УДК 541.1:661.657

В. З. Туркевич, И. А. Петруша, Д. В. Туркевич, С. Н. Дуб, Н. Н. Белявина (г. Киев) Н. Фраге, Н. Фрумина (г. Бер-Шева, Израиль)

Образование фаз в системе В—ВN—В₂O₃ при высоких давлениях и температурах, их смачиваемость расплавами на основе меди

В аппарате высокого давления типа "тороид" из исходных β ромбоэдрического или аморфного бора, гексагонального графитоподобного нитрида бора hBN и аморфного оксида бора B_2O_3 при давлении 8 ГПа и температурах 2100—2900 К получены многофазные материалы, включающие субнитрид бора B_6N , субоксид бора B_6O и кубический нитрид бора cBN; измерена их твердость. Образование тройных фаз в системе B—BN— B_2O_3 не наблюдали. Изучена смачиваемость полученных материалов расплавами на основе меди. Установлено, что введение 10 % (мол.) Ті в расплав меди снижает контактный угол до величины менее 20 град.

Ключеые слова: субоксид бора, субнитрид бора, высокие давления и температуры, синтез, смачивание.

Введение. Соединения бора характеризуются короткой ковалентной связью, имеют уникальные кристаллографические и физикохимические свойства, высокую твердость. Они стали основой для создания ряда тугоплавких и сверхтвердых материалов, наиболее распространенными из которых являются кубический нитрид бора cBN и карбид бора B₄C [1]. Указанные особенности присущи еще двум соединениям бора — субоксиду B₆O и субнитриду B₆N, которые получают в результате химической реакции бора с оксидом бора B₂O₃ и нитридом бора BN соответственно. Краткий анализ литературных источников, содержащих информацию о методах получения B₆O и B₆N и их свойствах, опубликован в [2—4]. В этих работах построены диаграммы состояния двойных систем B—B₂O₃ и B—BN при высоких давлениях.

Взаимодействие субоксида бора B₆O с гексагональным графитоподобным нитридом бора hBN при высоком давлении изучено в [5]. Установлено, что при температурах выше 2300 К hBN сильно текстурируется, а B₆O распадается с образованием черной стеклоподобной фазы с твердостью 37,3 ГПа, которая содержит включения с твердостью 48,9 ГПа.

В [6] описаны результаты экспериментов по горячему прессованию B_6O с добавками алюминия при 2170 К и 50 МПа. Показано, что образующийся в этом случае на границах зерен B_6O оксид алюминия Al_2O_3 препятствует образованию B_2O_3 и приводит к шестикратному увеличению трещиностойкости поликристаллического материала, которая достигает ~ 3,5 МПа·м^{1/2}.

Высокотемпературное смачивание в различных системах керамикаметалл детально обсуждено в работах Найдича [7—9]. Существует неболь-

ISSN 0203-3119. Сверхтвердые материалы, 2008, № 1

[©] В. З. ТУРКЕВИЧ, И. А. ПЕТРУША, Д. В. ТУРКЕВИЧ, С. Н. ДУБ, Н. Н. БЕЛЯВИНА, Н. ФРАГЕ, Н. ФРУМИНА, 2008

шое количество исследований, посвященных смачиванию BN жидкими металлами. По способности вступать во взаимодействие с нитридом бора металлы могут быть разделены на две группы: реакционноспособные металлы (Ti, Al, Fe, Ni) которые могут реагировать с нитридом бора и образовывать новые нитриды и бориды, и нереакционноспособные (Cu, Ag, Au, Sn), взаимодействие с нитридом бора которых сводится к ограниченной растворимости или разложению последнего без образования новых фаз. Как показано в [7] угол смачивания нитрида бора нереакционноспособными металлами составляет 135—150 град. Известно, что смачивание бескислородной керамики нереакционноспособными металлами может быть существенно улучшено добавлением активного компонента. Введение Ті в расплав меди или сплав Ад—Си позволяет существенно снизить их контактный угол с поверхностью ВN при 1150 °С [10]. Улучшение смачиваемости в системах BN/Me—Ti было объяснено образованием слоев микронной толщины, обогащенных титаном, однако тип соединений с Ті идентифицирован не был. Помимо факторов, указанных выше, на смачиваемость BN существенное влияние может оказать процесс окисления, приводящий к образованию на поверхности нитрида бора слоев оксидов и оксинитридов [11].

