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Using the evolutionary approach recently developed by us, the shapes of odd 2s1d-shell 
23

Na, 
25

Mg and 
25

Al nuc-

lei in the ground and single-particle excited states have been extracted from the experimental data on the energies, 

spins, and parities of these states, as well as the measured probabilities of electromagnetic transitions between them. 

We have found that the single-particle spectra of the nuclei studied contain the single states and the continuous sets 

of states with abnormally weak deformation. This indicates the existence of the shape phase transitions from the 

spherical state of the nucleus into a deformed state.  
PACS: 21.60.−n, 21.60.Cs, 21.60.Ev, 27.30.+t 

 

INTRODUCTION 

Complex, multi-particle nature of nuclear forces 

makes nuclear physics a largely eclectic science: to un-

derstand different observable properties of nuclei, it is 

often necessary to use different concepts from different 

areas of physics (see, e.g., Refs. [1, 2] or any textbook 

on nuclear physics). And any new idea is always wel-

come. 

So, to understand the origin of nuclear deformation, 

the concept of phase transitions and the Landau theory 

of phase transitions, proposed and well developed for 

condensed matter physics [3], turned out to be useful 

(see, e.g., review [4] and references therein). Indeed, the 

very fact of the appearance of a deformation of the nu-

cleus shape caused by a change in, say, the number of 

nucleons in the nucleus can be considered as a result of 

phase transition from a high-symmetry (spherical) phase 

to a low-symmetry (deformed) phase of a nucleus. Thus, 

spontaneous breaking of rotational symmetry of a 

spherical nucleus can be accepted as an origin of 

nuclear deformation. The Landau theory of phase 

transitions is well suited for describing such shape phase 

transitions in a phenomenological language. 

Currently known applications of the Landau theory 

to shape phase transitions suggest that the potential en-

ergy of the nucleus (in the form of thermodynamic po-

tentials, Helmholtz free energy, Gibbs free energy, etc.) 

has the form of a polynomial from rotationally invariant 

combinations of quadrupole deformation parameters 

introduced by Bohr and Mottelson [5]. Such a polyno-

mial is either the by-product of microscopic or semi-mi-

croscopic calculations (as, e.g., in the interacting boson 

and boson-fermion models), or is parameterized directly 

(as, e.g., in geometric collective models) [4]. The coef-

ficients of the polynomial depend on the control param-

eter associated with the number of nucleons in the nu-

cleus. Equilibrium deformation parameters minimize 

potential energy. A change in the control parameter 

leads to a transition from a spherical phase, for which 

the equilibrium deformation parameters are zero, to de-

formed phases, for which the equilibrium deformation 

parameters differ from zero. Following this recipe, in-

teresting data were described and phase transitions of 

the first and second order were identified (see, e.g., re-

views [6–8] and references therein). 

Presently, the dynamics of nuclear shape caused by a 

change in the number of nucleons in the nucleus is 

mainly studied (see, e.g., [4, 9, 10]). However, the same 

nucleus in different single-particle states can have dif-

ferent shapes too and, in principle, the shape phase tran-

sition can be caused not only by changing the number of 

nucleons in the nucleus, but also by changing the states 

of nucleons in the nucleus. Regardless of the method of 

calculation, the shape of the nucleus in the single-parti-

cle state strongly influences its wave function. The 

wave functions of the initial and final states of the 

nucleus largely determine the probability of an 

electromagnetic transition between them. Therefore, the 

experimentally observed probabilities of 

electromagnetic transitions are a valuable source of 

information about the shape of the nucleus in various 

single-particle states. 

The generalized nucleus model (in the form of Nils-

son model [5, 11]) allows, in principle, to calculate the 

equilibrium deformation of the nucleus in any single-

particle state. In fact, Nilsson model with spin-orbit 

coupling describes the sequence of shape phase transi-

tions because it predicts spherically symmetric equilib-

rium shape of the equipotential surface of a nucleus if 

all states with the shell number N and the total 

momentum I are occupied. However, the probabilities 

of electromagnetic transitions can only be calculated 

between single-particle states with the same 

deformation. In a number of works [12–18], the 

modification of Nilsson model was proposed, in which 

the deformation of the nucleus is considered as a 

dynamic parameter, that is, the initial and final states are 

assumed to have different deformations. Thus, during 

the transition, the state of core nucleons changes 

alongside the state of the odd nucleon. 

