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Abstract

In the paper, we analyse challenges associated pathllel programming for common
networks of computers (NoCs) that are, unlike dddit parallel computer systems,
inherently heterogeneous and unreliable. This asialyesults in description of main
features of an ideal parallel program for NoCs. \leo outline some recent parallel
programming tools, which try and respond to soméhefchallenges.

1. Introduction

Local networks of computers (NoCs) are the mostroom and available parallel
architecture. Nowadays not only big businessesoaganisations but also practically any
medium or small one has several computers inteexiged in a local network.

In the most general case, a local network of coergutonsists of PCs, workstations,
shared memory multiprocessor (SMP) servers, andn edestributed memory
multiprocessor supercomputers and clusters inteexied via mixed network
equipment.

At a first glance, this architecture is very simileo the distributed memory
multiprocessor (also know as MPP) architectureelttke latter, it provides a number of
processors not sharing global main memory and daterected via a communication
network. Therefore, the most natural model of progfor NoCs is also a set of parallel
processes, each running on a separate processorusing message passing to
communicate with the others. That is, message massithe basic programming model
for this architecture.

Due to the similarity of MPPs and NoCs, it mightdxgected that NoCs be as widely
used for high performance parallel computing as BIRP reality, NoCs are practically
not used for parallel computing. The main reasdny the huge performance potential of
millions NoCs around the world is so poorly utitisas that parallel programming for
NoCs is much more difficult than parallel programmior MPPs.

The point is that unlike MPPs, which are designed manufactured specifically for
high performance parallel computing, a typical NisG naturally developed computer
system. A NoC is a general-purpose computer sysimch is developed incrementally,
for a relatively long time. As a result, NoCs ac¢ as nicely regular or balanced for high
performance computing as MPPs. On the contrarggidarity, heterogeneity, and
instability are their inherent features differetiig the architecture from the MPP
architecture. The very features make parallel @ogning for NoCs so difficult and
challenging.

There are three main sources of the difficultidse Tirst one is the heterogeneity of
processors. Generally speaking, in a NoC, diffenerticessors are of the different



architecture.

The second source is the communication networkf,iteéhich is typically not
designed for high performance parallel computing.

The third source is the multi-user nature of NOE#&loC is not a strongly centralized
computer system. It consists of relatively autonasnoomputers, each of which may be
used and administered independently by its usersloCs, different components are not
as strongly integrated and controlled as in MPPs.

In the paper we discuss the sources of difficulttesl analyse programming
challenges coming from each of the sources. Thadyais results in description of main
features of an ideal parallel program for NoCs. W& outline some recent parallel
programming tools, which try and respond to soméhefchallenges.

2. Heter ogeneity of processors

2.1. Different processor speeds

An immediate implication from the fact that a NoGes processors of different
architectures is that the processors run at diftespeeds. Let us see what happens when
a parallel application, which provides a good penfance while running on
homogeneous MPPs, runs on the cluster of heterogsem@ocessors.

A good parallel application for MPPs tries to ewedistribute computations over
available processors. This very distribution ensuifee maximal speedup on MPPs,
which consist of identical processors. On the elusf processors running at different
speeds, faster processors will quickly performrtipeirt of computations and wait for
slower ones at points of synchronisation. Thereftre total time of computations will
be determined by the time elapsed on the slowestepsor. In other words, when
executing parallel applications, which evenly dmite computations among available
processors, the heterogeneous cluster is equivedeat homogeneous cluster that is
composed of the same number but the slowest prasess

The following simple experiment, which has beerllyezarried out, corroborates the
statement. Two subnetworks of the same local nétwa@re used, each consisting of
four Sun workstations. The first subnetwork inclddéentical workstations of the same
model, and was thus homogeneous. The second oheledcworkstations of three
different models. Their relative speeds demonddratbile executing a LAPACK [1]
Cholesky factorisation routine were 1.9, 2.8, &a8¢d 7.1. As the slowest workstation
(relative performance 1.9) was shared by both etsstthe total power of the
heterogeneous cluster was almost twice that ofitimeogeneous one.

It might be expected that a parallel ScaLAPACK @2jolesky solver be executed on
the more powerful cluster almost twice as fastrathe weaker one. But in reality, it ran
practically at the same speed (~2% speedup 1&08x1800 dense matrix).