В настоящей работе исследовано взаимодействие бора и оксида бора B_2O_3 с hBN при давлении 8 ГПа в диапазоне температур 2100—2900 К. Изучено смачивание поликристаллических материалов, образовавшихся в результате взаимодействия, расплавами меди и медно-титанового сплава.

Исходные материалы. В качестве исходных веществ были использованы: высокочистый кристаллический β -ромбоэдрический бор (общее количество примесей — менее 0,2 %^{*}, полученный в Институте проблем материаловедения им. И. Н. Францевича НАН Украины дуговым переплавом аморфного бора в атмосфере аргона и измельченный в твердосплавной ступке до размера частиц менее 50 мкм; аморфный бор, содержащий до 3,5 % кислорода в состоянии поставки; гексагональный графитоподобный нитрид бора (97,8 % основной фазы) производства ООО ЗАК, измельченный перед использованием в планетарной мельнице в течение 3 мин; порошок B₂O₃ в состоянии поставки, из которого для приготовления смесей была выделена фракция частиц менее 50 мкм.

Смешивание реакционных компонентов выполняли сухим способом путем трехкратного пропускания смеси через сито с размером ячеек 80×80 мкм. Полидисперсный β -ромбоэдрический бор использовали для приготовления реакционных смесей с порошками hBN и B₂O₃ (табл. 1, составы 1, 3 и 4). Аморфный бор использовали только в комбинации с hBN (состав 2).

Состав	Содержа	ние компоненто % мол./мас.	Предполагаемая	
	В	hBN	B_2O_3	реакция
1	83,3/68,6	16,7/31,4	_	$5B + BN = B_6N$
2	83,3/68,8	16,7/31,2	_	$5B(O_{0,024}) + BN = B_6O_{0,024}N$
3	94,1/71,3	—	5,9/28,7	$16B + B_2O_3 = 3B_6O$
4	76,5/49,3	17,6/26,2	5,9/24,5	$13B + 3BN + B_2O_3 = 3B_6(O, N)$

Таблица 1. Составы исходных реакционных смесей

* Состав исходных веществ дан в % (по массе).

Методики исследований. Эксперименты при высоких давлениях выполнены с использованием аппарата типа "тороид" с диаметром центрального углубления 30 мм. Давление в ячейке с образцом измеряли при комнатной температуре по фазовым превращениям в реперных материалах Bi и PbSe. Температуру в диапазоне 300—2270 К определяли по ранее установленной зависимости между мощностью тока в электрической цепи нагревателя и термо-э.д.с. термопары Pt—6 % Rh/Pt—30 % Rh. В экспериментах с более высокими температурами использовали экстраполяцию полученной зависимости.

Из-за большого насыпного объема подготовленных реакционных смесей их предварительно компактировали давлением 4 т/см² в стальной прессформе. Из полученных компактов готовили пресс-порошок (сухое гранулирование) с размером частиц менее 0,5 мм. Полученный пресс-порошок повторно прессовали при давлении 5,4 т/см², чтобы получить образец в виде таблетки диаметром 12 мм и высотой 6 мм. После такого двухэтапного прессования плотности полученных таблеток достигали примерно 80 % от максимальных (расчетных) значений плотности, соответствующих беспористым материалам аналогичных составов (табл. 2). Расчет выполнен, исходя из следующих значений плотности исходных компонентов смеси: $B_{\kappa p} - 2,34$, $B_{am} - 1,73$, hBN — 2,28 и $B_2O_3 - 1,84$ г/см³. Отметим, что плотность компактного образца, полученного прессованием смеси без ее предварительного гранулирования (смесь 3, табл. 2) оказывается примерно на 13 % ниже уровня, достигаемого при двухэтапном прессовании.

