УДК 539.3

Визначення напруженого стану термочутливого простору з циліндричною порожниною за конвективно-променевого нагрівання

Галина Гарматій

К. ф.-м. н., Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, вул. Наукова, 36, Львів, 79060

Досліджено напружений стан термочутливого простору з циліндричною порожниною, поверхня якої навантажена сталим тиском і через неї відбувається конвективно-променевий теплообмін із середовищем постійної температури. При цьому враховано залежності від температури теплофізичних і механічних характеристик матеріалу. Квазістатичну задачу термопружності розв'язано методом збурень. Проведено порівняння отриманих розв'язків із розв'язками аналогічної задачі за сталих характеристик матеріалу.

Ключові слова: термочутливий простір, напружений стан, конвективнопроменевий теплообмін, метод збурень.

Вступ. Під час дослідження міцності та надійності елементів конструкцій споруд, машин і приладів, які працюють в умовах високотемпературного нагрівання за складних умов теплообміну з оточуючим середовищем та дії силових навантажень актуальною та практично важливою проблемою є визначення їх термопружного стану. На шляху вирішення цієї проблеми доцільно враховувати залежності теплофізичних і механічних характеристик матеріалу тіла від температури. При цьому вихідні задачі є нелінійні задачі математичної фізики [1-3]. На основі такого підходу в роботі [4], як перший етап у процесі визначення температурних напружень, визначено температурне поле в системі: безмежне тіло з циліндричною порожниною, поверхню якої навантажено сталим тиском і через неї відбувається конвективно-променевий теплообмін із середовищем постійної температури за врахування залежності від температури коефіцієнта теплопровідності, об'ємної теплоємності та коефіцієнта температуропровідності. Якщо за вихідні взяти рівняння в переміщеннях, то відповідна квазістатична задача термопружності є крайова задача зі змінними коефіцієнтами. Тут запропоновано розв'язок такої задачі для термочутливого простору з циліндричною порожниною та досліджено його напружений стан на основі, знайденого в [4], температурного поля за врахування залежності від температури механічних характеристик матеріалу тіла (модуля зсуву, коефіцієнтів Пуассона та теплового лінійного розширення).

1. Формулювання задачі

Розглянемо задачу про визначення, зумовленого температурним полем і силовим навантаженням, напруженого стану однорідного, ізотропного термочутливого простору з циліндричною порожниною кругового $r = r_0$ перетину. Термомеханічні характеристики матеріалу (модуль зсуву *G*, коефіцієнт Пуассона v, температурний коефіцієнт лінійного розширення α_t , коефіцієнт теплопровідності λ_t , об'ємна теплоємність c_v та коефіцієнт температуропровідності *a*) є функції температури. Досліджуваний простір має початкову сталу температуру t_p і, починаючи з часу $\tau = 0$, через поверхню $r = r_0$, на якій задано тиск *p*, обмінюється теплом шляхом конвективно-променевого теплообміну з середовищем сталої температури t_c , яке заповнює порожнину. Ураховуючи симетрію задачі, напружений стан простору визначається радіальним переміщенням *u* та трьома компонентами тензора напружень σ_{rr} , $\sigma_{\varphi\varphi}$, σ_{zz} [5].

2. Розв'язування задачі

Для зручності викладок аналогічно, як в [4], введемо безрозмірні величини: координату $\rho = r/r_0$; температуру $T = t/t_0$; переміщення $\overline{u} = u/r_0\alpha_{t0}t_0$ і компоненти тензора напружень $\sigma_{\rho} = \sigma_{rr}/2G_0\alpha_{t0}t_0$, $\sigma_{\Phi} = \sigma_{\phi\phi}/2G_0\alpha_{t0}t_0$, $\sigma_{\varsigma} = \sigma_{zz}/2G_0\alpha_{t0}t_0$, де за відлікову температуру t_0 вибрано температуру гріючого середовища t_c , за характерний розмір — радіус циліндричної порожнини r_0 ; опорні значення коефіцієнта лінійного теплового розширення α_{t0} і модуля зсуву G_0 взято за початкової температури T_p .