Thus, a good parallel application for a NoC mustrihute computations unevenly
taking into account the difference in processoredpd he faster processor is, the more
computations it must perform. Ideally, the volumk computation performed by a
processor should be proportional to its speed.
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Figure 1. Matrix-matrix multiplication with matrices A, B, and C unevenly
partitioned in one dimension. The area of the slice mapped to each processor
is proportional to its speed. The slices mapped onto a single processor are
shaded black. During execution, this processor requires all of matrix A (shown
shaded grey).

For example, a simple parallel algorithm implemegtmatrix operationC = Ax B
on ap-processor heterogeneous cluster, wierB are dense squamxn matrices, can
be summarized as follows:

n-1
« Each element; in Cis computed as; = Za,.k xh, .
k=0

* The A, B, andC matrices are identically partitioned inpovertical slices. There is
one-to-one mapping between these slices and theegsors. Each processor is
responsible for computing it slice.

» Because allC elements require the same amount of arithmeticadip@s, each
processor executes an amount of work proportianéhé number of elements that
are allocated to it, hence, proportional to theaarkits slice. Therefore, to balance
the load of the processors, the area of the slie@pp®d to each processor is
proportional to its speed (see Fig. 1).

* In order to compute elements of @sslice each processor requires all elements of
the A matrix. Therefore, during the execution of theoailfpm, each processor
receives fronp-1 other processors all elements of their slicesys grey in Fig.

1).

This heterogeneous parallel algorithm cannot bdempnted in HPF 1.1 [3], since
the latter provides no way to specify a heterogasedistribution of arrays across
abstract processors. But HPF 2.0 [4] addressesptbblem by extendingBLOCK
distribution with the ability to explicitly speciffhe size of each individual block
(GEN_BLOCHistribution).

For example, the following HPF program implemenhis above parallel algorithm to
multiply two dense squarg000x 10Q@atrices on a 4-processor heterogeneous cluster,
processors of which have relative speeds 2, 31 18:

PROGRAMHETEROGENEOUS
| NTEGER, DI MENSI ON(4), PARAMETER: M=(/100, 150, 250, 500/)
REAL, DI MENSI ON(1000,1000):: A, B, C
IHPF$ PROCESSORS p(4)
IHPF$ DISTRIBUTE (*, GEN_BLOCK(M)) ONTO p:: A, B, C
IHPF$ INDEPENDENT
DO J=1,1000
IHPF$ INDEPENDENT
DOI=1,1000
A(1,9)=1.0
B(1,J)=2.0
END DO
END DO
IHPF$ INDEPENDENT



DO J=1,1000
IHPF$ INDEPENDENT
DOI=1,1000
C(1,9)=0.0
DOK=1,1000
C(1,9)=C(1,9)+A(I,K)*B(K,J)
END DO
END DO
END DO
END

In this program, the “generalized” block distritarti GEN_BLOCKIs used to map
contiguous segments of arra&sB, andC of unequal sizes onto processors. The sizes of
the segments are specified by values of the uderedeinteger mapping arrayl one
value per target processor of the mapping. Thahesi-th element of the mapping array
specifies the size of the block to be stored oni4tieprocessor of the target processor
arrangemenp. The *’ in the DISTRIBUTE directive specifies that arrady B, andC are
not to be distributed along the first axis; thuseatire column is to be distributed as one
object. So, array elementd(;,1:100) , B(;,1:100) , and C(;,1:100) are
mapped onp(l) , A(;,101:250) , B(;,101:250) , and C(:;,101:250) are
mapped onp(2) , A(;,251:500) , B(:;,251:500) , and C(:,251:500) are
mapped orp(3) , andA(;,501:1000) , B(:,501:1000) , andC(:,501:1000)
are mapped op(4) .

That distribution of matrice&, B, andC across processors ensures that the area of the
vertical slice mapped to each processor is propuatito the speed of the processor. Note
that this is responsibility of the programmer t@loitly specify the exact distribution of
the arrays across processors. The specificatidrased on the knowledge of both the
parallel algorithm and the executing heterogenetuster.