The modified Nilsson model enabled to calculate the 

probabilities of electromagnetic transitions between sin-

gle-particle states, taking into account their different 

deformations [12–18]. The assumption of the dynamic 

nature of the deformation of single-particle states of odd 

2s1d-shell nuclei significantly reduced the discrepancy 
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between the measured and calculated probabilities of 

some E2-transitions. However, it appeared impossible to 

adequately describe the entire set of experimental data, 

including energies, spins and parities of the ground and 

single-particle excited states, as well as the probabilities 

of both E- and M-transitions between them. 

That is why it would be highly desirable to have a 

procedure that could extract the angular dependence 

(deformation) of the potential of the self-consistent field 

of the nucleus in the ground and single-particle excited 

states directly from the experimental data on the ener-

gies, spins, and parities of the states of nuclei, as well as 

the measured probabilities of electromagnetic 

transitions between these states [19]. The goal that this 

procedure could be aimed at is the study of the shape of 

odd 2s1d-shell nuclei, both in the ground and low-

laying single-particle excited states and the search for 

possible phase transitions from spherical to the 

deformed state of the nucleus.  

1. DEFORMED-SHELL-MODEL 

SINGLE-PARTICLE HAMILTONIAN 

We restrict ourselves to the case of an axially sym-

metric nucleus with an additional symmetry plane per-

pendicular to the symmetry axis. We chose a single-par-

ticle harmonic-oscillator potential with the spin-orbit 

interaction (see, e.g., Refs. [5, 11]). Making a direct 

generalization, we write the single-particle Hamiltonian 

in the form: 

 10 HHH   ,   2/2
0 rH  , 

        122/2
1 slrH ,                     (1) 

where r  is the reduced coordinate;  11  is the 

reduced radius of the equipotential surface of the nu-

clear potential;   is the polar angle,  2;0   ;    

is the function that describes the shape of the equipoten-

tial surface,      , 0 dd  at the points 

0  and 2  ;  2r  is the coupling of the parti-

cle with the symmetry axis;  sl   is the spin-orbit inter-

action;    sl   is the coupling of the spin-orbit 

interaction with the symmetry axis; 

    141 3/1A  MeV is the energy scale; 

ZNA   is the nucleus mass number; N  and Z  are 

the numbers of neutrons and protons in the nucleus;   

takes into account the deviation of the energy scale from 

its simple estimate. We do not expect the nucleus 

volume to conserve because we are aimed at extracting 

the nucleus shape (including its radius) directly from the 

available data. 

 In our approach, by definition, the function    

contains all information on the nuclear shape. Initially, 

no deformation parameters are needed to determine it. 

The function    directly and explicitly enters in the 

total Hamiltonian H  (1) (generally, as a numerical ar-

ray). Using as a basis the eigenfunctions of the spherical 

harmonic oscillator Hamiltonian 0H  from Eq. (1), the 

matrix of the total Hamiltonian H  is numerically 

diagonalized (see Ref. [11] for details). As a result, the 

eigenfunctions of the Hamiltonian H  appear as a finite 

mixture of the eigenfunctions of the Hamiltonian 0H . 

The coefficients of the mixture are calculated numeri-

cally and, in this way, contain information on the nu-

clear shape. The single-particle wave function of the 

nucleus in a certain state is the Slater determinant con-

structed from the occupied single-particle states calcu-

lated using the Hamiltonian H  (1). We emphasize that 

this wave function directly and explicitly depends on the 

mixture coefficients but not on any deformation param-

eters. 