Радіальне переміщення \overline{u} визначаємо з рівняння

$$\frac{\partial}{\partial\rho} \left(\frac{1}{\rho} \frac{\partial}{\partial\rho} (\rho \overline{u}) \right) = \frac{\partial \Phi^*(T)}{\partial\rho} - \psi(T) \left(\frac{\partial \overline{u}}{\partial\rho} + m(T) \frac{\overline{u}}{\rho} - \Phi^*(T) \right), \tag{1}$$

де

$$\Psi(T) = \frac{\partial}{\partial \rho} \left\{ \ln \left[\overline{G}(T) (1 - \nu(T)) \right] \right\},$$

$$m(T) = \frac{\partial}{\partial \rho} \left(\overline{G}(T) \nu(T) \right) / \frac{\partial}{\partial \rho} \left[\overline{G}(T) (1 - \nu(T)) \right],$$

а безрозмірні компоненти тензора напружень обчислюємо за формулами

$$\sigma_{\rho} = \overline{G}(T) \left[\left(1 - v(T) \right) \frac{\partial \overline{u}}{\partial \rho} + v(T) \frac{\overline{u}}{\rho} - \left(1 - v(T) \right) \Phi^{*}(T) \right],$$

$$\sigma_{\Phi} = \overline{G}(T) \left[v(T) \frac{\partial \overline{u}}{\partial \rho} + \left(1 - v(T) \right) \frac{\overline{u}}{\rho} - \left(1 - v(T) \right) \Phi^{*}(T) \right],$$

$$\sigma_{\varsigma} = \overline{G}(T) \left[v(T) \left(\frac{\partial \overline{u}}{\partial \rho} + \frac{\overline{u}}{\rho} \right) + \left(1 - v(T) \right) \Phi^{*}(T) \right],$$
(2)

55

де
$$\overline{G}(T) = \frac{G^*(\overline{T})}{1-2\nu(T)}$$
, $\Phi^*(T) = \frac{1+\nu(T)}{1-\nu(T)} \int_0^{\overline{T}} \alpha_t^*(\overline{T}) d\overline{T}$, модуль зсуву $G(t)$ та коефіцієнт

лінійного теплового розширення $\alpha_t(t)$ подані у вигляді

$$G(t) = G_0 G^*(\overline{T}), \qquad \alpha_t(t) = \alpha_{t0} \alpha_t^*(\overline{T}),$$
(3)

$$G_0 = G(T_p), \ G^*(T_p) = 1; \ \alpha_{t0} = \alpha_t(T_p), \ \alpha_t^*(T_p) = 1; \ \overline{T} = T - T_p, \ T_p = t_p/t_c.$$

Граничні умови задачі мають вигляд

$$\sigma_{\rho}\big|_{\rho=1} = -\overline{p} , \quad \sigma_{\rho}\big|_{\rho \to \infty} = 0 \quad \left(\overline{p} = \frac{p}{2G_0 \alpha_{t0} t_0}\right). \tag{4}$$

Розв'язок задачі (1), (2), (4) знаходимо з розв'язку відповідної осесиметричної задачі термопружності для порожнистого циліндра, знайденого методом збурень [6], спрямувавши зовнішній радіус циліндра до безмежності: $\{\overline{u}; \sigma_{\rho}; \sigma_{\Phi}; \sigma_{\zeta}\} = \sum_{k=0}^{\infty} \{\overline{u}_k; \sigma_{\rho k}; \sigma_{\Phi k}; \sigma_{\zeta k}\}$. При цьому складники переміщень і напружень визначаємо за формулами

$$\overline{u}_{0} = c_{10}\rho + \frac{c_{20}}{\rho} + \frac{1}{\rho}H^{*}(\rho, Fo) + \frac{1}{2} \left[\rho H^{(0)}_{\psi}(\rho, Fo) - \frac{1}{\rho}H^{(2)}_{\psi}(\rho, Fo)\right],$$
(5)

$$\overline{u}_{k} = c_{1k}\rho + \frac{c_{2k}}{\rho} - \frac{1}{2} \bigg[\rho H_{k-1}^{(0)}(\rho, Fo) - \frac{1}{\rho} H_{k-1}^{(2)}(\rho, Fo) \bigg],$$
(6)

$$\sigma_{\rho 0} = \overline{G}(T) \left[c_{10} - \frac{1 - 2\nu(T)}{\rho^2} \left(c_{20} + H^*(\rho, Fo) \right) + H^+_{\psi}(\rho, Fo) \right], \tag{7}$$

$$\sigma_{\rho k} = \overline{G}(T) \bigg[c_{1k} - c_{2k} \frac{1 - 2\nu(T)}{\rho^2} - H_{k-1}^+(\rho, Fo) \bigg],$$
(8)