HPF 2.0 also allows the programmer to distributee tarrays with the
REDISTRIBUTE directive, based on a mapping array whose valuescamputed at
runtime. This allows writing a more portable apation. But again, either the
programmer or a user of the application must eiplispecify the data distribution,
which ensures the best performance of this padicyarallel algorithm on each
particular heterogeneous cluster.

Apparently, the above algorithm can be implementedvPI [5] as well. The
corresponding MPI program will be not as simpleresHPF one because of much lower
level of the MPI's programming model. Actually, MR a programming tool of the
assembler level for message passing programmingreidre, practically all message
passing algorithms can be implemented in MPI.

Whatever programming tool is used to implementaheve parallel algorithm, one
can see that the efficiency of the correspondingliegtion strongly depends on the
accuracy of estimation of the relative speed otessors of the executing heterogeneous
cluster. Distribution of arrays and, hence, disttibn of computations across the
processors are fully determined by the estimatfaheir relative speed. If this estimation
is not accurate enough, the load of processors heilunbalanced, resulting in poorer
execution performance.

The problem of accurate estimation of the relatipeed of processors is not as easy
as it may look. Of course, if you consider two mesors, which only differ in clock rate,
it is not a problem to accurately estimate thelatree speed. The relative speed will be
the same for any application.

But if you consider processors of different arottikees, the situation changes
drastically. Everything in the processors may Hé&edknt: set of instructions, number of



instruction execution units, number of registetsycture of memory hierarchy, size of
each memory level, and so on, and so on. Theretbesprocessors may demonstrate
different relative speeds for different applicasorMoreover, processors of the same
architecture but different models or configuratiomay also demonstrate different
relative speeds on different applications.

Even different applications of the same narrow lasay be executed by two
different processors at significantly different attfe speeds. To avoid speculation,
consider the following experiment that has beenlyeearried out. Three slightly
different implementations of Cholesky factorisatioina 500x 500 matrix were used to
estimate the relative speed of a SPARCstation-5aa8BARCstation-20. Code

f or (k=0; k<500; k++) {
f or (i=k, Ikk=sqrt(a[K][K]); i<500; i++)
afi][k] /= IKk;
f or (j=k+1; j<500; j++)
f or (i=j; i<500; i++)
alil[i] -= alillk]*afi][k];

estimated their relative speed as 10:9, meanwbie c

f or (k=0; k<500; k++) {
f or (i=k, Ikk=sqrt(a[K][K]); i<500; i++)
afil[k] /= Ikk;
f or (i=k+1; i<500; i++)
f or (j=i; j<500; j++)
a[i](i] -= a[k]{il*a[k];

as 10:14. Routinaptof2 from the LAPACK package, solving the same problem,
estimated their relative speed as 10:10.

2.2. Heter ogeneity of machine arithmetic

As processors of a NoC may do floating-point argtimdifferently, there are special
challenges associated with writing numerical sofevan NoCs. Specifically, there are
two main issues potentially affecting the behaviotim numerical parallel application
running on a heterogeneous NoC.

Firstly, different processors do not guaranteesdnme storage representation and the
same results for operations on floating point nursbe

Secondly, if a floating-point number is communichtbetween processors, the
communication layer does not guarantee the exacsinittal of the floating-point value.
Normally, transferring a floating point number irhaterogeneous environment includes
two conversions of its binary representation: tepresentation of the number on the
sender site is first converted into a machine iedeent representation, which is then
converted into the representation for floating poiambers on the receiver site. The two
successive conversions may change the originaky#hat is, the value received by the
receiver may differ from the value sent by the send

To illustrate the potential problems, consider itegative solution of a system of
linear equations where the stopping criterion deparmpon the value of some functidn,
of the relative machine precisiorg,. A common definition of the relative machine
precision, or unit roundoff, is the smallest pastifloating point value,&, such that
fll+¢&)>1, where fl(x) is the floating point representation of The test for

convergence might well include a test of the form:
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1.

In a heterogeneous setting the valué wiay be different on different processors and
e andx, may depend upon data of different accuracies,tlansl one or more processes
may converge in a fewer number of iterations. lagiéee stopping criterion used by the
most accurate processor may never be satisfietl depends on data computed less
accurately by other processors. If the code costaommunication between processors
within an iteration, it may not complete if one pessor converges before the others. In a
heterogeneous environment, the only way to guagatéemination is to have one
processor make the convergence decision and brstatied decision.

i f (

< f(&)) got o converged;

Another problem is that overflow and underflow exoens may occur during
floating-point representation conversions, resgltma failure of the communication.