2. PROBABILITIES OF 

ELECTROMAGNETIC TRANSITIONS 

BETWEEN SINGLE-PARTICLE STATES 

WITH DIFFERENT DEFORMATIONS 

To determine the matrix element of the single-parti-

cle multipole operator  

s

A

s

t̂

1




M ,                                                              (2) 

we consider two sets of occupied single-particle states 

 
  ZNNNiv

ZNNNju

i

j





,...,1,,...,1,

,...,1,,...,1,
                             (3) 

calculated using the Hamiltonian (1) with two different 

functions   , which form two Slater determinants 

 ju  and  iv . The matrix element of M, taken be-

tween  ju  and  iv , is equal to (see, e.g., [20]) 

  s
A

s

M




1

,M ,                                              (4) 

where the elements of determinants s
M  are as follows 
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The reduced electric and magnetic multipole transi-

tion probabilities between the initial and final states 

with IK  and KI  , where I  and K  are the total 

momentum and its projection take the form ( KK  ) 

[12–14]: 
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where i
la   and 

j
la   are the coefficients of decomposi-

tion of the functions iv  and ju  in the basis of the sphe-

rical harmonic oscillator [11]; iN  and jN  are the prin-

cipal quantum numbers of states i and j; l  and   are 

the angular momentum and its projection; ij
MEG )(  corr-

espond to the quantities )(MEG  calculated in Ref. [11]. 

Note that the matrix element of the single-particle 

multipole operator is taken between two determinant 

functions. That is why the transition probabilities de-

pend on the mixture coefficients i
la   [Eqs. (8) and (9)] 

but not on any deformation parameters. Because the 

mixture coefficients are calculated numerically, it is not 

possible to derive analytical dependence of the 

transition probabilities on the deformation in the form of 

deformation parameters. 

The case KK   was studied in Ref. [15]. The 

influence of different deformations of the initial and 

final states of odd 2s1d-shell nuclei on the probabilities 

of electromagnetic transitions was analyzed in Ref. [16]. 

The role of Coriolis interaction in calculations of the 

probabilities of electromagnetic transitions between 

states with different deformations was accounted for in 

Ref. [17]. The experimentally measured probabilities of 

M1 transitions between analogue and anti-analogue 

states with different deformations in odd 2s1d-shell nu-

clei were examined in Ref. [18]. 

Note that the authors of Refs. [12–18] restricted 

themselves to the case of quadrupole deformations. Us-

ing two different deformation parameters they plotted 

the area where the discrepancy between the measured 

and calculated probabilities of some E2-transitions for 

odd 2s1d-shell nuclei significantly reduced. But this was 

done numerically. 

3. EVOLVING NUCLEAR SHAPES VIA 

EVOLUTIONARY ALGORITHM 

We chose the function that describes the shape of the 

equipotential surface of the nuclear potential in the i-th 

single-particle state of the nucleus in the following 

form: 

       ki
k

k

i 2cos2

0






 .                                   (10) 

The values of the weight parameters 
  i
k2  (i=0 

marks the ground state and i=1,..., n mark the single-

particle excited states) are determined independently for 

each level of the nucleus. Additional requirements im-

posed on the weight parameters 
  i
k2  are their mini-

mum number for each level and their minimum value 

that ensures a good description of experimental data. 

Note that both ε and 
  i
0  affect the radius of spherical 

equipotential surface of the potential in the Hamiltonian 

(1). Thus, to avoid overestimation, we set    00
0  . 

To determine the number and values of the weight 

parameters   i
k2 , an approach based on the use of an 

evolutionary algorithm [21, 22] to fit the calculated ob-

servables to the measured ones was developed. 

Our evolutionary approach operates on a population 

of N individuals. Each individual is a set of parameters 
   i
k2,,  , i=0, ..., n, k=0, ..., m. Fitness of each 

individual reflects the quality of data fitting provided by 

the individual’s parameters. Using the mutation opera-

tion, the algorithm evolves the initial population of 

poorly fitted individuals to the final population of the 

well-fitted ones. 

Every iteration, the so-called generation, of our pro-

cedure contains the following steps. 

1. Generating the initial population of N individuals. 

For each individual, the values of all parameters 
   i
k2,,   are set to zero. 

2. Evaluating fitness of each individual in the popu-

lation. The fitness function accounts for the quality of 

data fitting, which is estimated using the standard χ
2
 

magnitude per datum. 

