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is solved numerically. The spatial dependence of the plasma electron density for various times is obtained. 
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INTRODUCTION 

In the plasma of the Earth's ionosphere and magne-

tosphere near the auroral zone, satellites and sounding 

rockets have detected regions with a depleted density of 

plasma and an increased level of oscillations in the low-

er hybrid frequency range which are called lower hybrid 

cavities (LHC) [1 - 8]. The measurements showed that 

the LHC are cylindrical regions elongated along the 

geomagnetic field. Their perpendicular size is 

10…100 m which is equal to a few ion gyroradii, while 

along the geomagnetic field LHC extends for several 

kilometers, and possibly for tens or hundreds of kilome-

ters. As an explanation for this phenomenon, it was 

suggested in [9 - 12] that LHCs appear as a result of 

modulation instability and lower hybrid collapse. How-

ever, it was shown in [13] that this model does not cor-

respond to the properties of most of the observed cavi-

ties. In [14], another mechanism for the occurrence of 

LHC was proposed, which assumes the appearance of 

an ion density cavity due to their expulsion from a cer-

tain volume by inhomogeneous stochastic oscillations 

with a frequency of the order of the lower hybrid fre-

quency. A similar effect of electron expulsion due to an 

inhomogeneous harmonic electric field was considered 

in [15]. 

In [16], the diffusion and drift motion of both ions 

and electrons across the magnetic field due to the action 

of inhomogeneous stochastic electric fields was studied. 

It was shown that the movement of electrons is much 

faster than that of ions, so that the formation of an elec-

tron cavity occurs much earlier than an ionic one. In 

[17, 18], the influence of the thermal motion of plasma 

particles on the conditions for the formation of a cavity 

was studied. In particular, it was shown that an electron 

density cavity can form if, during the formation of the 

cavity, the electrons do not leave the region with an 

increased level of oscillations along the magnetic field. 

Based on the Fokker-Planck equation, the steady state 

plasma density distribution was obtained [16 - 18], as-

suming that the evolution of the distribution function 

has ended.  

In this paper, we study the temporal evolution of the 

formation of an electron cavity. Solving the Fokker-

Planck equation, we obtain the electron density distribu-

tion at various points in time. 

1. DIFFUSION AND DRIFT OF ELECTRONS 

We consider collisionless and initially homogeneous 

plasma in a constant magnetic field H directed along the 

z axis, in which at some time a region with a stochastic 

electric field appears, which is inhomogeneous along 

the x axis and homogeneous in other directions. It is 

assumed that the frequency range of stochastic oscilla-

tions is near the lower hybrid frequency ωlh, which is 

much lower than the electron cyclotron frequency ωce. 

To study changes in time of the spatial distribution 

of the electron density n(x,t) due to inhomogeneous sto-

chastic electrostatic oscillations, we use the one-

dimensional Fokker-Planck equation 
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where A(x) is the drift velocity and B(x) / 2 is the diffu-

sion coefficient of electrons. These values are defined 

from the particle motion equation as the quasi-linear 

drift velocity averaged over a long time and the dis-

placement velocity of the squared rms electron dis-

placement.  

The equation of motion of an electron in constant 

magnetic and stochastic electric fields is 

   , ,
e e

dv e e
F x E r t v H

dt m m
     ,       (2) 

where  ,E r t  is the electric field strength of stochastic 

oscillations far from the region with a high level of tur-

bulence, F(x) is the envelope of stochastic oscillations, 

which has a maximum at x = 0 and F(∞) = 1. 

Neglecting in the zero approximation the influence 

of the stochastic electric field, we obtain the solution of 

equation (2) in the form of integrals of motion 
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z e z

ce ce

v v
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     ,       (3) 

where X and Y are the coordinates of the guiding center 

of electron and pz is the electron momentum along the 

magnetic field. The first two integrals mean the invaria-

bility in time of the coordinates of the guiding center of 

an electron rotating in a magnetic field. 

