# Экспериментальные исследования

# The Experimental Researchers

УДК 616.617-207.271+612.46: 612.017

# МОДУЛЯЦИЯ ВОСПАЛЕНИЯ В ПОЧКЕ ПРИ ОБСТРУКЦИИ МОЧЕТОЧНИКА ПУТЕМ ИНГИБИРОВАНИЯ ЭФФЕКТОВ АНГИОТЕНЗИНА-II

# Баринов Э.Ф, Волошин В.В.

Донецкий государственный медицинский университет им. М.Горького

Впервые поступила в редакцию 14.11.2006 г. Рекомендована к печати на заседании ученого совета НИИ медицины транспорта (протокол № 7 от 18.11.2006 г.).

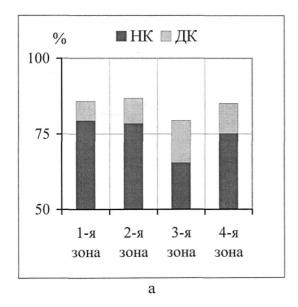
Патогенез постобструктивной нефропатии постоянно уточняется и пополняется новыми фактами [4]. Заслуживает внимания роль ангиотензина II (AT,,) в прогрессировании нефросклероза. Установлено, что избыточная продукция NO запускает каскад причинно-следственных взаимосвязей, поддерживающих хроническое воспаление и апоптоз клеток нефронов [7]. На основе этой концепции стали разрабатывать методы фармакологической коррекции, направленной на ингибирование эффектов АТ". Перспективным может оказаться использование селективных ингибиторов АТ,, позволяющих избежать накопления брадикинина [6]. Очевидно, что без разработки информативных методов морфологического анализа почки и критериев эффективности лечебного патоморфоза сложно оценить степень восстановления нефронов и, что более важно, проанализировать компенсаторные механизмы, развивающиеся внутри нефронов при изменении нагрузки на тот или иной каналец.

**Целью исследования** явилось изучение структуры нефронов на фоне введения Лозартана (селективный блокатор ангиотензиновых рецепторов І-типа) у животных с односторонней обструкцией мочеточника (ООМ).

#### Материал и методы.

Исследования выполнены на взрослых белых крысах-самцах линии Вистар весом 220 ± 25 г, которые находились в обменной клетке и имели свободный до-

ступ к воде и пище. Для изучения сенситивности АТ-рецепторов I-типа использовали тест in vitro с индуцированной агрегацией тромбоцитов путем их инкубации с ангиотензином II (AT<sub>||</sub>). На основании исследования 1C<sub>50</sub> ангиотензина II (ингибирующая концентрация АТ,, повышающая агрегацию тромбоцитов in vitro на 50 %) в эксперимент были отобраны животные со сниженной сенситивностью (гипореактивные, n = 20), для которых  $1C_{50}$  находилась в пределах  $1,30 \pm 0,10$  мкМ. Анестезию выполняли путем внутрибрюшинного введения 1 % раствора гексенала. После срединной лапаротомии рассекали стенку мочевого пузыря и через устье левого мочеточника в его просвет проводили ангиокатетер. Катетер проводили под кожей, свободный конец выводили на шею и присоединяли к пластиковой пробирке для сбора мочи. Брюшную стенку послойно ушивали. Через 2-е суток после операции катетер закрывали на 48 ч, что воспроизводило острое нарушение пассажа мочи. По истечению указанного срока восстанавливали отток мочи из левой почки. Лозартан добавляли в питьевую воду из расчета 10 мг/кг массы в день в течении двух недель.


Морфологическое исследование проводили через 7 дней, 1 и 3 месяца после ОММ. Полученные срезы толщиной 5 ± 1 мкм окрашивали гематоксилином и эозином, по методу Ван Гизона, а также ставили PAS-реакцию. Морфометрический анализ почек проводили в 4-х зонах почки по [5].

## Результаты и обсуждение.

Через 7 суток после введения Лозартана в строме почек встречались единичные инфильтраты, в составе которых преобладали моноциты-макрофаги. Уменьшалось количество почечных телец с пролиферацией мезангиальных клеток. Морфометрическое исследование подтверждает снижение альтерации нефронов. Если сравнить с контрольной группой животных (без введения Лозартана), то во всех исследованных зонах проявлялась тенденция к увеличению удельного объема канальцев с нормальной структурой; максимальный прирост выявлен в 3й и 4-й зонах (соответственно на 16,7 % и 17,9 %; р < 0,001), тогда как в 1-й и 2й зонах величина прироста данного показателя составила соответственно 4,2 % и 5,7 % (р < 0,05). Выявленная тенденция отражает перераспределение загрузки канальцев внутри нефрона при котором восстановление функции почечных канальцев сопровождается снижением загрузки и, следовательно, увеличением биосинтетических процессов в ТВЧПГ [3].