3. Letting each individual in the population produce 

M>>1 offspring. Replication of each parameter jx  from 

the set    i
k2,,   is performed according to the trans-

formation: 

jjjj CAxx ' ,                                                    (11) 

  1,0exp' jjj LNAA  ,                                        (12) 

where jx  and 'jx  are the parent’s and the offspring’s 

parameters from the set    i
k2,,  , 0jA  and 

0'jA  are the parent’s and the offspring’s mutation 

amplitudes,  maxmin ; AAAj  , jC  is a Cauchy random 

variable with the scale parameter set to unity,  1,0jN  

denotes a normally distributed one-dimensional random 

number with mean zero and one standard deviation, and 

0L  is the learning parameter that controls the 

adaptation speed. 

4. Evaluating fitness values of all offspring. Sort off-

spring in descending order according to their fitness. 

Select N best offspring to form the new population. 

5. Going to step 3 or stop if the best fitness in the 

population is sufficiently high (the χ
2
 value is small 

enough). 

The evolutionary process should produce the best 

possible solution with respect to the fitness function. To 

achieve this goal and avoid premature convergence in a 

local optimum, the lower limit of the mutation 

amplitude Amin behaves as a smooth oscillatory function 

of generation, while the upper limit Amax remains 

constant [remember that the real value of A is adapted 

according to Eq.(12)]. If the value of Amin increases and 

the rms deviation from the mean value of the fitness 

function in the population exceeds some upper level (the 

diversity in the population is too high) then Amin starts to 

slowly decrease. And vice versa, if the value of Amin 

 

, 
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decreases and the rms deviation of the fitness function 

becomes less than some lower level (the diversity is too 

low) then Amin starts to slowly increase. However, 

before that, the best fitted individual is saved out of the 

converged population to preserve the globally best 

individual. Then, all individuals in the population jump 

to the new point in the parameter space according to the 

transformation: 

jjjj Cxaxx * ,                                               (13) 

where jx  and *jx  are the individual’s parameters from 

the set    i
k2,,   before and after the jump, jC  is a 

Cauchy random variable with the scale parameter set to 

unity, and  1;0a  is the jump amplitude. Being trans-

posed to the new point in the parameter space, the pop-

ulation starts to explore the vicinity of this point by in-

creasing and decreasing Amin as described above. After 

finishing another cycle of evolution, the globally best 

individual is refreshed. Then the population is filled 

with the current globally best individual, next jump is 

performed, and new cycle of evolution begins. 

Evolutionary algorithms make up, generally, the 

global optimization technique that, however, cannot 

guarantee that the optimum found is the global one (see, 

e.g., Refs. [23–25] or any textbook on evolutionary 

computations). Therefore, it is necessary to run the pro-

cedure several times. Besides, there is no way to know 

in advance what the minimum value of the χ
2
 magnitude 

will be. Thus, it is instructive to monitor the dynamics 

of the best, worst, and mean fitness values and the rms 

deviation from the mean fitness in the population during 

those several runs of the procedure in order to localize 

the region of the lowest χ
2
 values. 

Analysis of experimental data begins with the as-

sumption of the quadrupole deformation of the shapes 

of nucleus in the ground and single-particle excited 

states [the terms with k=0, 1 are left in Eq.(10)]. If the 

desired quality of data fitting is not achieved within this 

assumption, then the hexadecapole deformation comes 

into play [the term with k=2 is added in Eq.(10)], and so 

forth. After the number of terms in Eq.(10) is deter-

mined, the contribution of the last term found (say, k=2) 

is smoothly consistently reduced, preserving the desired 

quality of data fitting with that. If this procedure pro-

duces rather different solutions that are similar in 

fitness, the contribution of the term previous to the last 

one (say, k=1) is gradually reduced, and so forth. 

Following the described prescription, it appears possible 

to substantially reduce the parameter space of the 

problem under study and localize the region of the 

similar solutions. 

The reason for the choice of deformation parame-

terization (10) is, to some extent, technological. The 

Hamiltonian (1) linearly depends on the function   . 

The radius of equipotential surface of the potential is 

 11 . Thus, direct parameterization of the radius 

brings additional computational difficulties. 