The next approximation in (2) takes into account the 

effect of stochastic electric fields, which leads to small 

changes in the integrals of motion (3). In this case, the 
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solution of equation (2) is represented as 
0 1e ev v v  , 

where 
0ev  is the electron velocity vector at the initial 

moment of time the components of which are random 

variables distributed according to the normal law, that 

is, 0e Tev v  is the thermal velocity of electrons, 
1ev  is 

the fluctuation of the velocity, caused by stochastic 

electric fields and which is defined by the equation 

   1

1, ,
e e

dv e e
F x E r t v B

dt m m
     .         (4) 

The solutions of (4) for the components of velocity 

are 
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Since it is assumed that the stochastic electric field is 

inhomogeneous along the x axis, the electron density 

changes only along this axis, while in other directions 

the density gradient is zero. Therefore, across the mag-

netic field, the influence of the stochastic field is con-

sidered only on the change in the X-component of the 

coordinate of the guiding center. To define the change 

in X due to stochastic electric fields, the X coordinate is 

written as  

0 1X X X  ,      (8) 

where X1 is the random displacement of the coordinate 

of the guiding center due to stochastic electric fields. 

Using (3) we write  

1 1 1

1
y

ce

X x v


  .     (9) 

In equation (9), the value of x1 is defined by integrat-

ing v1x (5) over time 
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Substituting (6) and (10) into (9) yields 
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Differentiating (9) with respect to time and using (5) 

and (6), we find the rate of change of X1 
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Then multiplying (11) by (12) and averaging over a 

large time interval, we obtain the rate of change of the 

root-mean-square displacement 
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Neglecting the second term in (13) which is much 

smaller than the first one, we obtain 
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We assume that the strength of stochastic electric 

fields satisfies the conditions  

 , 0,E r t   

       2 2, , ,E r t E r t E r t E r   ,      (15)  

where  2E r  is the square of the amplitude of stochas-

tic oscillations which does not depend on time. Taking 

into account the condition (15) we obtain from (14)  

 
   

2 2
1 2 2

2 2

1

2 2
y

e ce

d X B x e
F x E r t

dt m 
  .        (16) 

Equation (16) can also be written as 
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2
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B x
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where   

y

dx

cE
v

H
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is the velocity of the drift motion of electrons in crossed 

electric and magnetic fields along the x-axis. Thus, the 

rate of the root-mean-square displacement of the coor-

dinate of the guiding center along the x-axis is defined 

by the mean value of the square of y-component of the 

stochastic electric field, or, otherwise, by the mean val-

ue of the square of the electron drift stochastic velocity 

in crossed fields. 
The formation of the electron density cavity is influ-

enced by their motion along the magnetic field. In order 

for the cavity to form, it is necessary that during the 

time of the formation of the cavity, the electrons along 

the magnetic field would not leave the region with an 

increased level of oscillations. For this estimate, we 

need to define the electron diffusion coefficient along 

the magnetic field. From (3) and (7) we get 
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where Δω is the width of the spectrum of stochastic 

oscillations which is the order of ωlh [16, 17]. However, 

the effect of the stochastic electric field on diffusion 

along the magnetic field can be neglected in comparison 

with thermal motion, so 
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Comparison of (17) and (19) shows that the diffu-

sion coefficient along the magnetic field is much greater 

than across the magnetic field. 

In order to find the speed of the drift motion of elec-

trons along the x axis A(x) due to the ponderomotive 

force, which caused by the inhomogeneity of stochastic 

oscillations, we represent the random displacement of 

the coordinate of the guiding center as the sum of the 

oscillating and quasilinear components 

1X X X  ,            (20) 
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where 
1X X  and 0X  . Substituting (20) into 

(12), yields 
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Expand envelop function F(x) in a Taylor series 

about the initial value of the position of the coordinate 

of the guiding center  
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and substitute (22) into (21) 
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Then averaging over a large time interval we obtain 

the rate of quasi-linear change in the coordinate of the 

guiding center  
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Since    , , 0x yE r t E r t   we obtain 
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Integration (25) using condition (15) yields 
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and then applying the notation (18) we write this equa-

tion as 
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Equation (26) defines the drift velocity A(x) of the 

guiding center of electron along the x-axis.  

