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THE KELDYSH FORMALISM IN THE TIME-DEPENDENT 
 DENSITY-FUNCTIONAL THEORY 

 
We have considered application the Keldysh formalism in time-dependent 

density functional theory. It is shown that effects of electron-electron interaction can 
be taken systematically into account in the framework of the Kadanoff-Baym 
equations for Green functions determined on the Keldysh contour for the second-order 



47 

self-energy approximation. With the help of these Green functions we have derived 
the time-dependent Kohn-Sham potential from an action functional. The Keldysh 
formalism in a similar way leads to response functions that obey the causality 
principle that is illustrated on the case of the time-dependent optimized effective 
potential equations. 

 
1. Introduction 

We will consider the Keldysh formalism [1], which is an extremely useful 
tool for firstprinciples studies of nonequilibrium many-particle systems. Of 
particular interest to time-dependent density functional theory (TDDFT) is the 
relation to non-equilibrium Green functions (NEGF), which allows to construct 
exchange-correlation potentials with memory by the variational derivative method 
[2]. For many problems, such as, e.g., quantum transport or atoms in intense laser 
pulses, one needs exchange-correlation functionals with memory, and Green 
function techniques offer a systematic method for developing these.  

The Keldysh formalism is also necessary for defining response functions in 
TDDFT and for defining an action functional needed for deriving TDDFT from a 
variational principle. The formalism does not differ much from ordinary 
equilibrium theory, the main difference being that all time-dependent functions are 
definied for time-arguments on a contour, known as the Keldysh contour. 

The Green function, ( , ; ' ')G r t r t  is a function of two space- and time-
coordinates, and is obviously more complicated than the one-particle 
density ( , )n r t , which is the main ingredient in TDDFT. However, the advantage of 
the NEGF methods is that we can systematically improve the approximations by 
taking into account particular physical processes. The Green function provides us 
directly with all expectation values of one-body operators (such as the density and 
the current), and also the total energy, ionization potentials, response functions, 
spectral functions, etc. In relation to TDDFT, this is useful not only for developing 
orbital functional and exchange-correlation functionals with memory, but also for 
providing insight in the exact properties of the non-interacting Kohn-Sham system 
[5,6]. 

In the following, we shall focus on systems that are initially in thermal 
equilibrium. We will start by introducing the Keldysh contour and the 
nonequilbrium Green functions, and then explain how to combine and manipulate 
functions with time variables on the contour. While we in TDDFT take exchange- 
and correlation-effects into account through ( )xcv n , the corresponding quantity in 
Green function theory is the self-energy ( )G� . Just like ( )xcv n , the self-energy 
functional must be approximated. For a given functional ( )G� , it is important that 
the resulting observables obey the macroscopic conservation laws, such as, e.g., the 
continuity equation. These approximations are known as conserving, and will be 
discussed briefly. In the last part of this section we will discuss the applications of 
the Keldysh formalism in TDDFT, including the relation between �  and xcv , the 
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derivation of the Kohn-Sham equations from an action functional, and the 
derivation of an xcf  functional. As an illustrative example, we will discuss the 
time-dependent exchange only optimized effective potential approximation. 

In quantum mechanics we associate with any observable quantity O  a 
hermitean operator O  . The expectation value 0{ }Sp O�  gives the value of O when 
the system is described by the density operator �  and the trace denotes a sum over 
a complete set of states in Hilbert space. For an isolated system the Hamiltonian 

0H does not depend on time, and the expectation value of any observable quantity 
is constant, provided 0, 0[ ] 0H� � . In these notes we want to discuss how to 
describe systems that are isolated for times 0t � , such that 0( 0)H t H� � , but 
disturbed by an external time-dependent field at 0t � . The expectation value of O  
at 0t �  is then given by the average on the initial density operator 0�   of the 
operator O  in the Heisenberg representation, 

� �0 0( ) { ( )} (0, ) ( ,0)H HO t Sp O t Sp S t O S t� �� � ,                   (1) 
where the operator in the Heisenberg picture has a time-dependence according to 

