И.Г.Товаровский, В.И.Большаков

РАСЧЕТНО–АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ РАСПРЕ-ДЕЛЕНИЯ РУДНОЙ ШИХТЫ И КОКСА ПО РАДИУСУ КОЛОШНИКА НА ОСНОВНЫЕ ПАРАМЕТРЫ И ПОКАЗАТЕЛИ ДОМЕННОЙ ПЛАВКИ

Выполненные по разработанной ранее методике аналитические исследования позволили установить ряд закономерностей развития процессов восстановления и теплообмена по радиусу и высоте доменной печи, а также впервые количественно оценить влияние неравномерности распределения материалов на колошнике на показатели плавки.

Методика исследования

Расчетно-аналитическое исследование выполнено по ранее разработанной методике численного анализа процессов доменной плавки по высоте и поперечному сечению доменной печи, позволяющей количественно оценивать режимы плавки с различным распределением шихтовых материалов на колошнике при разных параметрах плавки [1]. Рассматривается протекание процессов в 10 радиальных кольцевых зонах (РКЗ-1 – центральная, РКЗ-10 – периферийная) по высоте 12 вертикальных температурных зон (ВТЗ).

Исходные данные на верхней границе загрузки шихты (ВТЗ-0)

1. Расход железорудной шихты R_{Σ} и его доли по РКЗ $\Delta_1, \Delta_2, ... \Delta_{10}$ (задаются, причем $\Delta_1 + \Delta_2 + ... + \Delta_{10} = 1$).

2. Расход кокса К и его доли по РКЗ $\delta_1, \delta_2, \dots \delta_{10}$, определяемые в ходе расчета, причем $\delta_1 + \delta_2 + \dots + \delta_{10} = 1$.

3. Насыпные объёмы железорудной шихты и кокса, определяемые в прогнозе (*VR*) = $R_{\Sigma}/(\gamma_R)$; (*V*K) = K/(γ_K); м³/т чуг.

4. В качестве исходных величин при определении параметров загрузки задаются относительные рудные нагрузки $PH_1 = \Delta_1/\delta_1$; $PH_2 = \Delta_2/\delta_2$; $PH_3 = \Delta_3/\delta_3$ $PH_{10} = \Delta_{10}/\delta_{10}$, причем $PH_1 \cdot PH_2 \cdot PH_3 \cdot ...$ $PH_{10} = 1,0$.

Выражения для определения величин $\delta_1, \delta_2, \dots \delta_{10}$, а также величин $\Delta_1, \Delta_2, \dots \Delta_{10}$ по заданным PH₁, PH₂, PH₃, PH₁₀ получаем из следующих балансовых соотношений.

Общий объём железорудной шихты (*VR*), M^3/T чуг. и кокса (*VK*), M^3/T чуг. в среднем для каждой из 10 РКЗ:

$$[(VR) + (VK)] \cdot 0, 1, \text{ M}^3/\text{T чуг.}$$
(1)

То же при доле железорудной шихты Δ_i и доле кокса δ_i в зоне i:

$$(VR) \cdot \Delta_{i} + (VK) \cdot \delta_{i}, M^{3}/T \text{ чуг.}$$
 (2)

Приравниваем (1) и (2): $[(VR) + (VK)] \cdot 0, 1 = (VR) \cdot \Delta_i + (VK) \cdot \delta_i$, после чего подставляем PH_i и получаем $[(VR) + (VK)] \cdot 0, 1 = (VR) \cdot PH_i \cdot \delta_i + (VK) \cdot \delta_i$, откуда:

 $\delta_{i} = [(VR) + (VK)] \cdot 0, 1/[(VR) \cdot PH_{i} + (VK)];$

 $\Delta_{i} = PH_{i} \cdot [(VR) + (VK)] \cdot 0, 1/[(VR) \cdot PH_{i} + (VK)].$

<u>Выполнение расчетов</u> общих и многозонных балансов в радиальных кольцевых и вертикальных температурных зонах при разном распределении материалов на колошнике производится при двух способах вариантах задания относительных величин рудных нагрузок PH_i:

