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The results of the analysis of the dynamics of charged particles under conditions of cyclotron resonances in the 

field of an intense electromagnetic wave are presented. Particular attention is paid to regimes with dynamic chaos. It 

is shown that there are two qualitatively different regimes. The appearance of the first one is due to the overlap of 

nonlinear cyclotron resonances. The second mode is related to intermittency. The moments and spectra of each of 

these regimes are determined. It is shown that with an increase in the intensity of an external electromagnetic wave, 

the first regime appears at the beginning and only then the second regime appears. A characteristic feature of the 

second regime is intermittency. Steps appear on the time dynamics of pulses in the second mode. It is shown that the 

spectra in the second mode are narrower than in the first mode. A characteristic feature of the second regime (the 

regime with intermittency) is the fact that the higher moments turn out to be larger than the lower moments. In the 

first regime, the highest moments decrease rapidly. To find the particle momentum distribution function, the gener-

alized Fokker-Planck equation was used. Solutions of this equation are written out for some important cases. 

PACS: 05.45.-a, 05.10.Gg 
 

INTRODUCTION 

Moments of random processes are one of the im-

portant characteristics of these processes. The first and 

second moments (mean and variance) are of the greatest 

importance. Higher moments play a secondary role and 

are rarely used. In addition, in most cases, the moments 

decrease rapidly as their number increases. However, 

there are random processes, which are called intermit-

tent regimes, and are characterized by the fact that their 

higher moments exceed the lower ones. Processes with 

intermittency are distinguished by the fact that rare, but 

very intense bursts appear against the background of 

some moderate dynamics [1, 2]. In some cases, these 

surges can pose a significant danger. It was found in [3] 

that at cyclotron resonances at sufficiently high field 

strengths of electromagnetic waves, regimes with inter-

mittency can also arise. Cyclotron resonances are wide-

ly used. In particular, they are used in thermonuclear 

fusion facilities for plasma heating. Therefore, the study 

of regimes with intermittency is of both general scien-

tific and practical interest. The first step in studying the 

influence of higher moments on the development of 

random processes can be the Fokker-Planck (FP) equa-

tion. However, the usual FP equation contains only the 

first and second moments. In [3], a generalization of the 

FP equation was written for the case when the influence 

of moments with any number is taken into account. Be-

low we will consider some solutions to this equation. 
The work consists of an introduction, three parts and 

a conclusion. In the first part, the problem statement is 

formulated, and the main system of equations is written 

out. The second part presents the results of the analysis 

of particle dynamics at cyclotron resonances. Two 

qualitatively different modes of particle dynamics are 

described. Spectra of particle dynamics in these regimes 

are determined. In the third part, the generalized FP 

equations are written out. This new equation takes into 

account all higher moments. Note that in the usual ex-

pressions of the FP equation, only the first and second 

moments are taken into account. Some analysis of this 

equation is given, in particular, the results of the sta-

tionary regime are given. In conclusion, the most im-

portant results are formulated. 

1. STATEMENT OF THE PROBLEM  

AND BASIC EQUATIONS 

Consider a charged particle that moves in an exter-
nal constant magnetic field directed along the axis z, and 
in the field of a plane electromagnetic wave, which in 
the general case has the following components: 
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where  , ,x y zi  α  is wave polarization vector.  

Without limiting of generality, we can choose a co-
ordinate system in which the wave vector of the wave 

has only two components 
xk  and 

zk . It is also conven-

ient to use the following dimensionless dependent and 
independent variables:  

/ mcp p , t  , 
c


r r . 

The equations of motion in these variables will have 
the form:  
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where 0/ Hh H ; /H eH mc  ; 0ε α ; 

0 0( / )eE mc  ;   kr ; k   unit vector in the 

direction of the wave propagation; 2 1 2(1 )p    – di-

mensionless particle energy (measured in units mc
2
); 

p  particle momentum.  

, 
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The system of vector equations (2) can be fully ana-

lyzed only by numerical methods. However, many im-

portant features of charged particle dynamics can be 

discovered using new variables. We will use, similarly 

to [4 - 6], the following variables 

cosxp p  , sinyp p  ,
zp p , 2 2

x yp p p   , 

sin
H

p
x  


  , cos

H

p
y  


  .  (3) 

For new variables, the system of equations (2) can 

be reduced to the form: 

  0 1 cos( )z z n n

dp
k v J

d
 


   ,             (4) 

0 cosz
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dp
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 ,                         (5) 

0 cosn n

d
v J

d


 



 ,                              (6)

 

n z xk z k n       .                        (7) 

where ( )n nJ J   ( ) ,n nJ dJ d  
 

/x Hk p  . 