Таблица 2. Плотнос	ть исходных компактных	собразцов	, применяемых
в экспериментах			

Coorap*	Плотность образца				
COCTAB	абсолютная, г/см ³	относительная, %			
1	1,83	78,8			
2	1,44	76,9			
3	1,66	76,4			
4	1,83	83,8			

* См. табл.1

Подготовленные таким образом компактные образцы помещали в капсулы из спрессованного hBN с толщиной стенки 1 мм, что позволяло исключить возможное химическое взаимодействие компонентов реакционной смеси с графитовым нагревателем при высоких температурах. Капсулу с образцом размещали в центральной части специальной высокотемпературной ячейки высокого давления типа [12], применение которой позволяет создавать в образце почти безградиентное тепловое поле. После создания давления 8 ГПа образец нагревали до требуемой температуры из диапазона 2100—2900 К, равномерно поднимая мощность до необходимого уровня в течение 5 с. Длительность высокотемпературного воздействия составляла 30 с, после чего в течение 5 с снижали мощность, размыкали электрическую цепь нагревателя и снимали давление.

После термобарического воздействия образец извлекали из ячейки вместе с окружающей его капсулой из нитрида бора, которая легко отделялась от графитового нагревателя. Чтобы вскрыть капсулу, окружающую образец, и углубиться в объем образца его сошлифовывали со стороны плоской части свободным алмазным абразивом на чугунном диске и далее полировали полученную поверхность.

Рентгеновскую съемку образцов в медном излучении с длиной волны $\lambda_{CuK\alpha} = 1,54$ Å осуществляли от плоскости аншлифа на дифрактометре ДРОН-3. Состав фаз и их содержание в полученных материалах устанавливали при анализе рентгенограмм, учитывая соотношение интенсивностей дифракционных линий и отражательную способность плоскостей.

Эксперименты по смачиванию полированной поверхности образца выполняли с использованием метода покоящейся капли при 1423 К в высоковакуумной камере, оснащенной резистивным молибденовым нагревателем. Спай термопары Pt/Pt—10 % Rh крепили под тонким керамическим держателем, на котором располагался смачиваемый образец. Сплав Cu—10 % (мол.) Ті был приготовлен совместной плавкой необходимых количеств меди и титана. Контактные углы были измерены на увеличенных цифровых изображениях капли расплавленного металла. После кристаллизации и полного остывания капли отделяли от образцов и производили изучение поверхностей раздела и их химического состава методом энергодисперсионной спектроскопии (SEM-EDS).

Твердость по Кнупу образцов устанавливали по стандартной методике с применением алмазного индентора, нагружаемого усилием 4,9 Н.

Экспериментальные результаты и обсуждение. Компактные исходные образцы, полученные из различных реакционных смесей (см. табл. 1), по указанному выше режиму нагрева подвергали воздействию температур 2100, 2500 и 2900 К в условиях давления 8 ГПа, созданного в ячейке при 300 К. Отметим, что при нормальном давлении температуры плавления кристаллических оксида бора и β-ромбоэдрического бора составляют соответственно 723 и 2303—2348 К. При 8 ГПа β-ромбоэдрический бор, по крайней мере при 2900 К, должен находиться в расплавленном состоянии.

Данные предварительного рентгеновского анализа показали, что в образце исходного состава 1 при 2100 К реакция 5В + ВN = B_6N протекает очень медленно. На дифрактограммах полученного образца, наряду с линиями B_6N , присутствуют довольно интенсивные линии β -бора и hBN. Наличие значительного количества непрореагировавшего hBN было причиной низкой плотности и прочности трехфазного материала образца. Прямое фазовое превращение hBN \rightarrow cBN при этой температуре не зафиксировано ни в образце, ни в материале капсулы.

После воздействия температурой 2500 К образец становился более плотным и твердым, а в материале капсулы наблюдали частичное или полное (в наиболее нагретых участках) преобразование hBN в cBN, сопровождающееся значительным отрицательным объемным эффектом превращения. Следствием неполного фазового перехода было разрушение капсулы вместе с образцом из-за термобарических напряжений, возникающих при охлаждении и снятии давления. Очевидной причиной этого являются большие различия в КТР и упругих модулях различных фаз в образце и капсуле.