1. Задаются относительные величины рудных нагрузок в центре и у периферии PH_1 и PH_{10} , а остальные <u> PH_2 , PH_3 ,...... PH_9 </u>или PH_{2-9} (обозначение) считают одинаковыми. В этом случае при заданных PH_1 и PH_{10} определяются Δ_1 и δ_1 , также Δ_{10} и δ_{10} по формулам

 $\delta_1 = [(VR) + (VK)] \cdot 0, 1 / [(VR) \cdot PH_1 + (VK)]; \Delta_1 = PH_1 \cdot \delta_1.$

 $\delta_{10} = [(VR) + (VK)] \cdot 0, 1 / [(VR) \cdot PH_{10} + (VK)]; \Delta_{10} = PH_{10} \cdot \delta_{10}.$

Затем вычисляется средняя рудная нагрузка в РКЗ 2-9:

 $PH_{2-9} = (1 - \Delta_1 - \Delta_{10}) / (1 - \delta_1 - \delta_{10})$ и подставляется в формулы для определения Δ_{2-9} и δ_{2-9} , после чего производится вычисление:

 $\delta_2 = [(VR) + (VK)] \cdot 0, 1/ [(VR) \cdot PH_{2-9} + (VK)]; \Delta_2 = PH_{2-9} \cdot \delta_2.$ $\delta_3 = [(VR) + (VK)] \cdot 0, 1/ [(VR) \cdot PH_{2-9} + (VK)]; \Delta_3 = PH_{2-9} \cdot \delta_3.$

 $\delta_9 = [(VR) + (VK)] \cdot 0, 1/[(VR) \cdot PH_{2-9} + (VK)]; \Delta_9 = PH_{2-9} \cdot \delta_9.$

Каждая из величин PH₂, PH₃,.... PH₉ или PH₂₋₉ (обозначение) соответствует выражению: PH₂₋₉ = $\Delta_2 / \delta_2 = \Delta_3 / \delta_3 = \ldots = \Delta_9 / \delta_9$.

Подставляя различные допустимые по условиям газодинамики и теплообмена значения PH_1 и PH_{10} вычисляем Δ_{2-9} , δ_{2-9} , а также $PH_{2-9} = \Delta_{2-9} / \delta_{2-9}$, производим расчеты вариантов при разном распределении материалов.

2. Задаются относительные величины рудных нагрузок в 3 – 4 и более РКЗ, а в остальных РКЗ РН_i аппроксимируют параболой, характерной для конусного режима загрузки, после чего определяют Δ_i и δ_i по формулам, аналогичным ранее приведенным. Полученные величины Δ_i и δ_i пересчитывают на условие $\Sigma \Delta_i = 1$, $\Sigma \delta_i = 1$. Для этого каждую из Δ_i , δ_i делят соответственно на $\Sigma \Delta_i \neq 1$, $\Sigma \delta_i \neq 1$. По скорректированным Δ_i и δ_i вычисляют новые PH_i = Δ_i / δ_i , которые снова подставляют в расчет. Цикл повторяют до достижения $\Sigma \Delta_i = 1$, $\Sigma \delta_i = 1$ с точностью смежных итерациях 0,0001.

Указанные варианты задания рудных нагрузок на колошнике охватывают практически все возможные варианты загрузки как конусными, так и бесконусными загрузочными устройствами (КЗУ и БЗУ).

Результаты расчетов и их анализ

Расчеты выполнили для среднегодовых показателей ДП объемом 5000 м³, работавшей при расходе кокса 412 кг/т с удельной производительностью около 1,8 т/(м³ сутки) при следующем исходном распределении материалов и рудных нагрузок (*R*/К относительно среднего значения) в РКЗ на колошнике:

№№ PK3	Доля Ж–с, %	Доля кокса, %	<i>R</i> /К, отн. средн.
10	11,08	8,92	1,242
9	10,90	9,09	1,20
8	10,64	9,36	1,14
7	10,40	9,59	1,084
6	10,18	9,83	1,035
5	9,91	10,13	0,98
4	9,84	10,06	0,98
3	10,71	9,53	1,125
2	10,13	9,89	1,024
1	6,21	13,60	0,457
Σ	100	100	1,00

Наряду с показателями плавки при исходном распределении материалов и рудных нагрузок в РКЗ на колошнике определены показатели при двух других распределениях: 1) равномерном, при котором заданы рудные нагрузки в центре (низкая) и у периферии (выше средней), а в остальных РКЗ приняты одинаковыми; 2) параболическом, при котором в центре и у периферии рудные нагрузки заданы значительно меньшими, чем средние, а в промежуточных зонах – значительно большими, чем средние. Графическое представление распределений приводится на рис. 1, а соответствующие расчетные показатели плавки – в таблице 1.