The decomposition (10) is analytically equivalent to 

the widely used decomposition of the radius of an axi-

ally symmetric nucleus into a series of spherical har-

monics (see, e.g., Ref.[5]). Note that, e.g., the Legendre 

polynomial (cosP4  contains not only the term 

cos(4 , but also the term cos(2  that is the kernel of 

the polynomial (cosP2 . Thus, the decomposition of 

the function    into the series of even Legendre poly-

nomials gives, in fact, the term cos(2  with two 

different free weight parameters. This makes additional 

difficulty for the search algorithm to determine these 

parameters. In other words, the decomposition (10) 

substantially simplifies the search for the solution of our 

problem. Besides, the decomposition (10) gives 

extremely concise description of the topological features 

of the nuclear shape. 

4. 
25

Al NUCLEUS SHAPES IN LOW-LAYING 

SINGLE-PARTICLE STATES 

Many classical textbooks on nuclear physics use the 

case of 
25

Al to show applicability of the generalized 

model (in the form of Nilsson model) in the region of 

light nuclei. It appears that the model does not predict 

the spin of the ground state of 
25

Al. Besides, the model 

predicts substantial deviation from sphericity of the 

form of 
25

Al nucleus in the ground and low-laying 

single-particle excited states. Moreover, the information 

on the measured probabilities of electromagnetic 

transitions between these states was not taken into 

account. That is why we have applied our technique to 

analyze the well-known experimental data on the 

energies, spins, and parities of the low-laying single-

particle states and the probabilities of electromagnetic 

transitions between them in 
25

Al nuclei [26–29]. 

Good quality of fit was achieved when the terms 

with k=0, 1, 2 were left in Eq.(10), the contribution of 

the terms with k=1was not limited, and the contribution 

of the terms with k=2 was restricted as    3
2 103 i
k . 

The schemes of occupation of single-particle states by 

protons (proton configurations) in the ground (g.s.) and 

first four single-particle excited states (1–4 e.s.) of the 

nucleus were chosen as follows: 

00002122222e.s. 4

10000222222e.s. 3

00100222222e.s. 2

00010222222e.s. 1

00001222222g.s.

 

The schemes of occupation of single-particle states 

by neutrons (neutron configurations) were chosen to be 

independent of the nucleus state: 

00000222222 . 

The population of N=40 individuals was used. Each 

individual in the population produced M=10 offspring. 

The limits of variation of mutation amplitude were set 

as Amin=10
−10

 and Amax=10
−1

. The learning parameter 

that controls the adaptation speed was set to L=0.9. The 

jump amplitude of the population in the parameter space 

was equal to a=0.1. The lower and the upper levels of 

rms deviation from the mean value of the fitness func-

tion (the levels of diversity) in the population were set 

to 10
−5

 and 10
−1

, respectively. 

. 
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Fig. 1. Shapes for five single-particle states of 
25

Al 

nucleus, calculated by our procedure. Curve marked as 

g.s. corresponds to the ground state. Curves marked as 

1–4 e.s. present four low-laying excited states 

Fig. 1 and Tables 1–4 present the best fitted result. 

We are aware that the dynamics of nuclear deformation 

with the increase of excitation energy is better analyzed 

looking at the plot of the nuclear radius as function of 

the angle. Therefore, instead of the function   , Fig.1 

shows the angular part of the radius of equipotential sur-

face of the potential   01111    as function 

of the angle. 

We have achieved very good consistency between 

the calculated and measured observables for the 
25

Al 

nucleus. The angular part of the nucleus shape is de-

scribed by two harmonics – quadrupole [cos(2θ)] and 

hexadecapole [cos(4θ)]. The contribution of hexadeca-

pole deformation is especially noticeable for the third 

and fourth excited states [curves marked as 3 e.s. and 4 

e.s. in Fig. 1]. In the first case the valence proton occu-

pies the state in the N=3 shell. In the second case the 

state of the nucleus is determined by the proton hole 

configuration. It is usually assumed that quadrupole de-

formations are of the most importance, while hexadeca-

pole deformations are good corrections to quadrupole 

deformations and may be important for describing the 

ground states of heavy nuclei (see, e.g., Refs. [1, 2] or 

any textbook on nuclear physics). As for the higher 

multipolarity deformations, they are not considered to 

have much physical significance especially for light and 

medium nuclei. 

