А.Ф.Шевченко, Л.П.Курилова, В.Г.Кисляков, А.М.Башмаков, А.Л.Руденко

ОЦЕНКА ВЛИЯНИЯ ТЕХНОЛОГИИ ВНЕПЕЧНОЙ ДЕСУЛЬФУРАЦИИ ЧУГУНА НА ПАРАМЕТРЫ ШЛАКООБРАЗОВАНИЯ В КОВШЕ

Приведены параметры шлакообразования в ковшах при внепечной подготовке чугуна к сталеплавильному переделу. Показаны потери чугуна, начиная от налива чугуна в ковши до слива в конвертер. Показано, что инжекционные процессы имеют наименьшие потери. KR_{CaO} процесс сопровождается предварительным скачиванием шлака и наибольшими расходами реагентов, что приводит к наиболее высоким потерям чугуна.

Введение. При выборе технологического процесса десульфурации чугуна необходимо учитывать не только эффективность процесса, глубину десульфурации, удельные расходы реагентов, продолжительность полного цикла обработки и её надежность, но и обязательно все затраты, связанные с осуществлением сравниваемых процессов. Из перечня всех затрат необходимо особо выделить потери чугуна, связанные с осуществлением процесса десульфурации, которые многими разработчиками по разным причинам не учитываются и которые весьма различны, так как каждый технологический процесс характерен своим индивидуальным отличием.

Методика исследования. В настоящей работе её авторами для анализа величин потерь чугуна выбраны для сравнения три наиболее дебатируемых процесса:

- Вдувание гранулированного магния без разубоживающих добавок (по украинской технологии [1]).
 - II. Продувка смесью порошкового магния с известью [2, 3].
- III. Процесс KR_{CaO} механическое перемешивание чугуна вращающейся мешалкой с подачей на поверхность чугуна смеси извести с плавиковым шпатом [4, 6].

Все исходные данные для сравнительного анализа взяты по фактическим данным промышленных обработок чугуна, полученным разработчиками этих процессов [1–4,6].

Сопоставительный анализ указывает на принципиальные различия в осуществлении процессов. Инжекционные процессы (I и II), осуществляемые при вдувании реагентов вглубь расплава через погружаемые фурмы, выполняются без всякого рода технологической подготовки расплава к десульфурации в ковше. В промышленной повседневной практике применения этих процессов чугун в ковшах подают на внепечную обработку при наличии на поверхности расплава в среднем 1,5% (от массы чугуна) ковшевого шлака, т.е. 15 кг/т чугуна. Высокая химическая активность вдуваемого диспергированного магния позволяет осуществлять надёжную

и эффективную десульфурацию чугуна при наличии на поверхности расплава ковшевого шлака невысокой основности [5] (не удаляя его перед десульфурацией). При инжекционных процессах десульфурации шлак удаляют из ковша только после завершения десульфурации или перед сливом обессеренного чугуна в сталеплавильный агрегат.

При осуществлении KR_{CaO} процесса наличие на поверхности чугуна исходного ковшевого шлака не позволяет обеспечивать надёжную и устойчивую десульфурацию чугуна, тем более глубокую десульфурацию со снижением содержания серы в чугуне до 0,002% и ниже. Имеющийся в ковше исходный ковшевой шлак блокирует поверхность вводимых известьсодержащих реагентов и снижает их активность, поэтому при KR-процессах дополнительно производят подготовку к десульфурации, которая заключается в предварительном удалении ковшевого шлака из ковша. Степень очистки от шлака зависит от планируемой глубины десульфурации и обычно составляет 75–90%. Подача известьсодержащих материалов в ковш и перемешивание чугуна осуществляется после удаления исходного шлака. После десульфурации KR_{CaO} процессом осуществляется (как и при всех других методах обессеривания) тщательное удаление шлака либо сразу после обработки, либо непосредственно перед сливом чугуна в сталеплавильный агрегат.

Таким образом, при инжекционных процессах десульфурации осуществляется, как правило, только одно скачивание шлака из ковша (после десульфурации) и не производят предварительную дополнительную подготовку чугуна. При десульфурации чугуна КR_{CaO} процессом требуется два скачивания шлака — перед подачей в ковш обессеривающих известьсодержащих материалов и после десульфурации.

