2)=60(z,2"\G (z;2)+ 0(z,2)G"(z;2"). (6)
From the definition of the time-dependent expectation value in Eq. (2), it follows
that the greater Green function G”(z,z") ), where z is later on the contour than z'

1S
1 Sp{exp(BuN)S(=i: 0, (. 2)yr;; (', ")}

G (r,z;r'z') =- ; (7
i Sp{exp(BuN)S(-ifu))}
If z'"is later on the contour than z , then the Green function equals
Spiexp(BuN)S(=if; 0, (r', 2 Wy, (. 2)
T | p{exp(BuN)S (=i ;0 (', 2 W, (. 2)} ®

i Sp{exp(BuN)S(=ifiu))}
The extra minus sign on the right hand side comes from the contour ordering.
More generally, rearranging the field operators y and y* (later arguments to the

left), we also have to multiply by (1) , where P is the parity of the permutation.
From the definition of the Green function, it is easily seen that the electron density,
n(r,z) =<y}, (r,2)y, (r,z) > and current is obtained according to

n(r’ Z) = _G(r’ Z; r’ Z+ )’

P | o
j(r,z)= z{[zl_ > +A(r,z)} G(r,z;r',z )}Z,_Z+ .

where z* indicates that this time-argument is infinitesimally later on the contour.
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The Green function G(z;z')obeys an important cyclic relation on the
Keldysh contour. Choosing z =0_, which is the earliest time on the contour, we
find G(0_;z") =G~(0;z"), given by (8) with y,,(r,0) =y, () . Inside the trace we
can move (r) to the left. Furthermore, we can exchange the position of y(7)

and exp(fSuN) by noting that w(r)exp(SuN) =exp(fu(N +1)) xw(r). Using the
group identity S(—if3;0)S(0;—if) =1, we obtain

| Sp{w (1) exp(BuN)S (=i 00y (.2}

R Sp{exp(BuN) S(=if3:0))}
_exp(~ ) SPAeXD(BUN)S(=iB; 00, (r, =iy}, (r',2)]
i Sp{exp(BuN) S(-i3:0))|
The r.h.s. equals —exp(—fu) <r|G(=if;z"'|r") >. Together with similar analysis
for G(z;0_), we include that G(0_;z") =—exp(Bu)G(-if;z") . These equation
constitute the so called Kubo-Martin-Schvinger (KMS) conditions [3,4]). It is
easily seen that G™(z;z) =G (z;z) —1il.

3. RELATIONS FOR KELDYSH FUNCTIONS
The Green function belongs to a larger class of functions of two time-contour
variables that we will refer to as Keldysh space. These functions can be written on
the form
k(z;z") = 8(z,zVk° (2) + O(z,2")k™ (z,2") + O(z ", 2)k" (z,2") , )
where the & -function on the contour is defined as d(z,z")=d6(z,z")/dz . These
functions are somewhat complicated due to the fact that each of the time-
arguments can be located on three different branches of the contour . Below we
systematically derive a set of identities that are commonly used for dealing with
such functions and will be used extensively in the following sections.
For any k(z;z")in the Keldysh space we define the greater and lesser

functions on the physical time axis k”(f;¢")=k(z,;t.) and k“(t;¢")=k(t;t,) .
We also define the following two-point functions with one argument ¢ on the

physical time axis and the other 7 on the vertical track k '(#;¢")=k(t.;7) and

k''(t;t) =k (z;t,) . In the definition of k' and k' we can arbitrarily choose

“*‘n

and “|” ” have been

113 |f

t,+ort since 7 is later than both of them. The symbols
chosen in order to help the visualization of the time arguments. For instance, “p
has a horizontal segment followed by a vertical one; correspondingly, & ' has a

first argument which is real (and thus lies on the horizontal axis) and a second
argument which is imaginary (and thus lies on the vertical axis). We will also use
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the convention of denoting the real time with latin letters and the imaginary time
with greek letters.
The above mentioned k -functions obey the relations

k(1) =k(t,,t), k*(t,t") = k(t_,t.),
KRt = 8-tk (1) + 0t —t[k™ (t,t) - k= (¢,1")],
KAt =S -tk (6) - 0(t'- [k (¢, — k= (t,t)],
k(67) = k(t50), K (50) = k(z51,),
' (reY=k(z=1;2"=1"),
which occur also for the mentioned Green functions.
It is straightforward to show that if a(z;z') and b(z;z') belong to the
Keldysh space, then
c(z;z") = J.dz]a(z;zl)b(z] ;2") (10)
7