Details of obtaining system (4)-(7) can be found in 

[3, 5]. 

2. MODES WITH DYNAMIC CHAOS 

Below we will consider two chaotic regimes. In the 

first mode, chaos arises as a result of overlapping of 

homoclinic trajectories (overlapping of non-linear cy-

clotron resonances). With an increase in the field 

strength, a second regime arises  the regime with in-

termittency.  

The conditions for the emergence of the first regime 

are formulated, for example, in [4, 5, 7], and can be 

written in the form: 

   , 
2/ 1 zk    ,  2/ 1H zk   ,  (8) 

where    nonlinear resonance width,    distance 

between cyclotron resonances. 

The regime with intermittency arises at sufficiently 

high field strengths of the wave. It is characterized by 

steps in the dependence of particle momenta on time. 

Such a regime appears as a result of solving the Adler 

equation, which describes the dynamics of particles at 

high field strengths. This mode is described in detail in 

[6].  

2.1. OVERLAPPING OF NONLINEAR  

CYCLOTRON RESONANCES 

An analytical analysis of chaotic regimes in the case 

of overlapping cyclotron resonances was carried out in 

[4 - 6]. Such a regime is almost always observed at a 

wave strength parameter (nonlinearity parameter) of 

0.26 (
0 0.26  ). Below we will present some results of 

a numerical analysis of this regime. For definiteness, we 

choose the following parameters: 0 0.26  , 

0.878zk  , 0.987H  . 

It can be shown that, for these parameters, the non-

linear cyclotron resonances are covered. In addition, we 

choose the following initial conditions: (0) (0) 0x y  , 

(0) / 2z  , (0) (0) (0) 0.01x y zP P P   . 

Below, in Figs. 1 and 2, the dependence of the longi-

tudinal momentum of the particle on time and the spec-

trum are presented. It can be seen that the spectrum of 

particle dynamics is wide.  

 
Fig. 1. Longitudinal impulse, before the appearance 

of steps, 
0 0.26   

 
Fig. 2. Spectrum before the appearance  

of steps,
0 0.26   

In the considered case, the moments have the fol-

lowing values:  

even 
0 1  , 

2 0.07  , 3

4 1.6 10   , 5

6 1.8 10   ; 

odd 5

1 1.7 10   , 
3 0.001  , 5

5 5.2 10   , 
7

7 7.5 10   . 

It can be seen that the magnitudes of the moments 

rapidly decrease with increasing their number. 

2.2. MODES WITH INTERMITTED 

With an increase in the field strength of the wave, a 

regime with intermittency arises. The results of a de-

tailed study of this mode are given in [6]. Figs. 3 and 4 

present the results of a numerical analysis of this mode 

for the value of the wave strength parameter 
0 1.2  . 

The initial conditions are the same as in Figs. 1 and 2. 

 
Fig. 3. Longitudinal pulse in intermittent mode, 0 1.2   
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Fig. 3 shows the steps characteristic of the intermit-

tent mode on the time dependence of the longitudinal 

pulse. However, the most interesting result is shown in 

Fig. 4. This figure shows a narrow spectrum of particle 

dynamics. This result is, to some extent, unexpected. 

More common is the broadening of the particle dynam-

ics spectrum with increasing wave field strength. 
 

 
Fig. 4. Spectrum in intermittent mode,

0 1.2   

This feature of the spectrum in the regime with in-

termittency is due to the fact that the particle dynamics 

at the steps themselves is regular. Randomness in this 

case is due only to the appearance of particle jumps 

from one stage to another stage. These jumps are ran-

dom. 

In this case, the moments have the following values: 

even 
0 1  , 

2 82.5  , 3

4 4 10   , 5

6 1.2 10   ; 

odd 
1 0.001  , 

3 405  , 4

5 2 10   , 5

7 5.3 10   .  

The main tendency in moments is that the greater the 

field strength of the wave, and thus the more pro-

nounced the steps, the higher the moments are greater 

and the greater their magnitude. 