	При распределении материалов на					
Показатели	колошнике:					
	Фактич.	Равномер.	Параболич.			
1	2	3	4			
Ср суточное производство, т	9779	9852	9671			
Удельн. производ–ть, т/м ³ сут.	1,78	1,79	1,76			
Расход кокса, кг/т	412,4	405,2	422,8			
Дутье : расход, м ³ /мин.	7684,3	7677,5	7715,1			
температура, град.	1184	1184	1184			
влажность, г/м ³	9,0	9,0	9,0			
кислород, %	24,9	24,9	24,9			
Расход тех. кислорода, м ³ /т	64,6	64,1	65,6			
Расход природного газа, м ³ /т	107,5	107,5	107,5			
% к дутью	9,5	9,6	9,4			
Колошниковый газ:						
температура, °С	250	251	242			
содержание, %	21,47	20,81	22,28			

Таблица 1 – Расчетные показатели плавки на ДП объемом 5000 м³ при различном распределении материалов на колошнике

СО			
1	2	3	4
CO ₂	20,18	20,67	19,54
H ₂	7,12	7,01	7,21
Расходы сырья, кг/т:			
Агломерат	1033,4	1033,4	1033,2
Окатыши	489,1	489,1	489,0
Руда железная	50,5	50,5	50,5
Известняк	2,86	2,08	3,93
Конвертерный шлак	4,7	4,7	4,7
Всего А+О+Р	1572,9	1573,0	1572,7
Доля АиО, %	96,3	96,4	96,3
Железо в шихте, %	59,66	59,68	59,64
Железо в А+О+Р, %	59,84	59,84	59,84
Вынос пыли, кг/т	9,96	9,92	10,02
В чугуне, %: кремний	0,65	0,65	0,65
марганец	0,386	0,386	0,385
cepa	0,016	0,016	0,016
φοςφορ	0,035	0,035	0,035
углерод	4,93	4,93	4,93
Температура чугуна, ⁰ С	1486	1486	1486
В шлаке, %: кремнезем	35,36	35,35	35,37
глинозем	10,07	10,05	10,1
известь	37,13	37,12	37,14
магнезия	10,38	10,4	10,34
оксид марганца	0,399	0,399	0,398
оксид железа	0,34	0,34	0,34
сера	0,774	0,765	0,786
Основность шлака	1,05	1,05	1,05
Количество шлака, кг/т	299,9	298,8	301,4
Расчетные показатели:	, i i i i i i i i i i i i i i i i i i i		
Расход дутья, м ³ /т	1131,5	1122,2	1148,8
Объем влажного газа	1778,6	1759,5	1809,2
Расход О ₂ (расч.), м ³ /т	64,6	64,1	65,6
Кислород в дутье (расч.), %	24,9	24,9	24,9
Природный газ, % к дутью	8,8	8,9	8,7
1	2	3	4
Теор. температура горения, °С	2005	2001	2012
Кол-во фурменного газа, м ³ /т	1654,4	1642,6	1676,4
Кол-во сух. кол. газа, м ³ /т	1661,9	1639,6	1696,2
Прямое восст-е оксида Fe, %	26,4	24,6	28,5
Степень испол-ния газов, %:			
оксида углерода	48,45	49,84	46,72
водорода	48,43	49,83	46,69
общая	48,45	49,84	46,71
Расход углерода, кг/т: общ.	358,2	351,9	367,2
Сжигаемый у фурм из кокса	249,2	246,7	253,9