also belongs to the Keldysh space. Such contour integrals is contained in equations
for the Green functions. Therefore we will consider its calculation. If we write out
the contour integral in (10) in detail, we see with the help of Fig. 1, that the integral
consists of four main parts. First, we must integrate along the real axis from
z,=0_to z =t , for which a=a” and b=5b". Then, the integral goes from

z, =t to z,=t,, wherea=a" and b=b". The third part of the integral goes

with a=a" and b=5". The last

+

along the real axis from z =¢, to z =0,,

integral is along the imaginary track, from 0, to —if3, where a=a ' and b=5".

In addition, we have the contribution from the singular parts, a’ and b°, which is
trivial since these integrals involve a 3-function. With these specifications, we can
drop the + -subscripts on the time-arguments and write

(Y =a (1,0’ (1) +a’ ()b (t,1") + ]dtla> (t,4,)b"(1,,1")

+[dna (,0)b” (1,1 + [dta(6,0)b” (4,1 + [ dria \(1,1)b' (7,,1).

The second integral on the r.h.s. is an ordinary integral on the real axis of two
well defined functions and may be rewritten as

t 0 t'
J.dt,cf(t,tl )7 (1,,1") = Idtla>(t,t, )b>(z,,z')+ja/z,a>(z,z1 )b (1,,1")
t' t 0'
Using this relation, the expression for ¢~ becomes
Yy =a (1,1’ (1) + a”(t)b>(t,t')+Idtla>(t,tl)[b>(zl,z')
0

’ i
—b>(t,,t')]+Idtl[a>(t,t,)—a>(t,tl)]b>(tl,t')+ f drya '(t,7)b (z,,1).
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Taking into account into account above entered retarded and advanced functions
Next, we introduce two other functions on the physical time axis

KR (t,t") = 8(t—tK° () + 0@t —t)[k™ (t,t) = k™ (t,1")],
k' (t,t") = 8(t—t"k° (1) - 0(t'- [k (t,t) — k™ (1,1")],

We can rewrite the function ¢” in a more compact form
() =a (0N (1")+a’ ()b (1,1") + Jdtl[cf (t,6)b" (t,,t")
0

—if
+aR(uq)b>(q,zD]+-j dra \(t,t)b (z,,1")
0

Introducing a short hand notation for integral along the physical time axis and for
those between 0 and —if, namely

fg=[dfgwyand frg=]"drf(0)g(),
we obtain
c =ab'+a"b +a'*b"
Similarly, one can prove that
c=a b +d"p +a ' *b , F=a" %, ' =a’ b7,
cl=a"-blval ¥ b, ¢ =d b +a" xb

were KM (r;tY=k(z=1;2'=1").

4. THE KADANOFF-BAYM EQUATIONS
The Green function, as defined in (6), satisfies the equation of motion

idiG(z; zY)=16(z,z")+ h(2)G(z,z") + J. dz2(z,2,)G(z,z"),
/7

—i%G(z; zV=16(z,z")+ G(z,zh(z") + IdzlG(z; z,)2(z,,2").
/2 ’

The external potential is included in /%, while the self-energy ¥ is a functional of
the Green function, and describes the effects of the electron interaction. The self-
energy belongs to Keldysh space and can therefore be written on the form

2(z,2") = 8(z,2")2° (2) + 6(z,2") 27 (2) + B(z',z)2"(2) . The singular part of the self-
energy can be identified as the Hartree—Fock potential, X°(z)=U w(2)+Z (2).
The self-energy obeys the same anti-periodic boundary conditions at z=0_ and
z=—iff as G. We will discuss self-energy approximations in more detail below.
Calculating the Green function on the time-contour now consists of two steps: 1)
First one has to find the Green function for imaginary times, which is equivalent to
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finding the equilibrium Matzubara Green function G (z;7"). This Green function
depends only on the difference between the time-coordinates, and satisfies the
KMS boundary conditions according to G¥ (r +if,7") = —e™"G" (r,7") . Since the

self-energy depends on the Green function, this amounts to solving the finite-
temperature Dyson equation to self-consistency. 2) The Green function with one or
two time-variables on the real axis can now be found by propagating according to
the above mentioned equations of motion. Starting from ¢ =0, this procedure
corresponds to extending the time-contour along the real time-axis. The process is
illustrated in Fig. 2. Writing out the equations for the components of G using the
above mentioned relations for Keldysh functions, we obtain the equations known
as the Kadanoff-Baym equations [2],

i G (20 = h(t)Gi(z,z')J{zR -Gi}(z,z')

dz

+{Z§-GA}(t,t')+[Z-GJ(t,t’), (11
d . f .