3. ROLE OF MOMENTS IN PARTICLE  

DYNAMICS 

Moments in the theory of random processes play a 

significant role. In particular, if the process is ergodic 

[8, 9], then the values averaged over the ensemble can 

be replaced by averages over time. This, in turn, makes 

it possible to use the results of a single-particle analysis 

of particle motion to find the distribution function of an 

ensemble of particles. This can be done using the FP 

equation. Indeed, in this equation, as is known, the main 

parameters are the first and second moments. However, 

as shown in [3], at cyclotron resonances, regimes appear 

whose characteristic feature is the fact that the higher 

moments turn out to be larger than the lower moments. 

In the same work, the generalized FP equation is pre-

sented, in which higher moments are taken into account. 

It should also be noted that in the FP equation (and in 

the generalized equation) the moment values are divided 

by the factorial of the moment number.  

 

!

m
m

m
m

pn n

m p

 


 
 ,    2 ; 1,2,3...m j j  .   (9) 

To find out the role of higher moments, it is enough 

for us to analyze the solutions of equation (9) taking 

into account only the second and fourth moments: 

2 4
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2 4

n n n

p p
 


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 
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.  (10) 

If the parameter   is small ( 1  ), then the solu-

tion of equation (10) can be sought in the form of a se-

ries in this parameter: 
2

0 1 2 ....n n n n         (11) 

Substituting this series into equation (10), we will 

find equations for finding the terms of this series. For 

example, to find the second term, you can get the fol-

lowing sequence:  
2

0 0
0 2

ˆ 0
n n

Ln
p




 
  
 

; 
4

0
1 4

ˆ n
Ln

p






; 
4

0
1 4

ˆ
ˆ ˆ 0

Ln
LLn

p



 


 

since 
0

ˆ 0Ln  , then and 
1

ˆ 0Ln  . The equations for the 

other terms of the series (11) will have an analogous 

form. Finally, the series (11) can be written in the form 

of a series of geometric progression: 

 2

0 0( , ) 1 ... ( , ) / 1n p t n n p t          .  (12) 

This expression shows that the solutions of the FP 

equation are stable with respect to the influence of small 

higher moments. 

Below we will use the results obtained in [3] and 

write equation (9) up to the 6th moment, which already 

becomes sufficient to take into account the influence of 

growing higher moments. We also take into account 

only even moments and rename p x .

 Then equation (9) takes the form: 
2 4 6

2 4 6

n n n n

x x x
  



   
  

   
. (13) 

The resulting equation is quite complex for both 

analytical and numerical analysis. Therefore, we con-

sider the stationary case, for which the solution of 

Eq. (13) takes the form: 

0

1
( ) exp[ ( )]exp[ ( )]

2
n x ik x x F k dk







    ,  (14) 

where 
2 4 6( )F k k k k       . 

Below are the results of numerical studies of expres-

sion (14) in the stationary case. The difference in taking 

into account the highest moments, namely 
4  and 

6 , 

is shown in the graphs below, the red curve describes 

only the second moment. The blue curve was obtained 

taking into account additionally the fourth and sixth 

moments. The calculation was carried out for different 

values of higher moments. Fig. 5 shows the distribution 

function when the magnitudes of the higher moments 

divided by the factorial of the moment number are in-

significant (order 10
-4

…10
-5

). In this case, their contri-

bution is also insignificant. 

Fig. 6 shows the distribution function for the case 

when the higher moments are still less than the lower 

ones. In this case, the values of the higher moments 

divided by the factorial of the moment number are also 

not significant, and their value is several orders of mag-

nitude smaller than the value of the lower moments. It 

can be noted that within the limits of the change in the 

field strength of the wave from 0 0.01   (see Fig. 5) to 

0 0.26   (see Fig. 6) there is an insignificant but 
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smooth increase in the higher moments, which leads to a 

smooth broadening of the distribution function. 

 
Fig. 5. Distribution function, for the case when the 

highest moments are less than the lowest moments, 

0 0.01   

 
Fig. 6. Distribution function, for the case when the 

highest moments are less than the lowest moments, 

0 0.26   

In the future, a slight change in the field strength 

(
0 0.261  ) qualitatively changes the particle dynamics 

 the higher moments become larger than the lower ones 

(Fig. 7). So the second moment 
2 , divided by the facto-

rial of the moment number, becomes 
2 12  , 

4 43  , 

6 84  . This leads to a sharp broadening of the distribu-

tion function. It is also worth noting that at the same mo-

ment there are significant changes in the dynamics of 

particles, namely the appearance of a stepwise character 

of the longitudinal momentum of particles. 