Удельный объем канальцев с нор-

мальным строением в 1-й (суперфициальные-кортикальные нефроны) и 2-й зонах (ЮМН) статистически значимо не отличался. Поскольку аналогичный результат имел место и в контрольной группе (в 1-й и 2-й зонах соответственно 79,3  $\pm$  1,1 % и 78,4  $\pm$  0,9 %; p > 0,1), то можно констатировать синхронность процессов восстановления функции ПК и ДК в разных группах нефронов. Что касается динамики внутринефронных изменений канальцев, то таковая различалась в суперфициальных-кортикальных и ЮМН. Удельный объем канальцев с нормальным строением в 1-й и 3-й зонах почки был примерно одинаковым на 7 сутки после устранения ООМ, тогда как в контрольной группе в этот срок наблюдения повреждение ТВЧПГ преобладало над таковым ПК и ДК. Для ЮМН крыс контрольной группы также было характерно преимущественное повреждение ТВЧПГ. При назначении Лозартана удельный объем канальцев с нормальным строением в 4-й зоне был выше, чем во 2-й зоне. Необходимо подчеркнуть, что в контрольной группе и у крыс с введением Ло-



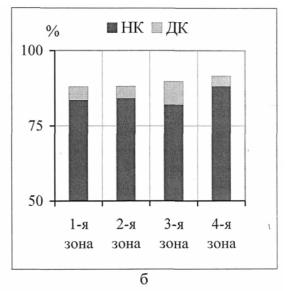



Рис. Количественные изменения почечных канальцев с нормальным строением (НК) и деструктивными измененями (ДК) на 7 сутки после устранения ООМ у крыс без коррекции (а) и с введением Лозартана (б). Примечание. По оси абсцисс — зоны органа,

по оси ординат — удельный зональный объем канальцев в %.

зартана распространенность альтерации ТВЧПГ в суперфициальных-кортикальных нефронах была более выраженной, чем в ЮМН (рис.). В этом контексте целесообразно сопоставить степень прироста удельного объема канальцев с нормальным строением в суперфициальных-кортикальных нефронах и ЮМН на 7 сутки после устранения ООМ (в 1-й зоне — на 4,2 %, в 3-й — на 16,7 %; во 2-й — на 5,7 % и в 4-й — на 17,9 %). Приведенный фактический материал свидетельствует об опережающем восстановлении ТВЧПГ по сравнению с ПИК и ДИК, причем в большей степени это характерно для ЮМН, которые принимают меньшее участие в поддержании водно-электролитного гомеостаза, чем суперфициальныекортикальные нефроны [1].

На 14 сутки после ООМ на фоне введения Лозартана в почке усиливалась позитивная динамика морфологических изменений. По сравнению с предыдущим сроком наблюдения прирост абсолютных значений удельного объема канальцев с нормальным строением, расположенных в корковом и мозговом веществе, был примерно одинаковым — 5-6% (p < 0,05), исключением являлась 3-я зона, где величина прироста показателя достигала 12,2 % (p < 0,01). В канальцах суперфициальных-кортикальных нефронов в равной степени встречались некротические и гидропические процессы. Удельный объем канальцев с признаками альтерации (некротические + гидропические изменения) заметно уменьшился по сравнению со сроком наблюдения 7 суток. Для суперфициальных-кортикальных нефронов этот регресс составил в 1-й зоне 8,56 % и 3-й зоне 10,93 % (p < 0,01), а для ЮМН во 2-й и 4-й зонах соответственно — 7,75 % и 4,69 % (р < 0,05).