Приведенные выше особенности технологий вносят существенные отличия в процессы шлакообразования в ковше, характеристики образующихся шлаков и, соответственно, потери чугуна с этими шлаками. В табл.1 на примере имеющихся исходных данных при снижении серы в чугуне с 0,020% до 0,002% приведены характеристики шлакообразования в ковшах при десульфурации сравниваемыми тремя способами. Из таблицы следует, что технология вдувания гранулированного магния характеризуется наименьшим расходом реагентов, наименьшим дополнительным и суммарным шлакообразованием, и в итоге наименьшим количеством шлака, остающимся в ковше перед сливом в сталеплавильный агрегат. Технология десульфурации чугуна КРСаО процессом сопровождается двойным скачиванием шлака (до и после десульфурации), наибольшим расходом реагентов, наибольшим дополнительным и суммарным шлакообразованием, и в итоге большим количеством оставшегося в ковше шлака. Вдувание смесей магния с известью занимает промежуточное положение между двумя указанными выше (I и II) процессами.

Таблица 1. Изменение характеристик ковшевых шлаков в процессе внепечной подготовки чугуна перед сливом в сталеплавильный агрегат (исходное содержание серы в чугуне 0,020%, после десульфурации – 0,002%)

Вдувание грану-Продувка Процесс лированного магсмесью - KR_{CaO} . ния – Мд (мет-Mg+CaO Механическое комбинаты КНР, (меткомбинат перемешива-No Показатели, параметр ние с подачей процесс «Северсталь», Россия, про-CaO+CaF₂, «Desmagцесс ESM Украина»[1]) (меткомбинаты [2,31)KHP [4] и CSC (Тайвань) [6]) 1 3 Количество исходного шлака в ковшах перед подачей их на внепеч-1 ную обработку: % (от массы чугу-1,5 1,5 1,5 на) 15 15 кг/т чугуна 15 Содержание железа (чугуна) в ковшевом шлаке перед подачей на внепечную обра-2 ботку [5]: % от массы шлака 30 30 30 % (от массы чугу-0,45 0,45 0,45 на) 300 300 300 кг/т шлака 4,5 4.5 4.5 кг/т чугуна Количество шлака, скачиваемого из ковіна перед десульфурацией 3 чугуна: % (от массы шлака) скачивание скачивание 85 не требуется не требуется кг/т чугуна 0 0 12,75 Количество шлака, оставшегося в ковше (непосредственно пе-4 ред десульфурацией): % (от массы чугу-1,5 1,5 0.225 на) 15 15 2,25 кг/т чугуна

	I/			
5	Количество железа			
	(чугуна) в шлаке непо-			
	средственно перед			
	десульфурацией:			
	– % (от массы шлака)	30	30	30
	– кг/т шлака	300	300	300
	– кг/т чугуна	4,5	4,5	0,675
6	Количество обессери-			
	вающе-го реагента,			
	вводимого в ковш при	0,31	2,04	8,5
	десульфурации, кг/т			
	чугуна			
	Дополнительное коли-			
	чество шлака, обра-			
	зующееся в ковше при			
7	десульфурации:			
	– кг/т чугуна	0,62	4,08	17,0
	-% (от массы	0,062	0,408	1,7
	чугуна)	0,002	0,100	1,7
	Суммарное количество			
	шлака в ковше после			
8	десульфурации:			
0	– кг/т чугуна	15,62	19,08	19,25
	– % (от массы чугу-	1,562	1,908	1,925
	на)			
	Содержание железа			
	(чугуна) в ковшевом			
	шлаке после десульфу-			
	рации:	40		4.5
9	- % (от массы шлака)	40	45	45
	– кг/т шлака	400	450	450
	- % (от массы чугу-	0,625	0,859	0,866
	на)	()5	0.50	9.66
	кг/т чугуна	6,25	8,59	8,66
10	Количество ковшевого			
	шлака, удаляемого из			
	ковша при скачивании			
	после десульфурации:			
	 % (от массы шлака) 	97	97	97
	– кг/т чугуна	15,15	18,51	18,66

	Суммарное количество			
11	ковше-вого шлака, уда-			
	ленного из ковша при	15,15	18,51	31,41
	внепечной подго-товке			
	чугуна, кг/т чугуна			
12	Количество ковшевого			
	шлака, оставшегося в			
	ковше после внепеч-			
	ной десульфу-рации и			
	скачивания шлака:			
	– % (от массы шлака)	3	3	1,84
	– кг/т чугуна	0,47	0,57	0,59