( ) (0, ) ( ,0)HO t S t OS t� . The evolution operator ( , ')S t t  is the solution of the 
equations  

( , ') ( ) ( , '), ( , ') ( , ') ( '),
'

d di S t t H t S t t i S t t S t t H t
dt dt

� � 	  

with boundary condition  S(t,t)=1, and which can be formally written as  

1 1 1 1
' '

( , ') ( , ') exp ( ) ( ', ) exp ( ) .
t t

t t

S t t t t T i dt H t t t T i dt H t
 

� � � �

� 	 
 	� � � �
� � � �
� �  

where the function ( , ')t t
  is defined to be 1 if t  is later than 't ; T is the time-
ordering operator that rearranges the operators in chronological order with later 
times to the left; T is the anti-chronological time-ordering operator. The evolution 
operator satisfies the group property 1 1( ; ) ( ; ') ( : ')S t t S t t S t t� for any 1t . Notice that 
if the Hamiltonian is time-independent in the interval between t and tR, then the 
evolution operator becomes � �( ; ') exp ( ')S t t iH t t� 	 	 . If we now let the system be 
initially in thermal equilibrium, with an inverse temperature 1/ Bk T� �  and 
chemical potential � , the initial density matrix is 

� � � �0 0 0exp ( ) / ( )H N Sp H N� � � � �� 	 	 	 	 .  Inserting this expression in (1), we 
find 

� �
� �

Sp exp( ) ( ) (0; ) ( ;0)
( )

Sp exp( ) ( )
N S i S t OS t

O t
N S i

�� ��
�� ��
	

�
	

.                      (2) 

Reading the arguments in the numerator from the right to the left, we see that we 
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can design a time-contour � �with a forward branch going from 0 to t , a backward 
branch coming back from t �and ending in 0, and a branch along the imaginary 
time-axis from 0 to .i�	   This contour is illustrated in Fig. 1.  

 
Fig. 1. The Keldysh contour, starting at 0t � , and ending at t i�� 	 , with t  on 
the backward branch and t R on the forward branch. By definition, any point lying 
on the vertical track is later than a point lying on the forward or backward branch. 
 

Note that the group property of S means that we are free to extend this contour up 
to infinity. We can now generalize (2), and let ��be a time-contour variable on � . 
Letting the variable z �run along this same contour, (2) can be formally recast as 

Sp exp( ) exp ( ) ( )

( )

Sp exp( ) exp ( )

C

C

N T i dzH z O z

O z

N T i dzH z

�

�

��

��

� �� �� �	� �� �� �� �� �� ��
� �� �� �	� �� �� �� �� �� �

�

�
                 (3) 

The contour ordering operator CT  moves the operators with “later” contour 
variable to the left. In (3), ( )O z is not the operator in the Heisenberg representation 
(the latter is denoted with ( )HO t ). The contour-time argument in O  is there only 
to specify the position of the operator O  on � . A point on the real axis can be 
either on the forward (we denote these points t	 , or on the backward branch 
(denoted t
 ), and a point which is earlier in real time, can therefore be later on the 
contour, as illustrated in Fig. 1.  

To summarize, in (5) the variable z lies on the contour � ; the r.h.s. gives the 
time-dependent statistical average of the observable O  when z  lies on the forward 
or backward branch, and the statistical average before the system is disturbed when 
z  lies on the vertical track. 

 
2. NONEQUILIBRIUM GREEN FUNCTIONS 

We now introduce the nonequilibrium Green function (NEGF), which is a 
function of two contour time-variables. In order to keep the notation as light as 
possible, we here discard the spin degree of freedom; the spin index may be 
restored later as needed. The field operators ( )r� ,  ( )r� 
  destroy and create an 
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electron in r r and obey the anticommutation relations [ ( ), ( )] ( ')r r r r� �  
 � 	 . 
We write the Hamiltonian ( )H t  as the sum of a quadratic term 

    ( ) ' ( ) | ( )} ' ( ')h t drdr r r h t r r� �
 
� � ��                              (4) 
and  the interaction operator  

1( ) ' ( ) ( ') | ( , ')} ( ') ( )
2inH t drdr r r r r r r r� � ! � �
 
� �� .             (5) 