На прямое восст-е железа	53,61	49,94	57,86
На восст-е легирующих	6,58	6,58	6,58
Кислород шихты, кг/т	398,6	398,6	398,6
Общий приход тепла, кДж/кг	4363,7	4323,7	4437,9
в т. ч.: горение кокса	2445	2420	2491
тепло дутья и доб.	1860,4	1845,4	1888,1
энтальпия шихты при загрузке	58,35	58,17	58,59
Потребность тепла, кДж/кг	3184,5	3133,7	3244,2
в т.ч.: восстан-е железа и л/в эле-			
ментов	662,1	616,3	714,9
восстан-е легир. и перевод серы в			
шлак	217,1	216,9	217,4
разлож. карбонатов	9,3	6,8	12,8
испар. влаги шихты	10,31	10,23	10,42
теплосодерж. чугуна	1276,1	1276,1	1276,1
теплосодерж. шлака	550,9	548,8	553,7
работа расширения газа	458,8	458,6	458,8
Теплосодержание кол. газа	726,6	722,5	711,8
Остаточное тепло	452,7	467,5	481,9
В т.ч.потери на фурменных			
приборах	102,8	102,1	104,0
Доля полезного тепла, %	73,0	72,5	73,1
Отношение водяных чисел	0,796	0,799	0,792
Теплотвор. кол. газа, кДж/м ³	3485,534	3390,748	3599,190
1	2	3	4
Скорость газов, м/сек:			
на кол-ке при норм. усл-ях	2,04	2,04	2,06
при факт. усл–ях	1,37	1,37	1,36
в шахте при норм. усл-ях	1,12	1,12	1,13
при факт. усл–ях	1,75	1,74	1,76
Газопроницаемость: общая	19,6	19,5	19,8
верха	45,7	45,5	45,9
низа	14,0	13,9	14,2
Интенсивность, кг кокса/м ³ сут	729,2	721,7	739,2
То же по рудной сыпи	2789,6	2810,5	2758,4
Дутьевая струя у фурм:			
скорость, м/сек	246,4	246,5	246,8
температура, ⁰ С	1253,6	1254,1	1252,7
мощность струи, кВт	135,3	135,0	136,2

Из приведенных данных следует, что по сравнению с фактическим распределением PH расход кокса может быть уменьшен на 7,2 кг/т (1,75%) при переходе к равномерному распределению PH, а параболическое распределение PH дает увеличение расхода кокса на 10,4 кг/т (2,5%). Общий диапазон возможного изменения расхода кокса при варьировании распределением PH на колошнике составляет в данном случае 4,25 %.

0,5

٥

0

2

4

При этом параметры параболического распределения РН выбраны соответствующими не очень «раскрытой» периферийной зоне (РН =0,7 от средней). Некоторое «раскрытие» периферийной зоны (рис.2 – РН =0,5 от средней) приводит к дополнительному увеличению расхода кокса на 3,33 кг/т (0,78%).

 $= 4E-05x^3 - 0.0432x^2 + 0.5041x - 0.0574$

8

10

12

6

Рис. 2. Параболическое распределение РН при периферийной PH= 0,5 от средней. Показатели: расход кокса - 426,0 кг∕т; производительностть $1,751 \text{ t/(M}^{3} \cdot \text{cyt}); r_{d}$ =29.1%: t_v=242°C: остаток тепл. ба-(потери)ланса 484 кДж/кг чуг.

Основными факторами сокращения расхода кокса при переходе к распределениям PH, близким к равномерному, являются уменьшение степени прямого восстановления r_d с 28,5–29,1 до 24,6 % и сокращение потерь теплоты на 6 – 6,5 % (отн.). Термохимический «механизм» указанных результатов плавки можно наблюдать по расчетным параметрам температурных и концентрационных полей доменной печи при рассматриваемых режимах (рис. 3 – 7, табл.2).

Таблица 2 – Пер	епад температ	гур между	газами и	материалами	в различ-
ных ВТЗ и РКЗ п	ри разном рас	пределени	и РН на к	олошнике:	