2. TIME EVOLUTION OF THE PLASMA 

ELECTRON DENCITY DISTRIBUTION 

Let us study the evolution of the development of 

electron density cavity in time, assuming that the size of 

the region with an increased level of oscillations along 

the magnetic field is large enough, so that the electrons 

do not have time to leave this region before the cavity is 

formed. Substituting the diffusion coefficient (17) and 

drift velocity (26) into equation (1) yields 
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It is assumed that at the initial time t = 0 the plasma 

density has a uniform distribution n(x) = n0 = const. It 

was shown [17, 18] that due to the action of localized 

stochastic electric fields with an envelope F(x) at the 

end of evolution in a stationary state, i.e., at t = ∞ the 

dependence of the electron density on the x-axis is de-

fined by the relation  
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n x
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Now, using the equation (27), we study the evolu-

tion of the spatial distribution of the electron density, 

i.e. how the density distribution changes over time from 

uniform to (28). To solve the equation (27), we intro-

duce a new unknown function N(x,t), which is related to 

n(x) by 
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and after simplifications this equation becomes 
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Writing here the derivative of the product and sim-

plifying, we get  
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Denote 

 2 ,dxv r t D ,         (32)  

then (31) is written as 
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Equation (33) is the diffusion equation, which, un-

like (27), no longer has a drift term. Introducing the 

renormalized coordinate ξ defined as  
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or otherwise 
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equation (33) reduced to the classical diffusion equation  
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To solve (36), we write the Fourier transform for 

N(ξ,t) 
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and then perform the Fourier transform of (36) by mul-

tiplying it by    1/ 2 exp is   and integrating over ξ  
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Integrating the right side of (38) twice by parts and 

using (37) we get 
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Equation (39) has a solution 
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The constant C is found from the initial condition 

(30) and relation (37) 
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And thus 
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After the inverse Fourier transform in (40), we ob-

tain  
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Integrating in (41) over s yields 
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To obtain the dependency N(x,t), it is necessary to 

perform in (42) the inverse substitutions of variables 

(34) and (35)  
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Finally, using (29), we obtain from (43) an expres-

sion for the distribution of plasma electrons density at 

an arbitrary moment of time 
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This completes the formal part of the solution, and 

further, to obtain a specific dependence of the density 

on the coordinate, it is necessary to choose the form of 

the envelope function F(x). At that the form of F(x) is 

limited by the necessary requirements to have a maxi-

mum at x = 0 and decrease to F=1 at x=±∞. We choose 

F(x) as  
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which satisfies these requirements. Here x0 is the size of 

the inhomogeneity of the region of stochastic oscilla-

tions, parameter a defines the height of the envelope 

above the background value of stochastic oscillations in 

the environment, and r is the normalized coordinate 

along the x-axis. At x = 0, the value (1+a) defines how 

many times the oscillation amplitude exceeds the noise 

level in the environment. The function f(x) (35) in this 

case which is in the exponent in (44) is equal to 
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or using denoting r = x/x0 is 
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However, the analytical calculation of the integral 

(44) is associated with great difficulties, and further 

solution is possible only numerically.  

The distributions of the plasma electron density at 

different times at a = 3, obtained from (44), by numeri-

cal integration, are shown in Figure. 

 
The dependence of the electron density  

on the radius for different moments of time 

Here τ is the normalized time defined as  

0

t

t
  ,         (46) 

where 0 0/x D t  is the average time for which an 

electron drifts over a distance of the size of the envelope 

inhomogeneity x0. Estimate t0 which corresponds τ = 1. 

Observational data show that the electric field of hiss in 

the lower hybrid frequency range in the environment is 

of the order 10…40 mV/m depending on the height. The 

Earth's geomagnetic field is about 0.5 Oe. Then (18) 

2 4~ 5 10 cm/sdrD v  . 

The characteristic value x0 is usually on the order of 

10 m. With these parameters, we get t0 ~ 0.02 s and thus 

a normalized time corresponding to τ = 1 is t = 0.02 s.  