Here, when describing electrons in electro-magnetic field, the quadratic term is 
given by � �2| ( ) | ' ( ') [ / ( , )] / 2 ( , ) .r h t r r r i A r t v r t � �� 	 " 
 
  

The definition of an expectation value in (3) can be generalized to the 
expectation value of two operators. Then Green function is defined as 

 
( , ; ', ') ( , ) ( ', ')C H HG r z r z i T r z r z� � 
� 	 , 

where the contour variable in the field operators specifies the position in the 
contour ordering. The operators have a time-dependence according to the 
definition of the Heisenberg picture, e.g. ( , ) (0; ) ( ) ( ;0)H r z S z r S z� � 
� .  The 
Green function can be written  

( ; ') ( , ') ( ; ') ( ', ) ( ; ').G z z z z G z z z z G z z
 
� �� 
                      (6) 
From the definition of the time-dependent expectation value in Eq. (2), it follows 
that the greater Green function ( , ')G z z� ), where z  is later on the contour than 'z  
is 

� �
� �� �

Sp exp( ) ( ;0) ( , ) ( ', ')1( , ; ', ')
Sp exp ) ( )

H HN S i r z r z
G r z r z

i N S i

�� � � �

�� ��



�

	
�

	
 .      (7) 

If 'z R is later on the contour than z , then the Green function equals 
� �

� �� �
Sp exp( ) ( ;0) ( ', ') ( , )1( , ; ', ')

Sp exp ) ( )
H HN S i r z r z

G r z r z
i N S i

�� � � �

�� ��



�

	
� 	

	
.         (8) 

The extra minus sign on the right hand side comes from the contour ordering. 
More generally, rearranging the field operators �  and � 
  (later arguments to the 
left), we also have to multiply by P( 1)	  , where P is the parity of the permutation. 
From the definition of the Green function, it is easily seen that the electron density, 

( , ) ( , ) ( , )H Hn r z r z r z� �
�� �  and current is obtained according to 

'

( , ) ( , ; , ),

'( , ) ( , ) ( , ; ', ') .
2 2 z z

n r z G r z r z

j r z i A r z G r z r z
i i 





�

� 	

� " " �# $� 	 	 
� �% &' (� �

 

where z
   indicates that this time-argument is infinitesimally later on the contour. 
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The Green function ( ; ')G z z obeys an important cyclic relation on the 
Keldysh contour. Choosing 0z 	� , which is the earliest time on the contour, we 
find (0 ; ') (0; ')G z G z�

	 � , given by (8) with ( ,0) ( )H Hr r� �� . Inside the trace we 
can move ( )r�  to the left. Furthermore, we can exchange the position of ( )r�  
and exp( )N�� by noting that ( ) exp( ) exp( ( 1))r N N� �� ��� 
  ( )r�) . Using the 
group identity ( ;0) (0; ) 1S i S i� �	 	 � , we obtain  

� �
� �� �

� �
� �� �

Sp ( )exp( ) ( ;0) ( ', ')1( ,0; ', ')
Sp exp ) ( ;0)

Sp exp( ) ( ;0) ( , ) ( ', ')exp( ) .
Sp exp ) ( ;0)

H H

H H

r N S i r z
G r r z

i N S i

N S i r i r z

i N S i

� �� � �

�� �

�� � � � ���
�� �







	
� 	 �

	

	 		
�

	

 

The r.h.s. equals exp( ) | ( ; ' | ') .r G i z r�� �	 	 � 	 � Together with similar analysis 
for ( ;0 )G z 	 , we include that (0 ; ') exp( ) ( ; ')G z G i z�� �	 � 	 	 . These equation 
constitute the so called Kubo-Martin-Schvinger (KMS) conditions [3,4]). It is 
easily seen that ( ; ) ( ; ) 1G z z G z z i� �� 	 .  
 