Фактическом										
	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ
BT3	1	2	3	4	5	6	7	8	9	10
0	469	214	176	226	219	207	195	178	109	245
1	373	120	69	135	127	114	100	79	1,0	144
2	361	104	48	123	113	99	84	60	1,0	170
3	347	82	21	102	92	78	61	35	1,0	168
4	360	85	11	106	100	81	60	28	2,3	179
5	367	91	9,0	98	85	87	66	34	1,0	207
6	381	100	2,0	112	97	97	73	34	2,3	234
7	590	432	383	442	440	427	415	377	314	237
8	547	411	362	420	418	407	396	358	299	249
9	505	429	398	432	432	426	420	389	353	296
10	497	503	497	500	502	503	503	483	480	397
11	509	517	515	515	516	517	517	500	514	458
12	498	498	498	497	497	498	498	481	501	498
				Pa	авномеј	рном				
	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ
BT3	1	2	3	4	5	6	7	8	9	10
0	426	193	192	191	191	190	189	188	187	243
1	329	88	90	90	90	90	90	89	89	137
2	317	69	69	70	70	70	70	70	70	166
3	302	43	44	44	44	45	45	45	45	163
4	314	35	36	37	38	38	39	39	40	177
5	321	40	41	42	43	44	45	46	46	204
6	336	42	44	46	47	48	50	51	52	225
7	549	361	362	362	362	362	362	362	362	213
8	507	339	340	340	340	341	341	341	341	230
9	465	364	364	364	364	364	364	364	364	270
10	457	452	452	452	451	451	451	450	450	366
11	468	473	473	473	473	472	472	472	472	422
12	455	459	459	459	459	459	459	458	458	455
-	Параболическом									
	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ	РКЗ
BT3	1	2	3	4	5	6	7	8	9	10
0	507	310	214	162	69	67	74	172	219	372

1	426	244	135	66	1,0	1,0	1,0	85	147	289
2	420	251	126	48	25	26	21	70	142	327
3	413	239	123	37	1,0	1,0	1,0	67	128	344
4	428	258	125	24	1,0	1,0	1,0	59	139	375
5	439	273	120	19	1,0	1,0	1,0	57	160	422
6	457	302	138	10	1,0	1,0	1,0	60	182	454
7	667	568	487	430	331	327	338	448	507	510
8	623	538	467	411	324	321	328	431	484	499
9	581	529	489	463	404	402	408	475	500	490
10	568	568	568	576	551	550	555	578	572	517
11	577	582	580	588	578	577	581	589	585	549
12	567	567	561	566	563	561	566	567	567	567

При переходе от фактического к равномерному распределению РН происходит уменьшение высоты «критической» РКЗ при некотором увеличении высот остальных РКЗ и их выравнивании (рис.3). Это благоприятно сказывается на развитии процесса теплообмена в зонах: если при фактическом распределении РН в РКЗ №9 наблюдается вырождение двухступенчатой схемы теплообмена, при котором разность температур газа и шихты в ВТЗ № 1–6 (табл.2) близка к нулю (обозначена как 1,0), то при равномерном распределении РН теплообмен во всех РКЗ двухступенчатый (минимальная разность температур газа и шихты составляет 35–40°). При этом повышается равномерность температурного и концентрационного полей печи (рис.4–6). Указанные изменения отвечают более устойчивому ходу процессов [2].

Переход от фактического к параболическому распределению PH способствует сдвигу процессов в направлении, обратном изложенному (рис. 3 – 6, табл.2). Высота «критической» зоны увеличивается при резком уменьшении высоты периферийной и прилегающих к ней PK3. В результате этого вырождение двухступенчатой схемы теплообмена в BT3 № 1–6 происходит сразу в нескольких PK3 (№ 5–7), увеличивается неравномерность температурного и концентрационного полей печи, что способствует уменьшению устойчивости хода процессов.

На рис. 7 приведены графики, отражающие развитие степени прямого восстановления в различных РКЗ при разных распределениях РН. Из графиков следует, что минимальное развитие процесса прямого восстановления и соответствующего теплопотребления на этот процесс при всех условиях имеет место на периферии, несколько выше – в центре и наиболее высокое развитие – в промежуточных зонах. Указанная закономерность аналитически установлена впервые и имеет экспериментальное подтверждение в работах К.М.Бугаева [3]. Аналитическое изучение вопроса на основе численных экспериментов позволит в дальнейшем углубить понимание закономерностей и выполнить их количественную оценку.