 
Fig. 7. Distribution function, for the case  

when the highest moments are greater  

than the lowest moments, 0 0.261   

It should be noted that for the correct display of the 

distribution function, it is necessary to take the values of 

the moments calculated for a specific implementation. 

Fig. 8 shows the plots of the distribution function for the 

moments calculated for a specific implementation, the 

blue curve (the moments are equal to 
2 0.021  , 

4

4 1.1 10   , 7

6 2.7 10   ) and arbitrary, red curve 

(
2 0.03  , 

4 0.004  , 4

6 3 10   ). It can be seen 

that an arbitrary choice of moments leads to a non-

physical result  areas with negative particle densities 

appear. 

 
Fig. 8. Distribution function 

 

CONCLUSIONS 

1. The most interesting, unexpected and important 

result is that as the intensity of the electromagnetic 

wave increases, the particle dynamics changes qualita-

tively. These changes are characterized by a new regime 

of dynamic chaos. From chaos, which was determined 

by the overlap of nonlinear cyclotron resonances, chaos 

becomes intermittent. With such a transition, the wave 

amplitude increased, but the width of the particle dy-

namics spectrum narrowed significantly. However, at 

the same time, the moments began to increase. Moreo-

ver, the higher moments become larger than the lower 

moments. Let us try to explain such, at first glance, con-

tradictory characteristics of the regime with intermitten-

cy. In [4], see also Fig. 3, it is shown that as a result of 

the phase synchronization of the wave and the particle, 

steps appear on the time dependence of the pulses. The 

dynamics of particles on the steps themselves is regular. 

Randomness occurs only at moments of jumps. These 

jumps are random in both magnitude and direction. In 

general, the dynamics are more regular. Therefore, the 

spectrum becomes much narrower (see Fig. 4). Now 

consider the features of the moments. Suppose we have 

some function ( )x  . Her moment with number n  will 

be determined by the formula  
n

nm x x  . Aver-

aging is carried out over the ensemble. However, if the 

system under study is ergodic, then averaging can be 

carried out over time. Looking at Fig. 3, we see that the 

mean function has x  jumps are moderated. In the 

function itself, the magnitude of the jumps in most cases 

is much larger than the average values. Therefore, the 

value  x x  more than one. As a consequence, each 

next moment will be greater than the previous one. 

2. Let's answer the main question of the article: an 

increase in higher moments leads to a more rapid broad-

ening of the particle distribution function. Note that 

jumps in particle momentum can be initiators of runa-

way electrons. 
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3. We also note that the magnitudes of the moments 

must be determined from the actual particle dynamics. 

An attempt to change these values leads to erroneous 

results  the distribution function can become negative 

(see Fig. 8). This result may be useful as a diagnostic 

test. 
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РОЛЬ ВИЩИХ МОМЕНТІВ У РОЗПОДІЛІ ЧАСТИНОК У ПРОСТОРІ ІМПУЛЬСІВ  

ПРИ ЦИКЛОТРОННИХ РЕЗОНАНСАХ 

В.О. Буц, В.В. Кузьмін 

Викладено результати аналізу динаміки заряджених частинок в умовах циклотронних резонансів у полі 

інтенсивної електромагнітної хвилі. Особливу увагу приділено режимам з динамічним хаосом. Показано, що 

існує два якісно різні режими. Виникнення першого обумовлено перекриттям нелінійних циклотронних ре-

зонансів. Другий режим пов'язаний із перемежуванням. Визначено моменти та спектри кожного з цих ре-

жимів. Показано, що зі збільшенням напруженості зовнішньої електромагнітної хвилі на початку з'являється 

перший режим і потім другий. Характерною рисою другого режиму є перемежування. На залежності імпу-

льсів від часу у другому режимі з'являються сходинки. Показано, що спектри у другому режимі вужчі, ніж у 

першому. Характерною особливістю другого режиму (режиму з перемежуванням) є той факт, що вищі мо-

менти виявляються більшими, ніж нижчі. У першому режимі вищі моменти швидко зменшуються. Для зна-

ходження функції розподілу частинок за імпульсами було використано узагальнене рівняння Фоккера-

Планка. Для деяких важливих випадків виписано рішення цього рівняння. 
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