3. Ad hoc communication networ k

One can imagine a local network of heterogeneongpaters, whose communication
layer is almost as good as the communication layehe MPP architecture. Parallel
programming for such networks called in this bduterogeneous clustefaces no
specific communication-related challenges. Hetemeges clusters are normally
designed specifically for high performance disttédglicomputing.

At the same time, the topology and structure of ¢cbenmunication network in a
typical common local network of computers is detfeed by many different factors,
among which high performance computing is far adrayn being a primary one if
considered at all. The primary factors include shreicture of the organisation, the tasks
that are solved on computers of the NoC, the sgcuequirements, the construction
restrictions, the budget limitations, the qualifioa of technical personnel, etc.

An additional important factor is that the commuation network is constantly
developing rather than fixed once and forever. dé&eelopment is normally occasional
and incremental. Therefore, the structure of theroanication network reflects the
evolution of the organization rather than its catrgnapshot.

All the factors make the common communication nekwfar away from the ideal
MPP communication network, which is homogeneou$ wimmunication speedup and
bandwidth being balanced with the number and spépdocessors.

First of all, the common communication network etdrogeneous. The speed and
bandwidth of communication links between differguatirs of processors may differ
significantly.

Secondly, some of the communication links may bdowf speed and/or narrow
bandwidth.

This makes the problem of optimal distribution ofrgputations and communications
across a NoC much more difficult than across atetusf heterogeneous processors
interconnected with a homogeneous high-performasmamunication network. The

additional difficulty comes from the larger size thie problem, which is novD(n® ,)

wheren is the total number of processors (respectivalyjs the total number of inter-
processor communication links).

Apart from that, due to low performance of some gamication links, the optimal
distribution of computations and communications rbayacross some subnetwork of the
NoC, not across the entire NoC. This substant@thgnds the space of possible solutions
and increases the complexity of the distributioobem even further.



4. Multi-user decentralised computer system

Unlike MPPs, NoCs are not strongly centralized cotapsystems. A typical NoC
consists of relatively autonomous computers, eathwbich may be used and
administered independently by its users.

4.1. Unstable performance characteristics

The first implication from the multi-user decentsad nature of NoCs is that
computers, executing a parallel program, may be ated for other computations and
involved in other communications. In that case, kel performance of processors and
communication links can dynamically change depemdin the external computations
and communications.

Therefore, a good parallel program for a NoC muestsbnsitive to such dynamic
variations of its workload. In such a program, comagions and communications are
distributed across the NoC in accordance to theaagerformance at the moment of
execution of the program.

4.2. Higher probability of resource failures

Fault tolerance is not a primary problem for paladipplications running on MPPs.
The probability of unexpected resource failuresaincentralised dedicated parallel
computer system is quite small. But this probabitikaches much higher figures for
NoCs. Firstly, any single computer in a NoC may dwitched off or rebooted
unexpectedly for other users in the NoC. The sarag Inappen with any other resource
in the NoC.

Secondly, not all building elements of the commoaCNas well as interaction
between different elements are equally reliable.

These make fault tolerance a desirable featuredoallel applications that run on
NoCs; and the longer the execution time of the iagpbn is, the more important the
feature becomes.

The basic programming tool for distributed-memoayahlel architectures, MPI, does
not address the problem. The point is that a finldtrant parallel program assumes a
dynamic process model. Failure of one or other ggscof the program should not
necessarily lead to failure of the entire progrdime program may continue running even
after its set of processes has changed.

The MPI 1.1 process model is fully static. MPI 2i@es include some support for
dynamic process control, although this is limitedtihe creation of new MPI process
groups with separate communicators. These new gsesecannot be merged with
previously existing communicators to form intracoomtators needed for a seamless
single application model and are limited to a spledet of extended collective
communications.

To date, there is no industrial fault-tolerant ierpkentation of MPI. At the same time,
there are a few research versions of MPI suggesiiifigrent approaches to the problem
of fault-tolerant parallel programming.