=G (t,7) = h()G ‘(t,z')+|:2 G ‘}(m)

+[z" .GM J(t,r). (12)

It is easily seen that if we denote by T the largest of the two time-arguments

t and ¢', then the right hand side of (11) and (12) depend on Gi(tl,tz),
G (z,,t,), G '(t,7,) fort, t,<T . When propagating the Kadanoff-Baym

equations one therefore starts at #=¢'=0, with the initial conditions given by

G*(0,0)=1lim__, G"(=in,0), G (r,0)=G"(z,0). One then calculates G”(z,t')

for time-arguments within the expanding square given by #,#'<T

n—0

Simultaneously, one calculates G' (¢,7) and G '(r,¢) for t<T.

5. ACTION FUNCTIONAL AND TDDFT
We defined the action as A =i lnSp{eﬂ “NS(—ip; 0)} , where the evolution
operator S 1is the same as defined above. The action functional is a tool for
generating equations of motion, and is not interesting per se. Nevertheless, one
should notice that the actionilnZ, where Z is the thermodynamic partition
function. It is easy to show that if we make a perturbation oV (z)in the
Hamiltonian, the change in the evolution operator is given by

i%55(2;z'):5V(z)S(z;z')+H(z)S(z;z’) (13)
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A similar equation for the dependence on z', and the boundary condition
05(z;z")=0 gives

08(z;z") = —ijdzlS(z;zl)é'V(zl)S(zl;z'). (14)

We stress that the time-coordinates are on a contour going from 0 to—if. The
variation in, e.g., V(¢,) is therefore independent of the variation in V(¢ ) (t-).If
we let oV (z)= Jdr&v(r,z)n(r), a combination of (13) and (14) yields the
expectation values of the density,
oA i 1)
ov(r,z) - Sp(eﬁ”NS(—i/i’;O)) ov(r,z)
Sp(e™"'S(-i8;0)S(0;2)n(r)S(230))

= =n(r,z).
Sp (e S(-if3;0))
A physical potential is the same on the positive and on the negative branch of
the contour, and the same is true for the corresponding time-dependent density,
n(r,t)=n(r,t.). A density response function defined for time-arguments on the

Sp{e”S(-i:0)}

contour is found by taking the functional derivative of the density with respect to
the external potential. Using the compact notation 1=(r,z), the response
function is written

_on(l) 84
S ov(2)  Sv()ov(2)
This response function is symmetric in the space and time-contour coordinates. We
again stress that the variations in the potentials at t+ and t— are independent. If,

however, one uses this response function to calculate the density response to an
actual physical perturbing electric field, we obtain

on(r,t)=on(r,t,)= Idz 'j dar' y(r,t;r',z")ov(r',z"), (14)

2(1,2) 2(2,1). (15

where y indicates an integral along the contour. In this expression, the perturbing
potential (as well as the induced density response) is independent of whether it is
located on the positive or negative branch, i.e. Sv(r',t,)=3v(r',t") . We consider a
perturbation of a system initially in equilibrium, which means that Sv(r',z,) # 0
only for 7> 0, and we can therefore ignore the integral along the imaginary track
of the time-contour. The contour integral then consists of two parts: 1) First an
integral from ¢'=0 to ¢'=¢, in which y = y~, and 2) an integral from ¢'=0to
t=0, where y=y~. Writing out the contour integral in (14) explicitly then
gives on(r,t) = L: dt 'J dr' y* (rt;r't"ov(r't") . The response to a perturbing field is
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therefore given by the retarded response function, while y(1,2) defined on the
contour is symmetric in (1 < 2).

If we now consider a system of non-interacting electrons in some external
potential v, , we can similarly define a non-interacting action-functional 4 . The

steps above can be repeated to calculate the non-interacting response function. The
derivation is straightforward, and gives
5% An(l
r.1,2)= _oAn®) =-iG,(1;2)G,(%1), (16)
T o)

were G, is non-interactive Green function.