Результаты исследования. В соответствии с выполняемыми операциями при внепечной обработке чугуна и расчетными параметрами шлакообразования (табл.1) определяются величины потерь чугуна с ковшевым шлаком, образующимся в ковше и удаляемом после десульфурации при различных способах внепечной обработки. Анализ различных вариантов (I, II, III) процессов десульфурации и сопутствующих параметров шлакообразования (табл.1 и 2) свидетельствует о следующем:

- 1. Десульфурация чугуна KR_{CaO} процессом (III), в отличие от инжекционных (I и II), сопровождается дополнительными потерями со скачиваемым исходным шлаком в количестве 3,825 кг/т чугуна и 1,275 кг/т чугуна за счет выполнения операции скачивания шлака.
- 2. Потери чугуна со шлаком, образующимся в результате вдувания гранулированного магния, составляет 0,279 кг/т чугуна, при вдувании смеси Mg+CaO-1,836 кг/т чугуна, при KR_{CaO} процессе -7,65 кг/т чугуна.
- 3. Суммарные потери чугуна со всеми удаляемыми шлаками и за счет выполнения операций скачивания шлака составляют при технологии вдувания гранулированного магния 7,622 кг/т чугуна, при продувке смесью магния с известью 10,238 кг/т чугуна, при KR_{CaO} процессе 15,422 кг/т чугуна.
- 4. Если условно потери чугуна при вдувании магния без добавок принять за 1, то при продувке смесями они составят -1,34, а при KR_{CaO} процессе -2,02.
- 5. Наименьшие потери чугуна как при десульфурации (п.3, табл.2), так и суммарные (п.6, табл.2) характерны для процесса десульфурации чугуна вдуванием магния без пассивирующих добавок. При десульфурации продувкой смесью Mg+CaO потери чугуна больше на 2,616 кг/т чугуна, а при KR_{CaO} процессе больше на 7,80 кг/т чугуна.
- 6. За счет суммарных потерь чугуна со шлаком (образующимся при наливе ковшей чугуном, при десульфурации и при скачивании шлака) затраты при вдувании смесей больше, чем при вдувании магния без

добавок на 1,439 долл/т чугуна, а при KR_{CaO} процессе – больше на 4,29 долл/т чугуна.

Таблица 2. Потери чугуна при внепечной десульфурации и скачивании шлака (снижение содержания серы в чугуне с 0,020% до 0,002%, табл.1)

шл	шлака (снижение содержания серы в чугуне с 0,020% до 0,002%, таол.1)					
		Вдувание гранули-	Продувка сме-	Процесс KR _{CaO} .		
№	Показатели, параметр	рованного магния	сью Mg+CaO	Механическое		
		– Mg (меткомбина-	(меткомбинат	перемешивание		
		ты КНР, процесс	«Северсталь»,	с подачей		
		«Desmag–	Россия, процесс	CaO+CaF ₂ ,		
		Украина»[1])	ESM [2,3])	(меткомбинаты		
				КНР [4] и CSC		
				(Тайвань) [6])		
1	2	3	4	5		
	Потери чугуна с исход-					
	ным ковшевым шлаком,					
	из ковша при скачива-					
	нии перед десульфура-					
1	цией: - % (от массы шлака)	0	0	30		
	 70 (от массы шлака) 	о (скачивание	0 (скачивание	30		
		не требуется)	(скачивание не требуется)			
	– кг/т чугуна	0	0	3,825		
	Потери чугуна за счет	Ť	, , ,	-,,		
	операции скачивания					
2	исходного шлака:					
	 % (от массы шлака) 	0	0	10		
	кг/т чугуна	0	0	1,275		
	Потери чугуна со шла-					
	ком, образующимся при					
3	десульфурации: - % (от массы шлака)	40	45	45		
	% (от массы шлака)кг/т чугуна	40 0,279	45 1,836	7,65		
\vdash	Потери чугуна от опе-	0,479	1,030	7,03		
	рации скачивания шлака					
4	после десульфурации:					
'	 — % (от массы шлака) 	10	10	10		
	– кг/т чугуна	1,562	1,908	1,925		
	Потери чугуна со скачи-					
5	ваемым шлаком после					
	десульфурации:					
	— % (от массы скачи-	40	45	4.5		
	ваемого шлака)	40	45	45		
	кг/т чугуна	6,060	8,330	8,397		