Рис. 5а. Температурное поле доменной печи при фактическом распределении РН. (по вертикали - расстояние от уровня засыпи, по горизонтали - расстояние от центра)

ŵ

9

ŝ

15

20

25

30

35

Рис. 56. Температурное поле доменной печи при равномерном распределении РН. (по вертикали - расстояние от уровня засыпи, по горизонтали - расстояние от центра, м)

Температура газов: Т, 0С

Рис. 5в. Температурное поле доменной печи при параболическом распределении РН. . (по вертикали - расстояние от уровня засыпи, по горизонтали - расстояние от центра)

Температура материалов :t, C

Рис.6. Концентрационное поле печи при различном распределении РН. (фактическое – слева, равномерное – посередине, параболическое – справа)

В рассматриваемом случае равномерное распределение r_d по РКЗ № 2 – 9 позволило получить меньшее ее среднее значение в сравнении с фактическим распределением РН (на 1,8%) и еще меньшее (на 3,9 – 4,5%) в сравнении с параболическим. Данный фактор был определяющим в формировании величины экономии кокса.

Общая экономия кокса при переходе от параболического распределения PH, характерного для K3У, к равномерному и близким к нему распределениям, характерным для БЗУ, составляет по результатам расчета (табл.1, рис.2) величину 3 – 4 %. С учетом ожидаемого улучшения устойчивости процессов (см. выше) возможно сокращение технологического «запаса» теплоты в горне и соответствующее уменьшение содержания кремния в чугуне и расхода кокса. В результате ожидаемая экономия кокса составит 4 – 5 %.

Полученная расчетом величина экономии кокса соответствует установленной нами ранее на основе баланса факторов ДП №№ 5 и 6 Новолипецкого меткомбината фактической величине экономии при сравнении показателей работы указанных печей, из которых на ДП–5 было установлено КЗУ, на ДП–6 – БЗУ [4].

Заключение

1. Выполненные по разработанной ранее методике аналитические исследования позволили установить следующие закономерности:

1.1. Минимальное развитие процесса прямого восстановления и соответствующего теплопотребления на этот процесс при всех условиях имеет место на периферии, несколько выше – в центре и наиболее высокое развитие – в промежуточных зонах.

1.2. При реальных распределениях шихты на колошнике в большинстве случаев существуют кольцевые сечения, в которых имеет место вырождение двухступенчатой схемы теплообмена по высоте. Наличие таких РКЗ способствует уменьшению устойчивости процессов и дополнительному расходу топлива. Увеличение равномерности распределения материалов на колошнике при удачном выборе центральной «отдушины» способствует уменьшению количества таких РКЗ с повышением устойчивости процессов и сокращением расхода топлива.

2. Впервые дана количественная аналитическая оценка влияния типичных для КЗУ и БЗУ показаны возможности улучшения распределений материалов на колошнике на расход кокса в доменной плавке:

Общая величина экономии кокса при переходе от параболического распределения PH, характерного для КЗУ, к равномерному и близким к нему распределениям, характерным для БЗУ, составляет по результатам расчета величину 3 – 4 %. С учетом ожидаемого улучшения устойчивости процессов ожидаемая экономия кокса составит 4 – 5 %. Полученная расчетом величина экономии кокса соответствует установленной на основе

баланса факторов ДП №№ 5 (КЗУ) и 6 (БЗУ) Новолипецкого меткомбината фактической величине экономии.

- Методика численного анализа процессов доменной плавки в радиальных кольцевых сечениях по высоте доменной печи / И.Г.Товаровский, В.И.Большаков, А.П.Иванов, Е.А.Белошапка // Фундаментальные и прикладные проблемы черной металлургии. Выпуск 10–2005.– С. 49–61.
- Товаровский И.Г. Доменная плавка. Эволюция, ход процессов, проблемы и перспективы // Днепропетровск: «Пороги», –2003.–597 с.
- 3. Исследование процессов газораспределения, восстановления и теплообмена в доменной печи по экспериментальным данным / Бугаев К.М., Косолап Н.В., Любимов В.С. и др.// Теория и практика производства чугуна. Труды международной научно-технической конференции, посвященной 70-летию КГГМК «Криворожсталь». г. Кривой Рог, 24–27 мая 2004 г. –С.343–356.
- Большаков В.И., Товаровский И.Г., Шутылев Ф.М. Оценка эффективности применения загрузочных устройств на доменных печах // Сталь. – 2005. – № 7.– С. 17–20.

Статья рекомендована к печати к.т.н. И.Г.Муравьевой