3. RELATIONS FOR KELDYSH FUNCTIONS 
The Green function belongs to a larger class of functions of two time-contour 

variables that we will refer to as Keldysh space. These functions can be written on 
the form  

       ( ; ') ( , ') ( ) ( , ') ( , ') ( ', ) ( , ')k z z z z k z z z k z z z z k z z  
 
� �� 
 
 ,           (9) 
where the  -function on the contour is defined as ( , ') ( , ') /z z d z z dz 
� . These 
functions are somewhat complicated due to the fact that each of the time-
arguments can be located on three different branches of the contour � .  Below we 
systematically derive a set of identities that are commonly used for dealing with 
such functions and will be used extensively in the following sections.  

For any ( ; ')k z z in the Keldysh space we define the greater and lesser 
functions on the physical time axis '( ; ') ( ; )k t t k t t�


 	* and '( ; ') ( ; )k t t k t t�
	 
* .  

We also define the following two-point functions with one argument t  on the 
physical time axis and the other +  on the vertical track | ( ; ') ( ; )k t t k t +	

,* and 
| |( ; ') ( ; )k t t k t+

		

,* . In the definition of |k
	

 and |k
	

 we can arbitrarily choose 
t
 + or t	  since +  is later than both of them. The symbols “ |	 ” and “ |	 ” have been 
chosen in order to help the visualization of the time arguments. For instance, “$” 
has a horizontal segment followed by a vertical one; correspondingly, |k

	

 has a 
first argument which is real (and thus lies on the horizontal axis) and a second 
argument which is imaginary (and thus lies on the vertical axis). We will also use 
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the convention of denoting the real time with latin letters and the imaginary time 
with greek letters. 

The above mentioned k -functions obey the relations 
' '

| |

( , ') ( , ), ( , ') ( , ),

( , ') ( ') ( ) ( ')[ ( , ') ( , ')],
( , ') ( ') ( ) ( ' )[ ( , ') ( , ')],

( ; ) ( ; ), ( ; ) ( ; ),

( ; ') ( ; ' '),

R

A

M

k t t k t t k t t k t t
k t t t t k t t t k t t k t t
k t t t t k t t t k t t k t t

k t k t k t k t
k k z z

 

 

 


 


+ + + +

+ + + +

	 	

� �

 	 	 


� �

� �

, ,

� �

� 	 
 	 	

� 	 	 	 	

* *

� � �

 

which occur also for the mentioned Green functions. 
It is straightforward to show that if ( ; ')a z z  and ( ; ')b z z belong to the 

Keldysh space, then 
        1 1 1( ; ') ( ; ) ( ; ')c z z dz a z z b z z

�

� �                                (10) 

also belongs to the Keldysh space. Such contour integrals is contained in equations 
for the Green functions. Therefore we will consider its calculation. If we write out 
the contour integral in (10) in detail, we see with the help of Fig. 1, that the integral 
consists of four main parts. First, we must integrate along the real axis from 

1 0z 	�  to '
1z t	� , for which a a��  and b b�� . Then, the integral goes from 

'
1z t	� to 1z t
� , where a a��  and b b�� . The third part of the integral goes 

along the real axis from 1z t
�  to 1 0z 
� , with a a��  and b b�� . The last 

integral is along the imaginary track, from 0
  to i�	 , where |a a
	

�  and |b b
	

� . 
In addition, we have the contribution from the singular parts, a  and b , which is 
trivial since these integrals involve a ^-function. With these specifications, we can 
drop the , -subscripts on the time-arguments and write 

� �
'

1 1 1
0

| |
1 1 1 1 1 1 1 1 1

' '

( ; ') ( , ') ' ( ) ( , ') ( , ) ( , ')

( , ) ( , ') ( , ) ( , ') ( , ) ( , ').

t

t o t

t t t

c t t a t t b t a t b t t dt a t t b t t

dt a t t b t t dt a t t b t t d a t b t

  

+ + +
	 	

� � � � �

� � � �

� 
 



 
 


�

� � �
 

The second integral on the r.h.s. is an ordinary integral on the real axis of two 
well defined functions and may be rewritten as 

     
0 '