Table 1 

Experimentally measured Eexper(2J
π
) and calculated 

Etheor(2J
π
) energies (MeV), spins 2J, and parities π of the 

ground and first four low-laying single-particle excited 

states of 
25

Al nuclei 
Eexper(2J

π
), MeV Etheor(2J

π
), MeV 

0.0000±0.0000 (5
+
) 0.0000(5

+
) 

0.4517±0.0005 (1
+
) 0.4517(1

+
) 

2.4853±0.0009 (1
+
) 2.4853(1

+
) 

3.8230±0.0020 (1
−
) 3.8230(1

−
) 

4.1920±0.0040 (3
+
) 4.1920(3

+
) 

 

The stable deformation of the nucleus is ensured by 

competition and compromise between the forces 

seeking to preserve the spherical shape (the long-range 

components of nuclear forces) and the forces causing a 

distortion of spherical shape (short-range, or local, 

nuclear forces). Our calculation shows that the role of 

local inter-nucleon interactions in the formation of the 

surface shape of odd 2s1d-shell nuclei in the single-

particle excited states increases with the increase of 

excitation energy. 

Table 2 

Experimentally measured Γγi(E2)ex and calculated 

Γγi(E2)th partial gamma widths (eV) for 
25

Al nuclei. 

Ei(2J
π
) and Ef(2J

π
) denote energies (MeV), spins 2J,  

and parities π of initial and final states 

Ei(2J
π
) → Ef(2J

π
) Γγi(E2)ex Γγi(E2)th 

0.452 (1+) → 0.000 (5+) (2.00±0.04)·10−7 2.00·10−7 

2.485 (1+) → 0.000 (5+) (3.10±1.50)·10−3  3.10·10−3 

4.192 (3+) → 0.452 (1+) (4.10±0.30)·10−3 4.10·10−3 

The ground state of the 
25

Al nucleus has an abnor-

mally small deformation [curve marked as g.s. in 

Fig. 1]. According to the shell model with spin-orbit 

coupling, if nucleons completely fill the states with the 

shell number N and the total momentum I, then such a 

fully closed subshell has a spherically symmetric 

density distribution of nucleons in a nucleus. Nilsson 

model with spin-orbit coupling predicts spherically 

symmetric equilibrium shape of the equipotential 

surface of a nucleus if all the states with given N and I 

are occupied (see, e.g., Refs. [5, 11]). The ground state 

of the 
25

Al nucleus corresponds to the filling of the 

subshell with N=2 and I=5/2 (9 from 12 states are 

occupied). Hence, in this case, we are dealing with 

manifestation of the forces that are not related to the 

formation of nuclear shells. We assume that the ground 

state of the 
25

Al nucleus is a shape phase transition point 

from the spherical state of the nucleus into a deformed 

state. 

Table 3  

Experimentally measured Γγi(E1)ex and calculated 

Γγi(E1)th partial gamma widths (eV) for 
25

Al nuclei. 

Ei(2J
π
) and Ef(2J

π
) denote energies (MeV), spins 2J,  

and parities π of initial and final states 

Ei(2J
π
) → Ef(2J

π
) Γγi(E1)ex Γγi(E1)th 

3.823 (1−) →0.452 (1+) (2.2±0.4)·10−1 2.2·10−1 

3.823 (1−) →2.485 (1+) (3.6±1.8)·10−2 3.6·10−2 
 

The only particle of the 
25

Al nucleus that changes its 

quantum state is the valence proton. The quantum 

numbers of the latter determine the spin and parity of 

the nucleus as a whole, while the nucleons of the 

nucleus core do not change their characteristics. 

Table 4 

Experimentally measured Γγi(M1)ex and calculated 

Γγi(M1)th partial gamma widths (eV) for 
25

Al nuclei. 