При исследовании ЮМН был выявлен ряд интересных факторов. Во первых, как и на предыдущем сроке наблюдения альтерация ПК-ДК доминировала над таковой в ТВЧПГ: во 2-й зоне удельный объем канальцев с признаками альтерации составил 5,13 ± 0,15 % и в 4-й зоне

 $3,55 \pm 0,10 \%$  (p < 0,01). Для сравнения через 7 суток ООМ удельный объем канальцев с признаками альтерации составил во 2-й и 4-й зонах соответственно —  $12,88 \pm 0,29 \%$  и  $8,24 \pm 0,17 \%$  (p < 0,01). Следовательно, подтверждается факт большей резистентности ТВЧПГ относительно ПК-ДК юкстамедуллярных нефронов [2]. Во-вторых, если скорость репаративных процессов ПК-ДК суперфициальных-кортикальных и ЮМН совпадает (прирост удельного объема канальцев с нормальным строением за 7 суток составил 6 %), то в ТВЧПГ разных групп нефронов таковая различалась (прирост удельного объема канальцев с нормальным строением в ЮМН составил 5 %, тогда как в суперфициальных-кортикальных нефронах — 12,2 %). Более медленное восстановление ТВЧПГ юкстамедуллярных нефронов означает, что ПК имеют меньшую резервную компенсаторную мощность и даже при их восстановлении сохраняется высокая нагрузка на ТВЧПГ [1]. Необходимо подчеркнуть, что в поврежденных ЮМН выявлялась такая же картина (удельный объем канальцев с признаками альтерации уменьшился во 2-й зоне на 7,75 %, тогда как в 4-й -на 4,69 %). При сопоставлении ТВЧПГ, принадлежащих разным нефронам, установлено, что прирост удельного объема канальцев с нормальным строением за 7 суток составил в 3-й зоне 12,2 %, а в 4-й — 6,1 %. Сходная закономерность выявлялась и при анализе динамики альтерации: регресс в 3-й зоне по сравнению с предыдущим сроком наблюдения составил 10,93 % (р < 0.01), тогда как в 4-й -4,69 % (р < 0.05). Поскольку интенсивность репарации в 4й зоне, судя по удельному объему канальцев с признаками, регенерации, значительно больше, чем в 3-й зоне (соответственно  $3,35 \pm 0,15 \%$  и  $1,84 \pm 0,09 \%$ ), то приведенные факты укладываются в концепцию причинно-следственных взаимосвязей канальцев в нефроне.

Проведенные исследования подтверждают гипотезу о возможности сохранения у отдельных индивидуумов

структурных изменений в органах в отдаленные сроки после ООМ. Генетически обусловленная высокая резервная мощность ренин-ангиотензиновой системы (РАС), при которой происходит снижение хемосенситивности АТ-рецепторов в клетках-мишенях (гипореактивные крысы), в частности, клетках канальцев нефрона и моноцитах, регулирующих развитие и поддержание воспаления, может рассматриваться как фактор риска развития ренальных дисфункций после ООМ, что обосновывает применение с профилактической целью селективных блокаторов АТ-рецепторов І-типа [6]. Введение после ООМ Лозартана животным с высокой резервной мощностью РАС существенно ограничивало воспалительную реакцию в почке. Выявленная тенденция к восстановлению структурного гомеостаза в нефронах (уменьшение проявлений некроза и дистрофии), а также торможение активности воспалительного процесса в соединительной ткани органа (снижение степени выраженности нарушений микроциркуляции и миграции лейкоцитов) позволяют конкретизировать критерии эффективности лечения после ООМ.

# Вывод.

На фоне введения Лозартана скорость репаративных процессов ПК-ДК суперфициальных-кортикальных нефронов и ЮМН совпадает, что свидетельствует об участии АТ, в нарушении структуры корковых отделов всех групп нефронов. После устранения ООМ, вследствие восстановления функции ПК и разгрузки нижележащей ТВЧПГ, во всех нефронах проявляется опережающее восстановление ТВЧПГ по сравнению с ПК и ДК. Более медленная репарация ТВЧПГ ЮМН по сравнению с таковыми суперфициальных-кортикальных нефронов обусловлено низкой резервной компенсаторной мощностью ПК ЮМН, вследствие чего даже при их восстановлении сохраняется высокая нагрузка на ТВЧПГ.

#### Литература

- Баринов Э.Ф., Карасев И.В. Адаптационные реакции почек при различной реактивности организма // Травма. — 2004. — № 4. — С. 234-236.
- Баринов Э.Ф., Карасев И.В. Локализация повреждения в канальцах нефрона при термической травме кожи // Архив клин, и эксп. мед. — 2004. — Т. 13, № 1. — С. 111-114
- Cochrane A.L., Kett M.M., Samuel C.S., et al. Renal structural and functional repair in a mouse model of reversal of ureteral obstruction // J. Am. Soc. Nephrol — 2005. — Vol. 16, № 12 — P. 3623-3630.
- Docherty N.G., O'Sullivan O.E., Healy D.A., et al. Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction // Am. J. Physiol. Renal Physiol. 2006. Vol. 290, № I. P. F4-13.
- Pfaller W. Structure function correlation on rat kidney // Adv. Anat. Embryol. Cell Biol. — 1982. — Vol.70. — P. 176-194.
- 6. Schanstra J.P., Duchene J., Desmond L., et al. The protective effect of angiotensin converting enzyme inhibition in experimental renal fibrosis in mice is not mediated by bradykinin B2 receptor activation // Thromb. Haemost. 2003. Vol. 89, №4. P. 735-740.
- Valles P.O., Pascual L., Manucha W., et al. Role of endogenous nitric oxide in unilateral ureteropelvic junction obstruction in children // Kidney Int. 2003. Vol. 63, №3. -p. 1104-1115.