1 1 1 1 1 1 1 1 1
' ' 0 '

( , ) ( , ') ( , ) ( , ') ( , ) ( , ')
t t

t t

dt a t t b t t dt a t t b t t dt a t t b t t� � � � � �� 
� � �  

Using this relation, the expression for c�  becomes   

 
� �

'

1 1 1
0

| |
1 1 1 1 1 1 1 1

0 0

( ; ') ( , ') ' ( ) ( , ') ( , )[ ( , ')

( , ')] [ ( , ) ( , )] ( , ') ( , ) ( , ').

t

it

c t t a t t b t a t b t t dt a t t b t t

b t t dt a t t a t t b t t d a t b t

  

�

+ + +
	 	

� � � � �

	
� � � �

� 
 


	 
 	 


�

� �
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Taking into account into account above entered  retarded and advanced functions 
Next, we introduce two other functions on the physical time axis 

( , ') ( ') ( ) ( ')[ ( , ') ( , ')],
( , ') ( ') ( ) ( ' )[ ( , ') ( , ')],

R

A

k t t t t k t t t k t t k t t
k t t t t k t t t k t t k t t

 

 

 


 


� �

� �

� 	 
 	 	

� 	 	 	 	
 

We can rewrite the function c�  in a more compact form 

 
� � 1 1 1

0

| |
1 1 1 1 1

0

( ; ') ( , ') ' ( ) ( , ') [ ( , ) ( , ')

( ; ) ( , ')] ( , ) ( , ').

A

i
R

c t t a t t b t a t b t t dt a t t b t t

a t t b t t d a t b t

  

�

+ + +
	 	

-
� � � �

	
�

� 
 



 


�

�
 

Introducing a short hand notation for integral along the physical time axis and for 
those between 0 and i�	 , namely 

0
( ) ( )f g dtf t g t

-
. * � and 

0
( ) ( )

i
f g d f g

�
+ + +

	
/ * � , 

we obtain 
| |*A Rc a b a b a b

	 	� � �� 
 
  
Similarly, one can prove that 

 
| |

| | | | | | | | |

* , , ,

, ,

A R R R R A A A

R M A M

c a b a b a b c a b c a b

c a b a b c a b a b

	 	

	 	 	 	 	 	

� � �� 
 
 � . � .

� . 
 / � . 
 /
 

were ( ; ') ( ; ' ')Mk k z z+ + + +� � � .  
 

4. THE KADANOFF-BAYM EQUATIONS 
The Green function, as defined in (6), satisfies the equation of motion 
 

1 1 1

1 1 1

( ; ') 1 ( , ') ( ) ( , ') ( , ) ( '),

( ; ') 1 ( , ') ( , ') ( ') ( ; ) ( , ').
'

di G z z z z h z G z z dz z z G z z
dz

di G z z z z G z z h z dz G z z z z
dz

�

�

 

 

� 
 
 �

	 � 
 
 �

�

�
 

The external potential is included in h , while the self-energy � _ is a functional of 
the Green function, and describes the effects of the electron interaction. The self-
energy belongs to Keldysh space and can therefore be written on the form 

( , ') ( , ') ( ) ( , ') ( ) ( ', ) ( )z z z z z z z z z z z  
 
� �� � � 
 � 
 � . The singular part of the self-
energy can be identified as the Hartree–Fock potential, ( ) ( ) ( ).H xz U z z � � 
 �  
The self-energy obeys the same anti-periodic boundary conditions at 0z 	�  and 
z i�� 	  as G . We will discuss self-energy approximations in more detail below. 
Calculating the Green function on the time-contour now consists of two steps: 1) 
First one has to find the Green function for imaginary times, which is equivalent to 
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finding the equilibrium Matzubara Green function ( ; ')MG + + . This Green function 
depends only on the difference between the time-coordinates, and satisfies the 
KMS boundary conditions according to ( , ') ( , ')M N MG i e G��+ � + + +
 � 	 . Since the 
self-energy depends on the Green function, this amounts to solving the finite-
temperature Dyson equation to self-consistency. 2) The Green function with one or 
two time-variables on the real axis can now be found by propagating according to 
the above mentioned equations of motion. Starting from 0t � , this procedure 
corresponds to extending the time-contour along the real time-axis. The process is 
illustrated in Fig. 2. Writing out the equations for the components of G using the 
above mentioned relations for Keldysh functions, we obtain the equations known 
as the Kadanoff-Baym equations [2], 

| |

| | |

|

( ; ') ( ) ( , ') ( , ')