Ei(2J
π
) and Ef(2J

π
) denote energies (MeV), spins 2J,  

and parities π of initial and final states 

Ei(2J
π
) → Ef(2J

π
) Γγi(M1)ex Γγi(M1)th 

2.485 (1+) → 0.452 (1+) (9.3 ±4.7)·10−2  6.9·10−2  

4.192 (3+) → 0.452 (1+) (1.3 ±0.1)·10−1  1.3·10−1  

5. 
25

Mg NUCLEUS SHAPES IN LOW-

LAYING SINGLE-PARTICLE STATES 

The 
25

Mg and 
25

Al nuclei are the mirror ones and the 

experimental data on the energies, spins and parities of 
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the low-laying single-particle states and the probabilities 

of electromagnetic transitions between them confirm it. 

Therefore, it seems reasonable to choose the schemes of 

occupation of single-particle states by protons (proton 

configurations) independent of the 
25

Mg nucleus state: 

00000222222 , 

and the schemes of occupation of single-particle states 

by neutrons (neutron configurations) in the ground (g.s.) 

and first four single-particle excited states (1–4 e.s.) of 

the 
25

Mg nucleus as follows: 

.

00002122222e.s. 4

10000222222e.s. 3

00100222222e.s. 2

00010222222e.s. 1

00001222222g.s.

 

However, if protons do not change their states, then 

there are no electric transitions between the 

corresponding levels of the nucleus. In addition, if 

neutrons change their states, then the determinant of the 

scalar products of neutron wave functions (8) for the 

corresponding states of the nucleus is identical to zero. 

As a consequence, the probability of electric transition 

between the corresponding levels of the 
25

Mg nucleus is 

identical to zero. 

To eliminate this problem we have chosen proton 

configurations of the 
25

Mg nucleus in the form: 

 

01000122222e.s. 4

10000122222e.s. 3

00100122222e.s. 2

00010122222e.s. 1

00000222222g.s.

    (14) 

and neutron configurations to be unchanged: 

 00001222222 .              (15) 

However, configurations (14) and (15) do not allow 

to uniquely determine the spins and parities of the 

nucleus in excited states. Therefore, we assume the spin 

and parity of the 
25

Mg nucleus in the excited state to be 

determined by the spin and parity of the odd proton that 

occupies the highest energy. 
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Fig. 2. Shapes for five single-particle states of 

25
Mg nu-

cleus, calculated by our procedure. Curve marked as 

g.s. corresponds to the ground state. Curves marked as 

1–4 e.s. present four low-laying excited states 

Fig. 2 and Tables 5–8 present the best result. Fig. 2 

shows the angular part of the radius of equipotential sur-

face of the potential   01111    as function 

of the angle. 

Table 5  

Experimentally measured Eexper(2J
π
) and calculated 

Etheor(2J
π
) energies (MeV), spins 2J, and parities π of the 

ground and first four low-laying single-particle excited 

states of 
25

Mg nuclei 

Eexper(2J
π
), MeV Etheor(2J

π
), MeV 

0.0000 (5+) 0.0000(5+) 

0.5850 (1+) 0.5850 (1+) 

2.5634 (1+) 2.5634 (1+) 

4.2771 (1−) 4.2771 (1−) 

4.3596 (3+) 4.3596 (3+) 
 

Table 6  

Experimentally measured Γγi(E2)ex and calculated 

Γγi(E2)th partial gamma widths (eV) for 
25

Mg nuclei. 

Ei(2J
π
) and Ef(2J

π
) denote energies (MeV), spins 2J,  

and parities π of initial and final states 
Ei(2J

π
) → Ef(2J

π
) Γγi(E2)ex Γγi(E2)th 

0.585(1+) → 0.000 (5+) (1.35±0.02) ·10−7 1.35·10−7 

2.563(1+) → 0.000 (5+) (1.70±0.50) ·10−3 1.70·10−3 

4.359(3+) → 0.585 (1+) >1.30·10−3 1.24·10−0 

Table 7  

Experimentally measured Γγi(E1)ex and calculated 

Γγi(E1)th partial gamma widths (eV) for 
25

Mg nuclei. 