The first approach to making MPI applications fatolerant is through the use of
check pointing and roll back. This approach is #ibprocesses of the MPI program will
flush their message queues to avoid in flight mgssaetting lost, and then they will all
synchronously checkpoint. At some later stage i amor occurs, the entire MPI
program will be rolled back to the last completeeckpoint and be re-started. This
approach needs the entire application to checkgymthronously, which, depending on
the application and its size, may become expensivierms of time (with potential



scaling problems).

The second approach is to use “spare” processesatbautilized when there is a
failure. For example, MPI-FT [6] supports severahster-slave models where all
communicators are built from grids that containdi®d processes. To avoid loss of
message data between the master and slaves, alhgessare copied to an observer
process, which can reproduce lost messages irnvdrg ef any failures. This system has
a high overhead for every message and considerabtaory needs for the observer
process for long running applications. This sysiemot a full checkpoint system in that
it assumes any data (or state) can be rebuilt usistgthe knowledge of any passed
messages, which might not be the case for non+detistic unstable solvers.

MPI-FT is an example of an implicit fault toleraktPl. Such implementations of
MPI do not extend MPI interface itself. No specitlesign is needed for application
using an implicit fault tolerant MPI. The systenkea full responsibility over fault
tolerant features of application. The drawbackhat tapproach is that the programmer
cannot control fault tolerant features of the aggilon and fine tune for better balance
between fault tolerance and performance as systesnapplication conditions may
dictate.

Unlike MPI-FT, FT-MPI [7] is an explicit fault tofance MPI, which extends
standard MPI's interface and semantics. An appticatusing FT-MPI has to be
specifically designed to take advantage of itstfenlérant features.

5. Summary of programming challenges

In summarizing challenges associated with pargtegramming for NoCs, let us
describe main features of an ideal parallel prognamming on a NoC.

Such a program distributes computations and comeations unevenly across
processors and communications links, taking intooant their actual performance
demonstrated during the execution of the code efgitogram. The distribution is not
static and may be different not only for differé&ddCs but also for different executions
of the program on the same NoC, depending on thklead of its elements. The
program may find profitable to involve in computets not all available computers. In
other words, the program must be efficiently pdeab

The program keeps running even if some resourcéseiexecuting network fail. In
the case of a resource failure, it is able to régare itself and resume computations
from some point in the past.

The program takes into account differences in nrecharithmetic on different
computers and avoids erroneous behaviour of thgrano that might be caused by the
differences.

6. Any response to the challenges?

Let us see how the challenges are responded. Wiesbutline how standard parallel
programming tools such as HPF and MPI addressititdighted challenges. Then, we
briefly introduce mpC, a dedicated programming leage designed specifically for
parallel computing on heterogeneous networks ofprders.

6.1. High Performance Fortran

As we have demonstrated in Section 2.1, HPF prevetme basic support for
programming heterogeneous algorithms. It allows ghegrammer to specify uneven
distribution of data across abstract HPF processors



At the same time, it is full responsibility of tipgogrammer to provide a code, which
analyses the implemented parallel algorithm andettecuting NoC, and calculates the
best distribution.

Another problem is that the HPF programmer cannflueénce the mapping of
abstract HPF processors to computers of the No@. ptBvides no language constructs
allowing the programmer to control better mappifighe® heterogeneous algorithms to
heterogeneous clusters. The HPF programmer shelyjdon some default mapping
provided by the HPF compiler. The mapping cannosdresitive to peculiarities of each
individual algorithm just because the HPF compifers no information about the
peculiarities. Therefore, to control the mappingd atake into account both the
peculiarities of the implemented parallel algoritiamd the peculiarities of the executing
heterogeneous environment, the HPF programmer nteedslditionally write a good
peace of quite complex code. HPF does not addnegsroblem of fault tolerance at all.

Actually the lack of means for advising the compilgbout the features of
implemented parallel algorithm that have a majopact on its execution time is the
general drawback of HPF, which makes the langu#é§eutt for compiling not only for
heterogeneous platforms but for MPPs as well.