$$\sigma_{\Phi 0} = \overline{G}(T) \bigg[c_{10} + \frac{1 - 2\nu(T)}{\rho^2} (c_{20} + H^*(\rho, Fo)) - (1 - 2\nu(T)) \Phi^*(T) + H^-_{\psi}(\rho, Fo) \bigg],$$
(9)

$$\sigma_{\Phi k} = \overline{G}(T) \left[c_{1k} + c_{2k} \frac{1 - 2\nu(T)}{\rho^2} - H_{k-1}^-(\rho, Fo) \right], \tag{10}$$

$$\sigma_{\zeta 0} = \overline{G}(T) \Big[2c_{10} \nu(T) - (1 - 2\nu(T)) \Phi^*(T) + \nu(T) H_{\psi}^{(0)}(\rho, Fo) \Big],$$
(11)

$$\sigma_{\zeta k} = \bar{G}(T) \Big[2c_{1k} \nu(T) - \nu(T) H_{k-1}^{(0)}(\rho, Fo) \Big],$$
(12)

де

$$H^{*}(\rho, Fo) = \int_{1}^{\infty} \xi^{2} \Phi^{*}(\xi, Fo) d\xi, \quad H^{(m)}_{\psi}(\rho, Fo) = \int_{1}^{\infty} \xi^{m} \psi(T) \Phi^{*}(\xi, Fo) d\xi,$$

$$\begin{split} H_{k-1}^{(m)}(\rho,Fo) &= \int_{1}^{\infty} \xi^{m} f_{k-1}(\xi,Fo) d\xi ,\\ H_{\eta}^{\pm}(\rho,Fo) &= \frac{1}{2} \Biggl[H_{\eta}^{(0)}(\rho,Fo) \pm \frac{1-2\nu(T)}{\rho^{2}} H_{\eta}^{(2)}(\rho,Fo) \Biggr] \quad \left(\eta = \psi; \ k-1\right),\\ f_{k-1}(\rho,Fo) &= \psi(T) \Biggl(\frac{\partial \overline{u}_{k-1}}{\partial \rho} + m(T) \frac{\overline{u}_{k-1}}{\rho} \Biggr), \quad (Fo = \frac{a\tau}{r_{0}} - \kappa \rho \mu \tau e \rho i \mu \Phi y \rho' \varepsilon \ [4]). \end{split}$$

Сталі інтегрування c_{ik} ($i = 1, 2; k \ge 0$) визначаємо з умов (4). Тоді

$$c_{10} = H_{\psi}^{+}(\rho, Fo)_{|\rho=\infty}, \quad c_{1k} = H_{k-1}^{+}(\rho, Fo)_{|\rho=\infty},$$

$$c_{20} = \frac{1}{1 - 2\nu_{1}} \left[\frac{\overline{p}}{\overline{G}_{1}(T)} - H_{\psi}^{+}(\rho, Fo)_{|\rho=\infty} \right], \quad c_{2k} = \frac{1}{1 - 2\nu_{1}} H_{k-1}^{+}(\rho, Fo)_{|\rho=\infty},$$

de $v_1 = v(T)_{|\rho=1}$, $\overline{G}_1(T) = \overline{G}(T)_{|\rho=1}$.

Переміщення та компоненти тензора напружень в аналогічному нетермочутливому просторі з циліндричною порожниною виражаються формулами

$$\overline{u}_{\mu} = \frac{1 + v_0}{1 - v_0} \frac{1}{\rho} \int_{1}^{\infty} \rho \overline{T}_{\mu} d\rho + \frac{\overline{p}}{\rho}, \qquad (13)$$

$$\sigma_{\rho \mu} = \frac{1}{1 - 2\nu_0} \left[\left(1 - \nu_0 \right) \frac{\partial \overline{u}_{\mu}}{\partial \rho} + \nu_0 \frac{\overline{u}_{\mu}}{\rho} - \left(1 + \nu_0 \right) \overline{T}_{\mu} \right], \tag{14}$$

$$\sigma_{\Phi_{H}} = \frac{1}{1 - 2\nu_{0}} \left[\nu_{0} \frac{\partial \overline{u}_{H}}{\partial \rho} + (1 - \nu_{0}) \frac{\overline{u}_{H}}{\rho} - (1 + \nu_{0}) \overline{T}_{H} \right],$$
(15)

$$\sigma_{\zeta_{H}} = \frac{1}{1 - 2\nu_{0}} \left[\nu_{0} \left(\frac{\partial \overline{u}_{H}}{\partial \rho} + \frac{\overline{u}_{H}}{\rho} \right) - \left(1 + \nu_{0} \right) \overline{T}_{H} \right], \tag{16}$$