At the initial moment of time, when a burst of inho-

mogeneous stochastic oscillations occurs the envelope 

of which is defined by (45), the plasma density is uni-

form. Almost immediately, in the region with the max-

imum amplitude of oscillations, the plasma density be-

comes depleted, at that the depth and width of the re-

sulting cavity increase up to a time τ ~ 5, after which 

they practically do not change. In the area adjacent to 

the cavity the plasma electrons density increases due to 

electrons that are pushed out of the cavity by inhomo-

geneous stochastic electric fields. Further these elec-

trons, moving away from the cavity, and their density 

decreases due to spreading in space.      
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Estimate the dimensions of the region along the 

magnetic field with an increased level of oscillations 

necessary for the formation of electron cavity. As al-

ready mentioned, the size of such region must exceed 

the distance that an electron travels along the magnetic 

field with a thermal velocity in the time required to form 

a cavity, in this case, t=0.02 s. For 0.25 eV of the ther-

mal energy of electrons at a height of 600 km, the ther-

mal velocity of electrons is vTe ~ 3·10
7
 cm/s. Then the 

distance that an electron travels in t = 0.02 s is 6 km. 

Thus, the size of the region with an increased level of 

oscillations along the magnetic field should at least ex-

ceed 6 km. According to the data of the work [7], the 

size of LHC along the geomagnetic field is certainly a 

few kilometers and probably a few hundred kilometers. 

And it can be argued that cavities with such dimensions 

can be formed due to the transfer of electrons across the 

magnetic field due to inhomogeneous stochastic fields. 

CONCLUSIONS 

Inhomogeneous stochastic oscillations of the electric 

field with frequencies on the order of the lower hybrid 

frequency lead to the formation of an electron density 

cavity in a magnetized plasma. It has been established 

that the cavity formation time for the ionospheric plasma 

parameters is about 0.02 s. The development of the cavity 

proceeds as follows. Initially, the cavity depth as well as 

its width across to the magnetic field are small. Over 

time, both the depth and width of the cavity increase. 

The electrons displaced from the cavity form an in-

creased density at the edge of the cavity and move away 

from it. The formation of an electron density cavity ends 

in a time of about τ ~ 5 where τ is defined by (46). 

A possible hindrance to the formation of a cavity is 

the escape of electrons along the geomagnetic field from 

a region with an increased level of oscillations due to 

thermal motion. Estimates have shown that the size of 

such a region along the magnetic field should be at least 

6 km. At the same time, spacecraft observations have 

shown that the dimensions of the LHC along the geo-

magnetic field are tens and hundreds of kilometers. 

Thus, in order for the electrons to remain inside the re-

gion and form a cavity, its dimensions along the mag-

netic field of the order of 6 km turn out to be quite suf-

ficient. 

During the formation of the electron cavity, ions due 

to drift in inhomogeneous stochastic oscillations are 

displaced by a distance much less than electrons [16-

18]. Therefore, in the region of the electron cavity a 

stationary electric field is formed, which, in turn, accel-

erates ions from this cavity and, as a result, a neutral 

plasma density cavity is formed. 

This work was supported by the Ministry of Educa-
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ЧАСОВА ЕВОЛЮЦІЯ ПЛАЗМОВОЇ ПОРОЖНИНИ, ЯКА ВИКЛИКАНА НЕОДНОРІДНИМИ  

СТОХАСТИЧНИМИ ЕЛЕКТРИЧНИМИ ПОЛЯМИ  

М.О. Азарєнков, Д.В. Чібісов, О.Д. Чібісов 

Досліджено часову еволюцію утворення плазмової порожнини, спричиненої неоднорідними стохастич-

ними електричними полями. Рівняння Фоккера-Планка, яке визначає часову еволюцію електронної густини 

плазми, що викликана локалізованими стохастичними неоднорідними електричними полями в діапазоні час-

тот нижньогібридних коливань, розв’язано чисельно. Отримано просторову залежність густини електронів 

плазми для різних значень часу. 