( , ') ( , '), (11)

( , ) ( ) ( , ) ( , )

( , ). (12)

R

A

R

M

di G z z h t G t t G t t
dz

G t t G t t

di G t h t G t G t
dt

G t

+ + +

+

	 	

	 	 	

	

� � �
� � �

�
�

# $
� 
 � .% &

' (
# $ # $
 � . 
 � .% & ' (' (

# $� 
 � .' (

# $
 � .' (

 

It is easily seen that if we denote by T  the largest of the two time-arguments 

t  and 't , then the right hand side of (11) and (12) depend on 1 2( , )G t t
�
� , 

|
1 2( , )G t+

	

, |
1 2( , )G t +

	

  for 1t , 2t T0  . When propagating the Kadanoff-Baym 
equations one therefore starts at ' 0t t� � , with the initial conditions given by 

0(0,0) lim ( ,0)MG G i1 1�
2� 	 , | ( ,0) ( ,0)MG G+ +

	

� . One then calculates ( , ')G t t
�
�  

for time-arguments within the expanding square given by , 't t T0  . 

Simultaneously, one calculates | ( , )G t +
	

 and | ( , )G t+
	

 for t T0 . 
 

5. ACTION FUNCTIONAL AND TDDFT 
We defined the action as � �lnSp ( ;0)NA i e S i�� �� 	 , where the evolution 

operator S  is the same as defined above. The action functional is a tool for 
generating equations of motion, and is not interesting per se. Nevertheless, one 
should notice that the action lni Z , where Z  is the thermodynamic partition 
function. It is easy to show that if we make a perturbation ( )V z in the 
Hamiltonian, the change in the evolution operator is given by 

( ; ') ( ) ( ; ') ( ) ( ; ')di S z z V z S z z H z S z z
dt

  � 
                    (13) 



55 

A similar equation for the dependence on 'z , and the boundary condition 
( ; ') 0S z z �  gives 

1 1 1 1
'

( ; ') ( ; ) ( ) ( ; ').
z

z

S z z i dz S z z V z S z z  � 	 �                       (14) 

We stress that the time-coordinates are on a contour going from 0  to i�	 . The 

variation in, e.g., ( )V t
  is therefore independent of the variation in ( )V t	 �(� ). If 

we let ( ) ( , ) ( )V z dr v r z n r  � � , a combination of (13) and (14) yields  the 
expectation values of the density, 

� � � �

� �
� �

Sp ( ;0)
( , ) ( , )Sp ( ;0)

Sp ( ;0) (0; ) ( ) ( ;0)
( , ).

Sp ( ;0)

N
N

N

N

A i e S i
v r z v r ze S i

e S i S z n r S z
n r z

e S i

��
��

��

��

  �
  �

�

�

� 	
	

	
� �

	

 

A physical potential is the same on the positive and on the negative branch of 
the contour, and the same is true for the corresponding time-dependent density, 

( , ) ( , )n r t n r t,� . A density response function defined for time-arguments on the 
contour is found by taking the functional derivative of the density with respect to 
the external potential. Using the compact notation 1 11 ( , )r z� , the response 
function is written 

2(1)(1,2) (2,1).
(2) (1) (2)

n A
v v v

  3 3
   

� � �                          (15) 

This response function is symmetric in the space and time-contour coordinates. We 
again stress that the variations in the potentials at t+ and tj are independent. If, 
however, one uses this response function to calculate the density response to an 
actual physical perturbing electric field, we obtain 