де v_0 — значення коефіцієнта Пуассона за початкової температури T_p , \overline{T}_{μ} — приріст температури в тілі за сталих теплофізичних характеристик матеріалу, які дорівнюють характеристикам матеріалу термочутливого простору за температури T_p .

3. Числові результати та їх аналіз

Як приклад розглянуто термочутливий простір з циліндричною порожниною, яку навантажено сталим тиском $\overline{p} = 0,5$ і через неї відбувається конвективно-променевий теплообмін із середовищем сталої температури $t_c = 873$ К. Початкова температура тіла $t_p = 373$ К, відлікова $t_0 = t_c = 873$ К. Тіло виготовлене зі сталі У12, експериментальні залежності теплофізичних і механічних характеристик від температури якої взято з [7] і подано у вигляді

$$\begin{split} \lambda_t(t) &= 45,04 \Big[1 - 0,51 \Big(T - T_p \Big) \Big] \ [\text{BT/(M} \cdot \text{K})], \\ a(t) &= 11,42 \cdot 10^{-6} \Big[1 - 0,86 \Big(T - T_p \Big) \Big] \ [\text{M}^2/\text{c}], \\ \alpha_t(t) &= 11,68 \cdot 10^{-6} \Big[1 + 1,33 \Big(T - T_p \Big) - 0,65 \Big(T - T_p \Big)^2 \Big] \ [1/\text{K}], \\ G(t) &= 0,794 \cdot 10^{11} \Big[1 - 0,27 \Big(T - T_p \Big) + 0,21 \Big(T - T_p \Big)^2 + 0,59 \Big(T - T_p \Big)^3 \Big] \ [\Pi a], \\ \nu(t) &= 0,282 \Big[1 + 0,199 \Big(T - T_p \Big) - 1,291 \Big(T - T_p \Big)^2 + 2,36 \Big(T - T_p \Big)^3 \Big]. \end{split}$$

Проведено розрахунки безрозмірних компонент тензора напружень і переміщення за наявності та відсутності силового навантаження в термочутливому і нетермочутливому просторах.

Результати числових досліджень наведені у вигляді графіків на рис. 1-4 для значень температури, обчислених для Bi = 1, Sk = 1 [4], де суцільні лінії відповідають залежним від температури характеристикам, штрихові — сталим, взятим за початкової температури.

Залежності компоненти σ_{ρ} тензора напружень від радіальної координати ρ для значень безрозмірного часу Fo = 0,1; 1, а також від Fo для $\rho = 1,5$ за відсутності ($\bar{p} = 0$) і наявності ($\bar{p} = 0,5$) силового навантаження зображено на рис. 1.

Максимальна розбіжність між значеннями напружень σ_ρ в термочутливому та нетермочутливому просторах становить 45 %.

На рис. 2 наведено залежності компоненти σ_{Φ} тензора напружень від радіальної координати ρ в моменти часу Fo = 0,1; 1, а також від Fo на поверхні циліндричної порожнини за відсутності ($\overline{p} = 0$) і наявності ($\overline{p} = 0,5$) силового навантаження. Розбіжність між значеннями напружень σ_{Φ} в просторах зі змінними та сталими (рівними початковим) характеристиками сталі У12 досягає максимального значення на поверхні циліндричної порожнини за наявності силового навантаження і становить 60 %.

Залежності компоненти σ_{ς} тензора напружень від радіальної координати ρ в моменти часу Fo = 0,1; 1, а також від Fo на поверхні циліндричної порожнини наведені на рис. 3.

Рис. 1. Залежність компоненти тензора напружень σ_ρ від радіуса ρ і параметра *Fo*

ISSN 1816-1545 Фізико-математичне моделювання та інформаційні технології 2010, вип. 12, 54-60

Рис. 2. Залежність компоненти тензора напружень σ_{Φ} від радіуса $\rho(a)$ і параметра Fo (б)

Рис. 3. Залежність компоненти тензора напружень σ_{ς} від радіальної координати ρ (*a*) та параметра *Fo* (δ)

Максимальна розбіжність компонент тензора напружень σ_{ς} в термочутливому та нетермочутливому просторах на поверхні циліндричної порожнини становить 23%.