To illustrate the associated difficulties, consittex following simple HPF program:

PROGRAMSIMPLE
REAL, DI MENSI ON(1000,1000):: A, B, C
IHPF$ PROCESSORS p(4,4)
IHPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO p:: A, B, C
IHPF$ INDEPENDENT
DO J=1,1000
IHPF$ INDEPENDENT
DOI=1,1000
A(1,9)=1.0
B(1,J)=2.0
END DO
END DO
IHPF$ INDEPENDENT
DO J=1,1000
IHPF$ INDEPENDENT
DOI=1,1000
C(1,9)=0.0
DOK=1,1000
C(1,9)=C(1,9)+A(I,K)*B(K,J)
END DO
END DO
END DO
END

The program implements matrix operatiGn= Ax B on a 16-processor MPP, where
A, B are dense squafd00x 100Qatrices. Figure 2 illustrates the implementedibar
algorithm.

The PROCESSORG@rective specifies a logicalx 4 grid of abstract processors,

TheDISTRIBUTE directive recommends the compiler to partitionnreatthe arrays
A, B, andC into equal-sized blocks along each of its dimemsichis will result in a4x 4
configuration of blocks each containingb0x  28@ments, one block per processor.
The corresponding blocks of arrays B, and C will be mapped to the same abstract
processor and, hence, to the same physical pracesso

Each of the foulNDEPENDENTdirectives in the program is applied td®loop
and advises the compiler that the loop does nay @ary dependences and therefore its
different iterations may be executed in parallel.
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Figure 4.3. Matrix-matrix multiplication with matrices A, B, and C evenly
partitioned in two dimensions. The blocks mapped onto a single processor
are shaded black. During execution, this processor requires corresponding
rows of matrix A and columns of matrix B (shown shaded grey).

Altogether the directives give the compiler enougfbrmation in order to generate a
target message-passing program. Additional infolomas given by a general HPF rule
saying that evaluation of an expression should édopmed on the processor, in the
memory of which its result will be stored.

Thus, a clever HPF compiler would be able to geres®MD message-passing code
like that:
PROGRAMSIMPLE

REAL, DI MENSI ON(250,250):: A, B, C
REAL, DI MENSI ON(250,1000):: Arows, Bcols

| NTEGER colcom, rowcom, col, row
| NTEGER rank, colrank, rowrank
| NTECER err

CALL MPI_INIT (ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank);
row = rank/4
col = rank-row*4
DO J=1,250
DO1=1,250
A(1,J)=1.0
B(l1,J)=2.0
END DO
END DO
CALL MPI_COMM_SPLIT(MPI_COMM_WORLD, row, rank, rowcom, err)
CALL MPI_COMM_SPLIT(MPI_COMM_WORLD, col, rank, colcom, err)
CALL MPI_ALLGATHER(A, 40000, MPI_REAL, Arows, 62500,
&MPI_REAL, rowcom, err)
CALL MPI_ALLGATHER(B, 40000, MPI_REAL, Bcols, 62500,
&MPI_REAL, colcom, err)

DO J=1,250
DO1=1,250
C(1,9)=0.0
ind1=1
ind2=J
DOK=1,1000
C(1,J)=C(1,J)+Arows(l,K)*Bcols(ind1,ind2)
| F(ind1.LT.250) THEN
ind1=ind1+1
ELSE
ind1=1
ind2=ind2+250
END | F
END DO
END DO
END DO

CALL MPI_COMM_FREE(rowcom, err)
CALL MPI_COMM_FREE(colcom, err)
CALL MPI_FINALIZE(err)



END

This code is in Fortran 77 with calls to MPI roa# It is supposed to be executed by
all 16 processes making up the parallel progranthBarocess locally contains one
250x 250 block of global array#, B, andC of the source HPF program. A logicék 4
process grid is formed from the 16 participatinggasses, and each process gets its
coordinatesrow andcol in the grid. In order to compute its block of tresulting
matrix C, the process needs blocks of ma&ikom its horizontal neighbours in thex 4
process grid, and blocks of mati from its vertical neighbours (see Figure 2). The
necessary communication is achieved by calls to kel_COMM_SPLIT and
MPI_ALLGATHERroutines.

The main specific optimisation performed by an HeRpiler is the minimization of
the cost of the inter-processor communication. Tisigiot a trivial problem. It needs
profound analysis of both the source code and #sewing MPP. HPF provides no
specific constructs or directives helping the cderpio solve the problem. This is one of
the reasons why HPF is considered a difficult lagguto compile.