В результате термобарического воздействия при 2900 К графитоподобный ВN капсулы полностью превращается в сВN, образуя плотную, неотделимую от образца непроницаемую оболочку. Предполагается, что этот фактор способствует снижению вероятности разгерметизации ячейки высокого давления в момент появления подвижных расплавов в образце при высокой температуре эксперимента. Полученные при этой температуре спеки сохраняют целостность, хотя на полированной поверхности материала образцов выявляются тонкие нитевидные трещины (рис. 1).

Аналогичное поведение наблюдали в экспериментах с другими составами. Поэтому дальнейшие исследования были проведены только для образцов, полученных при температуре 2900 К. Фазовый состав полученных материалов и их твердость представлены в табл. 3.

В качестве примера на рис. 2 приведен дифракционный рентгеновский спектр, полученный от аншлифа образца 2.

Отметим, что полученные материалы на основе субнитрида бора B_6N (образцы 1 и 2) имеют

Рис. 1. Внешний вид полированной поверхности образца, полученного из состава 1 при 2900 К и 8 ГПа: *1* — образец (внутри пунктирной линии); *2* — капсула из кубического нитрида бора (скол в верхней части).

черный цвет с синеватым оттенком как в изломе, так и на поверхности аншлифа, при механической обработке эффект полировки достигается быстро. Материалы на основе субоксида бора B_6O (образцы 3 и 4) имеют сероватооранжевый цвет, поверхность плохо полируется. При контакте образцов с влагой на их поверхности образуется тонкий белый налет, вероятно, борной кислоты из-за взаимодействия воды с B_2O_3 , который содержится в заметном количестве в материале. Образование тройных фаз в системе B—BN— B_2O_3 при 8 ГПа и 2900 К не зафиксировано.

Образец*	Содержание фазы, % (по массе)						Твердость	
	B ₆ O	B ₆ N	cBN	B_2O_3	β-бор	α-бор	по Кнупу, ГПа	
1	_	73	14	_	_	13	35,4	
2	_	66	20	_	4		26,3	
3	60	_	16	24	_		14,3	
4	55	_	17	28	_	_	10,7	

Таблица 3. Результаты рентгенофазового анализа и твердость материалов на основе В₆О и В₆N, полученных при 8 ГПа и 2900 К

* Соответствует номеру состава (см. табл. 1).

На дифрактограмме образца 1 кроме линий фаз B_6N и cBN присутствуют слабые сильно уширенные линии фазы, которую, вероятней всего, можно отнести к α -ромбоэдрическому бору, кристаллизующемуся из расплава при его охлаждении. В образце 2, исходная реакционная смесь которого содержала аморфный бор, из расплава кристаллизуется небольшое количество β -ромбоэдрического бора (см. табл. 3).

Во всех образцах в заметном количестве присутствует кубический нитрид бора. Очевидно, при нагревании происходит два конкурирующих процесса химическое взаимодействие прекурсоров и превращение hBN в cBN. Кинетика второго, более быстрого процесса обеспечила образование cBN до полного протекания реакции взаимодействия исходных веществ. Заметим, что реакционная способность кубического нитрида бора должна быть ниже, чем у метастабильной графитоподобной модификации. Кроме этого, предполагается, что имело место частичное растворение материала капсулы в расплаве $B - B_6 N$, чем объясняется избыточное содержание нитрида бора в материале по отношению к непрореагировавшему бору в сравнении с соотношением их количеств в исходной реакционной смеси.

Рис. 2. Дифракционный рентгеновский спектр образца 2, полученного при 8 ГПа и 2900 К из исходной смеси, содержавшей (в % (мол.)) 83,3 аморфного бора и 16,7 hBN.

Наличие cBN в образце 3, в реакционной смеси которого hBN отсутствовал, также объясняется растворением капсулы из нитрида бора в расплаве В—B₂O₃ при температуре 2900 К и его последующей кристаллизацией в виде кубической модификации.

Отличительной особенностью структуры cBN во всех полученных образцах является существенно увеличенный параметр решетки a = 0,3617 - 0,3619 нм по сравнению с установленными значениями для монокристаллов (0,3615—0,3616 нм) [13, 14], что может свидетельствовать об образовании твердых растворов кислорода и бора в решетке cBN.