6	Суммарные потери чугуна, связанные с десульфурацией и скачиванием шлака (п.п.1,2, 4,5), кг/т чугуна	7,622	10,238	15,422
7	Увеличение потерь чугуна при десульфурации и скачивании шлака по сравнению с потерями при процессах вдувания магния без различных добавок.	0	+2,616	+7,800
8	Затраты на потери чугу- на, связанные с наливом ковшей, десульфураци- ей и скачиванием шла- ка, долл/т чугуна.	4,192	5,631	8,482
9	Увеличение затрат на суммарные потери чугуна в сравнении с потерями при вдувании магния (процесс Desmag – Украина), долл/т чугуна.	0	1,439	4,290

Таким образом, наименьшие потери чугуна и связанные с этим затраты характерны для технологического процесса десульфурации чугуна вдуванием диспергированного магния без разубоживающих добавок. Вдувание смеси магния с известью увеличивает потери чугуна (в сравнении с вдуванием магния без добавок) в 1,44 раза (или на 2,6 кг/т чугуна), а при КR_{CaO} процессе потери больше в 2 раза (или на 7,8 кг/т чугуна).

Выволы

- 1. При внепечной подготовке чугуна к сталеплавильному переделу наполнение ковшей чугуном и переливы металла сопровождаются образованием исходного ковшевого шлака, в котором содержится в среднем 30% всплесков металла. При среднем количестве исходного шлака 15 кг/т чугуна, потери чугуна с исходным шлаком составляют в среднем 4,5 кг/т чугуна.
- 2. Десульфурация чугуна KR_{CaO} процессом (в отличие от инжекционных технологий) сопровождается предварительным скачиванием исходного ковшевого шлака, с которым теряется чугуна в среднем около 4 кг/т жидкого чугуна.

- 3. В период десульфурации чугуна образуется новый шлак, содержащий 40–45% всплесков металла (в зависимости от способа десульфурации). Потери чугуна с этим шлаком составляют около 0,3 кг/т чугуна при десульфурации гранулированным магнием, около 2 кг/т чугуна при десульфурации смесью магния с известью и около 8 кг/т чугуна при десульфурации KR_{CaO} процессом.
- 4. Наименьшие суммарные потери чугуна (за период его подготовки к сталеплавильному переделу) происходят при внепечной десульфурации вдуванием гранулированного (или зернистого) магния без пассивирующих добавок. Вдувание смесей магния с известью сопровождается потерями чугуна больше, чем при гранулированном магнии в 1,5 раза, а при десульфурации KR_{CaO} процессом в 2 раза.
- Bashmakov A.M., Shevchenko A.F., Alexandrov V.A. Possibilities to reduce hot metal desulphurization costs.// The IX International Symposium for Desulphurization of Hot Metal and Steel. – Galati, Romania. – September 18–21, 2006. – P.55– 61.
- Lamuchin A.M., Sintshenko S.D., Ordin B.G. Perspectives in the Field of Hot Metal Desulphurization in OAO «Severstal» based on Desulphurization Agents Containing Magnesium.// The VII International Symposium for Desulphurization of Hot Metal and Steel. – Anif, Austria. – September 26–27, 2002. – P.32–33.
- Освоение технологии производства сталей с использованием установки десульфурации чугуна в условиях конвертерного производства ОАО «Северсталь»./ А.А.Степанов, А.М.Ламухин, С.Д.Зинченко и др. // VIII Международный симпозиум по десульфурации чугуна и стали. Сб. докладов. – Нижний Тагил, Россия. – 20–24 сентября 2004. – С.83–87.
- Инь Жуй Ю. Отечественное сталеплавильное производство обзор состояния и развитие технологий до 2010 г.// Научно–техническая конференция по выплавке и непрерывной разливке стали. – Анчжоу, Китай. – 30–31 июля 2008. – С.1–13.
- Особенности шлакообразования в ковшах с жидким чугуном. / Н.Т.Ткач, А.Ф.Шевченко, Д.В.Костенко и др. // Фундаментальные и прикладные проблемы черной металлургии. Сб.тр.ИЧМ. – 2004. – Вып.. 8. – С.168–175.
- Технологические регламенты на десульфурацию чугуна известьсодержащими материалами в заливочных ковшах стальзавода № 2 компании CSC (Тайвань) при обработке KR–процессом.

Статья рекомендована к печати докт.техн.наук А.С.Вергуном