На рис. 4 зображено залежність переміщень від безрозмірної координати ρ для Fo = 0,1; 1 за відсутності ($\overline{p} = = 0$) і наявності ($\overline{p} = 0,5$) силового навантаження. Для взятого матеріалу розбіжність між значеннями переміщень \overline{u}

і \overline{u}_{μ} досягає максимального значення для Fo = 1 і становить 18 % за дії навантаження.

Висновки. Визначено та досліджено термопружний стан термочутливого простору з циліндричною порожниною, поверхню якої навантажено сталим тиском. Через поверхню відбувається конвективно-променевий теплообмін із середовищем постійної температури. Встановлено, що максимальна розбіжність між значеннями приросту температури в термочутливому та нетермочутливому тілах для обраного матеріалу становить 15 %; між значеннями переміщення \overline{u} — 18 %; між значеннями температурних напружень σ_{ρ} — 45 %, σ_{Φ} — 60 % і σ_{ς} — 23 %. Це свідчить про важливість врахування залежностей від температури характеристик матеріалу тіла під час визначення його термопружного стану.

Дослідження проведені за часткової фінансової підтримки ДФФД України (проект №Ф29.2/009)

Література

- [1] Thermal stresses around a circular hole in a functionally graded plate / X. Z. Zhang, S. Kitipornchai, K. M. Liew et al. // J. Thermal Stresses. — 2003. — Vol. 26, Issue 4. — P. 379-390.
- [2] Transient heat conduction and thermal stress problems of a nonhomogeneous plate with temperature-dependent material properties / *Y. Tanigawa, T. Akai, R. Kawamura* and *N. Oka* // J. Thermal Stresses. — 1996. — Vol. 19, Issue 1. — P. 77-102.
- [3] Ohmichi, M. Transient thermal stresses in the strip with oblique boundaries to the functionally graded direction / M. Ohmichi, N. Noda // Proc. 8th Int. Congr. Therm. Stresses (1-4 June 2009, Illinois, USA) Illinois: University of Illinois at Urbana-Champaign, 2009. P. 497-500.
- [4] Гарматій, Г. Ю. Визначення температурного поля термочутливого безмежного тіла з циліндричною порожниною при конвективно-променевому нагріванні / Г. Ю. Гарматій // Фіз.-мат. моделювання та інформаційні технології. — 2010. — Вип. 11. — С. 66-72.
- [5] *Ломакин, В. А.* Теория упругости неоднородных тел / *В. А. Ломакин.* Москва: Изд-во МГУ, 1976. 367 с.
- [6] *Кушнір, Р. М.* Напружений стан термочутливого тіла обертання при плоскому осесиметричному температурному полі / *Р. М. Кушнір, В. С. Попович* // Вісн. Дніпропетр. ун-ту. Сер. Механіка. 2006. № 2/2. С. 91-96.
- [7] Марочник сталей и сплавов; под ред. В. Г. Сорокина. Москва: Машиностроение, 1989. 640 с.

Determination of the stress state of thermosensitive space with a cylindrical cavity under convective-radial heating

Halyna Harmatiy

A stress state of thermosensitive space with a cylindrical cavity is studied. The surface of the cavity is loaded by a constant pressure and through it the convective-radial heat exchange with the environment of constant temperature is realized. The dependence of thermo-physical and mechanical material characteristics on temperature is considered. A quasi-static thermoelasticity problem is solved by the perturbation method. The obtained solutions to the problem are compared with the solutions of the same problem for constant characteristics of the material.

Определение напряженного состояния термочувствительного пространства с цилиндрической полостью при конвективно-лучевом нагреве

Галина Гарматий

Исследовано термонапряженное состояние пространства с цилиндрической полостью, поверхность которой находится под воздействием постоянного давления и через нее осуществляется конвективно-лучевой теплообмен со средой постоянной температуры. При этом учитывается зависимость от температуры теплофизических и механических характеристик материала. Квазистатическая задача термоупругости решена методом возмущений. Проведено сравнение полученных решений задачи с решениями аналогичной задачи при постоянных характеристиках материала.

Представлено професором О. Гачкевичем

Отримано 01.07.09