При подготовке аншлифов было отмечено, что образцы 1 и 2, содержащие B_6N , обладают существенно более высокой стойкостью к абразивному износу, чем образцы 3 и 4, содержащие B_6O . Прямые измерения показывают, что твердость композитов с B_6N снижается по мере уменьшения в нем количества субнитрида бора (см. табл. 3). Низкая твердость композитов с B_6O обусловлена наличием в материале остаточного B_2O_3 . В процессе подготовки аншлифов было также обнаружено, что в образце 3 имеется тонкий (100— 200 мкм), очень твердый и стойкий к абразивному износу промежуточный слой черного цвета, расположенный между образцом и капсулой из сBN. Состав слоя идентифицировать не удалось.

Эксперименты по смачиванию поверхности образцов расплавом чистой меди при 1423 К в течение 30 мин показали, что для всех композитов наблюдается большой (~ 120°) контактный угол смачивания, что также характерно и для поликристаллического сВN, использованного в качестве образца сравнения. Поверхности раздела медной капли и образцов были чистыми и гладкими, а в случае образцов 3 и 4, содержащих значительное количество B₆O, заметно окисленными.

Введение 10 % (мол.) Ті в расплав меди привело к снижению контактного угла при смачивании поликристаллического cBN до 20°. Этот же расплав полностью смачивает и поверхность образца 1, содержащего 73 % (по массе) B_6N . Частичное растекание зафиксировано на образце 2. Поверхность капли после смачивания образцов 3 и 4 оказалась сильно окисленной. Причиной та-

кого поведения является, возможно, частичная диссоциация материала образцов, приводящая к повышенному содержанию кислорода в зоне контакта.

Результаты SEM-EDS анализа, свидетельствующие об образовании переходной зоны в области контакта расплава Cu—10 % Ti с поверхностью образца 2 (рис. 3), приведены в табл. 4.

Таким образом, введение титана в медь обеспечивает необходимую адгезионную активность расплава по отношению к нитриду бора и композитам на основе B_6N и B_6O , что может быть использовано в технологиях пайки полученных материалов.

Рис. 3. Структура поверхности раздела на образце 2 после ее смачивания расплавом Си— 10 % (мол.) Ті при 1423 К, 15 мин.

Таблица 4. Результаты SEM-EDS анализа поверхности образца 2 после ее смачивания расплавом Cu—10 % (мол.) Ті при 1423 К, 15 мин

Точки	Содержание элементов, % (ат.)						
	В	N	0	С	Ti	Cu	
1	0	0	10,3	32,2	42,7	24,6	
2	0	0	12,8	7,5	37,3	42,5	
3	0	0	2,8	9,3	20,9	67,0	
4	12,1	12,1	19,1	3,0	61,3	4,5	
5	0,0	0,0	9,0	7,1	36,0	47,8	

Заключение

При исследовании системы В—BN—B₂O₃ установлено, что в результате нагревания при давлении 8 ГПа исходных смесей составов 5В + BN и 16В + B_2O_3 до температур, превышающих температуру плавления B_6N и B_6O , и последующей закалки продуктов реакций образуются композиционные материалы соответственно на основе субнитрида B_6N и субоксида бора B_6O . Второстепенными фазами первого композита являются сBN и бор в небольших количествах. Во втором композите присутствуют сBN и B_2O_3 . Образование тройных соединений в системе В—BN— B_2O_3 при высоких давлениях и температурах не установлено. Полученные результаты свидетельствуют также, что расплавы составов 5В—BN и 16В— B_2O_3 в условиях термобарического воздействия при 2900 К частично растворяют материал капсулы из нитрида бора. При кристаллизации расплавов образуются трехфазные материалы соответственно на основе B_6N и B_6O , что, очевидно, связано с типом диаграммы состояния системы B—BN— B_2O_3 .

Композит на основе субнитрида B₆N более привлекателен с точки зрения практического применения, в том числе в качестве режущего материала, так как обладает высокой твердостью. В дальнейшем необходимы комплексные

исследования физических, физико-механических свойств полученного материала для поиска эффективных областей его использования.