For example, many real HPF compilers (i.e., the ADAR HPF compiler from
GMD) will translate the above HPF program into asesage-passing program, each
process of which sends its blocks of matrigesind B to all other processes. That
straightforward communication scheme guaranteets é¢hah process receives all the
elements of global arraysandB, it needs to compute its elements of global aGat
the same time, in many particular cases, includung, this universal scheme involves a
good deal of redundant communications, sendingraceliving data that are never used
in computation. The better a compiler is, the maceurate communication patterns it
generates to avoid redundant communications as msiglossible. The above message-
passing program, generated by an imaginary clevBF Hompiler, performs no
redundant communication. Each process of the pnogrands its blocks of matricés
andB only to 3 other processes, not to 15 as each gsaunfkethe straightforward program
does.

HPF does not address the problem of fault toleraned.
6.2. Message Passing I nterface

As a general-purpose message-passing tool of atsenebvel, MPI allows the
programmer to write efficiently portable programm fNoCs. At the same time, it
provides no specific support to facilitate suchgoemnming. It is responsibility of the
programmer to write all the code making the appilica efficiently portable among
NoCs. In other words, every time, when programmimgNoCs, a programmer must
solve the extremely difficult problem of portablgi@ency from scratch. Standard MPI
also does not address the problem of fault tolexanc

6.3. mpC and HMPI

An original approach to parallel computing on hegemeous networks that has been
proposed and implemented in the framework of th€ rignguage [8-9] and the HMPI
library [10] and their programming systems. In firikis approach can be summarised as
follows:

» The programmer provides the programming system wittmprehensive
information about the features of the implementadhjtel algorithm that have a
major impact on the execution time of this algormthin other words, the
programmer provides a detailed description of teefggmance model of this
algorithm.



* The programming system uses the provided informatito optimally map at
runtime this algorithm to the computers of the exig network. The quality
of this mapping strongly depends on the accuradfp@estimation of the actual
performance of the processors and communicatioks lidemonstrated at
runtime on the execution of this application. There, the mpC programming
system employs an advanced performance model efeadgeneous network of
computers, and the mpC language provides constrtitas allow the
programmer to update the parameters of this madehéime by tuning them to
the code of this particular application.

This approach to parallel computing on heterogesenetworks has proved its
efficiency. Many mpC and HMPI applications haverbdeveloped that efficiently solve
real-life problems on common heterogeneous netwalrkemputers.

The mpC language in its current form addresseshallchallenges associated with
writing efficiently portable programs for NoCs eptéor the fault tolerance.

The mpC parallel language allows the programmaetetine all main features of the
implemented parallel algorithm that can have anaichjpn the performance of execution
of the algorithm on a heterogeneous NoC. The featumclude the total number of
participating parallel processes, the total voluniecomputations to be performed on
each of the processes, the total volume of dabee tvansferred between each pair of the
processes, and how exactly the processes intemgicigdthe execution of the algorithm.
The mpC programming system uses that performanadgeihud the parallel algorithm
together with the model of the executing heterogaaenetwork to map the processes of
the parallel program to this network so as to enbatter execution time. The mapping is
executed at runtime; therefore its efficiency isatal for the total execution performance
of mpC applications. The model of a heterogene@wark and the mapping algorithm
are developed to keep balance between the accanacgfficiency.

To briefly introduce the mpC language, considemngC application simulating the
evolution of groups of bodies under the influen€éd&Newtonian gravitational attraction.
Since the magnitude of interaction between bodibs bff rapidly with distance, a single
equivalent body may approximate the effect of gdagroup of bodies. This allows us to
solve the problem in parallel. The parallel apglaa will use a few parallel processes,
each of which will update data characterizing agleingroup of bodies. Each process
holds attributes of all the bodies constituting tdoeresponding group as well as masses
and centres of gravity of other groups. The attebwcharacterizing a body include its
position, velocity and mass. The application withplement the following parallel
algorithm:

Initialisation of gal axy on host-process
Scattering groups of bodies over processes
Paral | el conmputing nasses of groups
I nterchangi ng the nmasses anong processes
while(l) {
Vi sual i zation of gal axy by host-process
Paral |l el conputing centers of gravity
I nterchangi ng the centers anmobng processes
Paral | el updating groups
Gat heri ng groups on host-process

}

It is assumed that at each iteration of the maop,Jmew coordinates of all bodies in
some fixed interval of time are calculated.