#### Резюме

МОДУЛЯЦІЯ ЗАПАЛЕННЯ В НИРЦІ ПРИ ОБСТРУКЦІЇ СЕЧОВОДУ ШЛЯХОМ ІНГИБІРУВАННЯ ЕФЕКТІВ АНГІОТЕНЗИНУ-ІІ

Баринов Е.Ф, Волошин В.В.

Метою дослідження з'явилося вивчення структури нефронів при односто-

ронній 48 год. обструкції сечоводу на фоні введення Лозартану (10 мг/кг маси) у 20 дорослих білих щурів-самців з пониженою сенситивністю рецепторів І-типа до ангіотензину II. Встановлено синхронне посилення репаративних процесів кіркових відділів всіх груп нефронів через 7 діб після усунення обструкції сечоводу. Інтенсифікація функції ниркових канальців виявляється випереджаючим відновленням ТВЧПГ; сповільнене відновлення ТВЧПГ (товстої висхідної частини петлі Генле) юкстамедуллярных нефронов в порівнянні з суперфіціальними-кортикальними нефронами обумовлено низькою резервною компенсаторною потужністю ниркових канальців юкстамедулярних нефронів.

#### Summary

MODULATION OF INFLAMMATION IN A KIDNEY AT OBSTRUCTION OF URETER BY INHIBITION OF ANGIOTENSIN-II EFFECTS

Barinov E.F, Voloshin V.V.

The aim of the work presented is to study nephron's structure at unilateral 48-hour obstruction of ureter on the background of Lozartan (10 mg/kg of mass) injections at 20 adult white male-rats with lower sensitivity of receptors of I type to angiotensin II. Synchronous strengthening of reparative processes of crust areas of all groups of nephrons in 7 days after the removal of ureter obstruction has been revealed.

Intensification of The renal canal functions shows up by passing ahead renewal of Thick ascending part of a Henle's loop; slow renewal of Thick ascending part of a Henle's loop juxtamedular nephrons on comparison with superficinal-cortical nephrons is conditioned by low reserve compensate power of The renal canal of juxtamedular nephrons

УДК 612.014.462.1

# ФУНКЦІОНАЛЬНИЙ НИРКОВИЙ РЕЗЕРВ ПРИ ХРОНІЧНИХ ТОКСИЧНИХ НЕФРОПАТІЯХ

Гоженко А.І., Котюжинська С.Г., Бурлака Н.І., Слученко О.М.

Одеський державний медичний університет

Впервые поступила в редакцию 10.10.2006 г. Рекомендована к печати на заседании ученого совета НИИ медицины транспорта (протокол № 7 от 18.11.2006 г.).

### Вступ

Відомо, що дихлорид ртуті (сулема) є важливим чинником, який викликає розвиток токсичної нефропатії. Давно встановлено, що тяжкість захворювання, або важкість пошкодження нирок пропорційна дозі — збільшення її величин до 0,4-0,5 мг/100 г маси тіла призводить до розвитку гострої ниркової недостатності, при якій основні порушення нирок зовні виявляються в класичній періодизації хвороби: олігурії, анурії та поліурії, які розвиваються протягом 5-7 днів [1, 2]. Між тим, не дивлячись на суттєві пошкодження нирок,

особливо проксимального відділу нефрону, що спостерігаються у гострому періоді захворювання, подальший розвиток ниркової патології не відслідковано [3, 4]. Метою нашої роботи було дослідити дійсний функціональний стан нирок з урахуванням їх резервних можливостей при сулемовій нефропатії, тобто в цілому дати більш точнішу картину наявного функціонально стану нирок.

#### Об'єкти та методи досліджень

Токсичну нефропатію у білих щурівсамців моделювали введенням внутрішньочеревно дихлориду ртуті у дозі 0,4