При смачивании расплавом меди поверхности композиционных материалов на основе B_6N и B_6O , а также чистого поликристаллического cBN, контактный угол капли составляет ~ 120°. Расплав меди, содержащий адгезионно активную добавку (10 % (мол.) Ti), с поверхностью поликристалла cBN образует контактный угол до 20° и обеспечивает полное смачивание композита на основе B_6N . При смачивании материалов, содержащих B_6O , наблюдается сильное окисление поверхности металлических капель.

Работа выполнена при финансовой поддержке в рамках совместной украино-израильской программы исследовательских проектов.

- 1. Синтетические сверхтвердые материалы. В 3 т. Т. 1. Синтез сверхтвердых материалов / Отв. ред. Н. В. Новиков. Киев: Наук. думка, 1986. 280 с.
- Соложенко В. Л., Куракевич А. А., Туркевич В. З., Туркевич Д. В. Синтез субоксида бора В₆О при давлениях до 1 ГПа // Сверхтв. материалы. — 2005. — № 3. — С. 14—18.
- Соложенко В. Л., Туркевич В. З., Туркевич Д. В. Диаграмма состояния системы В—В₂O₃ при высоких давлениях // Там же. — 2005. — № 6. — С. 27—34.
 Туркевич В. З., Соложенко В. Л., Туркевич Д. В. Взаимодействие фаз в системе В—ВN
- Туркевич В. З., Соложенко В. Л., Туркевич Д. В. Взаимодействие фаз в системе В—ВN при высоких давлениях и температурах // Породоразрушающий и металлообрабатывающий инструмент — техника и технология его изготовления и применения. Сб. науч. трудов. — Киев: ИСМ НАН Украины, 2006. — Вып. 9. — С. 163—167.
- Шульженко А. А., Соколов А. Н., Дуб С. Н., Белявина Н. Н. / Кристаллическая структура и свойства сверхтвердых фаз, образующихся в системе В—В₂O₃—ВN_г в условиях высоких давлений и температур // Сверхтв. материалы. — 2000. — № 2. — С. 30—35.
- Shabalala T. C., McLachlan D. S., Sigalas I. J., Herrmann M. Hard and tough boron suboxide based composites // Advances in Science and Technology. — 2006. — 45. — P. 1745—1750.
- Naidich Ju.V. The wettability of solids by liquid metals // Prog. in Surf. Membr. Sci. 1981. — 14. — P. 353—454.
- Delannay F., Froyen L., Deruyttere A. The wetting of solids by molten metals and its relation to the preparation of metal-matrix-composites // J. Mater. Sci. — 1986. — 22. — P. 1—16.
 Wettability at High Temperatures. Ed. by N. Eustathopoulos, M.G. Nicholas, B. Devet. —
- Wettability at High Temperatures. Ed. by N. Eustathopoulos, M.G. Nicholas, B. Devet. N. Y.: Pergamon Materials Series, 1999. – 437 p.
- Nicholas M.G., Mortimer D.A., Jones L.M. and Crispin R.M. Some Observations on the Wetting and Bonding of Nitride Ceramics // J. Mater. Sci. — 1990. — 25. — P. 2679—2689.
- 11. Перевертайло В. М., Смехнов А. А., Кузенков С. П., Логинова О. Б. Влияние химического модифицирования поверхности поликристаллов КНБ на смачиваемость и адгезию контактирующих фаз // Сверхтв. материалы. — 1994. — № 1. — С. 18—22.
- 12. *Пат. 70815 Україна, МПК В 01 J 03/06*. Пристрій для створення високого тиску та температури / А. Г. Гаран, І. А. Петруша, А. С. Осіпов. — Заявл. 30.12.03; Опубл. 15.10.04, Бюл. № 10.
- 13. *Курдюмов А. В., Бритун В. Ф., Боримчук Н. И., Ярош В. В.* Мартенситные и диффузионные превращения в углероде и нитриде бора при ударном сжатии. — Киев: Изд-во "О. О. Куприянова", 2005. — 192 с.
- 14. Solozhenko V. L., Chernyshev V. V., Fetisov G. V. et al. Structure analysis of the cubic boron nitride crystals // J. Phys. Chem. Solids. 1990. **51**, N 8. P. 1011—1012.

Ин-т сверхтвердых материалов

Поступила 12.09.07

им. В. Н. Бакуля НАН Украины Ун-т Бен Гуриона