Having defined the action functional for both the interacting and the non-
interacting systems, we now make a Legendre transform, and define

Al == A1+ [ dDn(v(),
which has the property that 6 A[n]/dn(l) =v(1). Similarly, we define the action

function A4 [n] with property 64 [n]/on(l) = v, (1) . The Legendre transforms assume

the existence of a one-to-one correspondence between the density and the potential.
From these action functionals, we now define the exchange-correlation part to be

A [n]=A[n]- A[n]—_jd(12)5( z, 2)7|’l(1)n(2)

1 2 |
Taking the functional derivative with respect to the density gives
v [#]D) =v(D)+v,D+v, [#n](l), where v,(1) is the Hartree potential and
v, =04,/0n(l). Again, for time-arguments on the real axis, these potentials are
independent of whether the time is on the positive or the negative branch. If we,
however, want to calculate the response function from the action functional, then it
is indeed important which part of the contour the time-arguments are located on.
We already described how to define response function on the contour, both in
the interacting (15) and the non-interacting (16) case. Given the exact Kohn-Sham
potential, the TDDFT response function should give exactly the same density

change as the exact response function ov, (1) = Jd(2) ¥.(;2)0v,(2) . The change in
the Kohn-Sharm potential is given by
ZR(I’l Sishysty) = Zf(rl A, th)+ J.dt3dt4dr3dr4;(f(’1 J373.1)

><fSR(r3,t3;r4,t4))(R(V4,t4;rz,l‘2).
The time-integrals in the last expression go from 0 to oo . As expected, only the
retarded functions are involved in this expression. We stress the important result
that while the function £}, (1,2) is symmetric under the coordinate permutation

(1<>2, it is the retarded function f (rn,t;r,t,)=0(t.t)/|r-r| +
+fX(n,t;1,,1,) , which the response to a perturbing potential.
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BUKOPUCTAHHA 'EHETUYHUX AJI'OPUTMIB JJI5 BUSBJIEHSA
BTOPI'HEHHS B KOMII'IOTEPHI MEPEXIT

This paper describes how it is possible to apply Genetic Algorithm in Intrusion
Detection Systems. A brief overview of the Intrusion Detection System, genetic
algorithm, and related detection techniques is presented. Compare with other
implementations of the same problem, this implementation considers both temporal
and spatial information of network connections in encoding the network connection
information into rules in IDS. The main system architecture and diagram of GA are
shown.

Beryn

I'eHeTHUYHI aXrOpUTMH IMIMPOKO 3aCTOCOBYIOTHCSI B CHCTEMAaxX BHSBICHHA
BTOprHEHHs. ['€HeTHYHI aNrOpUTMH BHKOPUCTOBYIOTHCS IJISI CTBOPEHHS IPaBHII
NOBE/IIHKM CUCTEMH B pa3i BTOprHEHHs. MepexHe 3’€JHaHHs Ta HOoro xapakrep
MOYKHa MPEACTABUTH TakK, MO0 y BIAMOBIIHICTH HOMY MOXJIHMBO OYyJO HOCTaBUTH
MPaBWJIO ISl TIPUHHSATTS PIMIEHHS INPO T€ PO3LIHIOBATH JaHe 3’€IHAHHS SK
BTOprHeHHs abo Hi. Lli mpaBuiIM MOIEINIOIOTHCS IK XPOMOCOMHM TI€BHOI IOITYJISIIIIT.
[omymsinist mepedyBae B PO3BUTKY IO THX Iip HOKM BOHA He Oyzae 3aJ0BOJIGHITH
BCTaHOBJIEHUM KputepisiM. ChopMOBaHi NMpaBUIN BHKOPUCTOBYIOTHCS CHCTEMOIO
UIA TPUAHSATTS pIlIEHHS Tpo XapakTep 3’e€qHaHHA ( BTOpPrHEHHsA abo Hi).
'eHeTHYHI anTOpUTM HE € CAMOCTIHHOIO CHCTEMOIO OE3MEeKH, a SBIAIOTH CO00I0
MexaHi3M (OpMyBaHHS TpaBWJI Ui BHKOPHCTAaHHI B cucTemax Oesmexu [1-3].
OcTtaHHIM YacoM HaHOUTBII JOCTIKYBaHOIO c(heporo KOMIT IOTepHOi Oe3reKu €
CHCTEMH BHSBJICHHS BTOPTrHEHHs. LIsi TeXHOOT s BUSIBICHHS BUKOPHCTOBYETHCS SIK
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