( , ) ( , ) ' ' ( , ; ', ') ( ', '),n r t n r t dz dr r t r z v r z
�

  3  , ,� � � �                 (14) 

where �   indicates an integral along the contour. In this expression, the perturbing 
potential (as well as the induced density response) is independent of whether it is 
located on the positive or negative branch, i.e. '( ', ) ( ', ')v r t v r t  , � . We consider a 
perturbation of a system initially in equilibrium, which means that '( ', ) 0v r t , 4  
only for 0t � , and we can therefore ignore the integral along the imaginary track 
of the time-contour. The contour integral then consists of two parts: 1) First an 
integral from ' 0t �  to 't t� , in which 3 3 �� , and 2) an integral from ' 0t � to 

0t � , where 3 3�� . Writing out the contour integral in (14) explicitly then 

gives
0

( , ) ' ' ( ; ' ') ( ' ')
t Rn r t dt dr rt r t v r t 3  � � � . The response to a perturbing field is 
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therefore given by the retarded response function, while (1,2)3  defined on the 
contour  is symmetric in (1 ~ 2). 
 If we now consider a system of non-interacting electrons in some external 
potential sv , we can similarly define a non-interacting action-functional sA . The 
steps above can be repeated to calculate the non-interacting response function. The 
derivation is straightforward, and gives 

2 (1)
(1, 2) (1;2) (2;1)

(1) (2)
s

s s s
s s

A n
iG G

v v
 

3
  

� � 	 ,                 (16)  

were sG  is non-interactive Green function. 
 Having defined the action functional for both the interacting and the non-
interacting systems, we now make a Legendre transform, and define 

[ ] [ ] (1) (1) (1)A n A v d n v� 	 
 � , 

which has the property that [ ] / (1) (1)A n n v  � . Similarly, we define the action 
function [ ]sA n with property [ ] / (1) (1)s sA n n v  � . The Legendre transforms assume 
the existence of a one-to-one correspondence between the density and the potential. 
From these action functionals, we now define the exchange-correlation part to be 

1 2
1 2

1 (1) (2)[ ] [ ] [ ] (12) ( , )
2 | |xc s

n nA n A n A n d z z
r r

 � 	 	
	� . 

Taking the functional derivative with respect to the density gives 
[ ](1) (1) (1) [ ](1)s H scv n v v v n� 
 
 , where (1)Hv  is the Hartree potential and 

/ (1)xc xcv A n  � . Again, for time-arguments on the real axis, these potentials are 
independent of whether the time is on the positive or the negative branch. If we, 
however, want to calculate the response function from the action functional, then it 
is indeed important which part of the contour the time-arguments are located on.  

We already described how to define response function on the contour, both in 
the interacting (15) and the non-interacting (16) case. Given the exact Kohn-Sham 
potential, the TDDFT response function should give exactly the same density 
change as the exact response function (1) (2) (1;2) (2)s s sv d v 3  � � . The change in 
the Kohn-Sharm potential is given by 

1 1 2 2 1 1 2 2 3 4 3 4 1 1 3 3

3 3 4 4 4 4 2 2

( , ; , ) ( , ; , ) ( , ; , )

( , ; , ) ( , ; , ).

R R R
s s

R R
s

r t r t r t r t dt dt dr dr r t r t

f r t r t r t r t

3 3 3

3

� 


)

�  

The time-integrals in the last expression go from 0 to - . As expected, only the 
retarded functions are involved in this expression. We stress the important result 
that while the function (1,2)Hxcf  is symmetric under the coordinate permutation 
(1 25 , it is the retarded function 1 1 2 2 1 2 1 2( , ; , ) ( , ) / | |R

Hxcf r t r t t t r r � 	  + 

1 1 2 2( , ; , )R
xcf r t r t
 , which the response to a perturbing potential.  
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This paper describes how it is possible to apply Genetic Algorithm in Intrusion 

Detection Systems. A brief overview of the Intrusion Detection System, genetic 
algorithm, and related detection techniques is presented. Compare with other 
implementations of the same problem, this implementation considers both temporal 
and spatial information of network connections in encoding the network connection 
information into rules in IDS. The main system architecture and diagram of GA are 
shown.  
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