The core of the mpC application, implementing thewe algorithm, is the following
description of the performance model of this aldni:



nettype Galaxy(m, k, n[m]) {

coord I=m;

node { I>=0: bench*((n[1)/k)*(n[I]/k)); };
[ink{I>0: I engt h(Body)*n[I] [I]->[0]; };
par ent [0];

schene {

int i
par (i=0; i<m; i++) 100%%i];
par (i=1; i<m; i++) 100%%]i]->[0];
h
%

Informally, it looks like a description of an alestt network of processors, which
executes the algorithm, complemented by the ddgmmipof the workload of its
processors and communication links, and the desmmipf the scenario of interaction
between the abstract processors during the algortkecution.

The first line of the above definition introducéee thameGalaxy of the type of the
abstract mpC network and a list of parameters eggt scalar parametens andk and
vector parameten of m integers. Next line declares the coordinate systemwhich
abstract processors will be related. It introducesrdinate variablé ranging fromoO to
m-1.

Next line associates abstract processors withctiosdinate system and describes the
volumes of computation to be performed by each ha& processors. As a unit of
measurement, the volume of computation performesionye benchmark code is used. In
this particular case, it is assumed that the beackmode computes a single groupkof
bodies. It is also assumed thah element of the vector parameteris equal to the
number of bodies in the group computed by ittie abstract processor. The number of
operations to compute one group is proportionaht number of bodies in the group
squared. Therefore, the volume of computation topbdormed by thd-th virtual
processor isn{I]/k)> times bigger than the volume of computation penfed by the
benchmark code. This line just says it.

Next line specifies volumes of data Bodys to be transferred between the virtual
processors during execution of the algorithm. m@y says thai-th virtual processor
(i=1,...) will send attributes of all its bodies to thest-processor where they should be
visualized. Note, that this definition describesedteration of the main loop of the
algorithm, which is a quite good approximation hessapractically all computations and
communications concentrate in this loop. Thereftive total time of the execution of this
algorithm is approximately equal to the runningdiof a single iteration, multiplied by
the total number of iterations.

Finally, the scheme block describes how exactly virtual processorerautt during
execution of the algorithm. It says that first thié virtual processors perform in parallel
100 per cent of computations that should be perornand then all the processors,
except the host processor, send in parallel 10@getr of data that should be sent to the
host-processor.

The most principal fragments of the rest code if tmpC application are:

voi d [*] main( i nt [ host]argc, char **[ host]argv)

;I.'.estGroup[]:(*AIIGroups[O])[];
r econ Update_group(TestGroup, TestGroupSize) ;

{
net GalaxyNet(NofG, TestGroupSize, NofB) g;



The recon statement uses a call of the functidipdate Group with actual
parameterg estGroup and TestGroupSize to update the estimation of the performance
of the physical processors executing the applinafildie main part of the total volume of
computations performed by each virtual processsir fpils into execution of calls to the
function Update_Group. Therefore, the obtained estimation of performarafethe real
processors will be very close to their actual penfances shown while executing this
program.

Next line defines the abstract netwogk of type GalaxyNet with the actual
parameterdNofG — the actual number of groups of bodi€estGroupSize — the size of
the test group of bodies used in the benchmark,cadéNofB — an array ofNofG
elements containing actual numbers of bodies ingtioeips. The rest computations and
communication will be performed on this abstradivuek.

The mpC programming system maps virtual processbtse abstract networg to
real parallel processes constituting the runningalfgd program. While performing the
mapping, the programming system uses, on the omal, hine information about
configuration and performance of physical processord communication links of the
network of computers executing the program, andtlen other hand, the specified
performance model of the parallel algorithm. Thegpamming system does the mapping
at runtime and tries to minimise the total runntiimge of the parallel program.

7. Conclusion

In this paper, we have analysed challenges assdcwith parallel programming
for common heterogeneous networks of computerss @hialysis has resulted in the
description of the main features of an ideal patagdtogram for NoCs. We have taken a
look at how standard parallel programming toolshsas HPF and MPI, addresses the
programming challenges. We have also introducedmp€ language, which is the first
language specifically designed for parallel prograng for heterogeneous networks of
computers. Detailed introduction to parallel conmpgiton heterogeneous networks can
be found in [11].
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