Ei(2J
π
) and Ef(2J

π
) denote energies (MeV), spins 2J,  

and parities π of initial and final states 

Ei(2J
π
) → Ef(2J

π
) Γγi(E1)ex Γγi(E1)th 

4.277 (1
−
) → 0.585 (1

+
) >6.0·10

−3
 4.4·10

−0
 

4.277 (1
−
) → 2.563 (1

+
) >1.0·10

−2
 2.4·10

−2
 

 

Table 8 

Experimentally measured Γγi(M1)ex and calculated 

Γγi(M1)th partial gamma widths (eV) for 
25

Mg nuclei. 

Ei(2J
π
) and Ef(2J

π
) denote energies (MeV), spins 2J, and 

parities π of initial and final states 

Ei(2Jπ) → Ef(2Jπ) Γγi(M1)ex Γγi(M1)th 

2.563 (1+) → 0.585 (1+) (3.5 ±1.1) ·10−2 3.5·10−2 

4.359 (3+) → 0.585 (1+) >3.5·10−2 3.5·10−2 
 

Experimental data were taken from Refs. [26–29] 

and the software were tuned as for 
25

Al nucleus. 

We have achieved good consistency between 

calculated and measured observables for the 
25

Mg 

nucleus. The shape of the 
25

Mg nucleus in the ground 

state has a dominant hexadecapole deformation, while 

the excited states have a dominant quadrupole 

deformation. The 
25

Mg nucleus in the first excited state 

has a strongly prolate shape compared to other analyzed 

states, which can be the result of a rupture of protons 

pair, one of which begins to be valence from this state. 

The second excited state of the 
25

Mg nucleus has a small 

deformation compared to other analyzed states, which 

may indicate a point of phase transition to a spherical 

state. The spin and parity of the ground state of the 
25

Mg 

nucleus are determined by the spin and parity of the last 

odd neutron. Starting from the first excited state of the 
25

Mg nucleus, nucleons do not change their 

characteristics, and the only part that changes its 

quantum state is a valence proton, the quantum numbers 

 

. 
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of which determine the spin and parity of the nucleus as 

a whole in excited states. 

6. 
23

Na NUCLEUS SHAPES IN LOW-LAYING 

SINGLE-PARTICLE STATES 

The schemes of occupation of single-particle states 

by protons (proton configurations) in the ground (g.s.) 

and first four single-particle excited states (1–4 e.s.) of 

the 
23

Na nucleus were chosen as follows: 

00000212222e.s. 4

10000022222e.s. 3

00010022222e.s. 2

00001022222e.s. 1

00000122222g.s.

 

The schemes of occupation of single-particle states 

by neutrons (neutron configurations) were chosen to be 

independent of the 
23

Na nucleus state: 

00000222222 . 

Fig. 3 and Tables 9–12 present the best result. Fig. 3 

shows the angular part of the radius of equipotential sur-

face of the potential   01111    as function 

of the angle. 
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Fig. 3. Shapes for five single-particle states of 
23

Na  

nucleus, calculated by our procedure. Curve marked as 

g.s. corresponds to the ground state. Curves marked as 

1–4 e.s. present four low-laying excited states 

Table 9 

Experimentally measured Eexper(2J
π
) and calculated 

Etheor(2J
π
) energies (MeV), spins 2J, and parities π of the 

ground and first four low-laying single-particle excited 

states of 
23

Na nuclei 

Eexper(2J
π
), MeV Etheor(2J

π
), MeV 

0.0000 (3+) 0.0000(3+) 

0.4400 (5+) 0.4400 (5+) 

2.3907 (1+) 2.3907 (1+) 

2.6399 (1−) 2.6399 (1−) 

4.4296 (1+) 4.4296 (1+) 
 

Table 10 

Experimentally measured Γγi(E2)ex and calculated 

Γγi(E2)th partial gamma widths (eV) for 
23

Na nuclei. 

Ei(2J
π
) and Ef(2J

π
) denote energies (MeV), spins 2J,  

and parities π of initial and final states 

Ei(2J
π
) → Ef(2J

π
) Γγi(E2)ex Γγi(E2)th 

2.391 (1+) → 0.440 (5+) (2.6±0.07) ·10−4 2.6·10−4 

Table 11  

Experimentally measured Γγi(E1)ex and calculated 

Γγi(E1)th partial gamma widths (eV) for 
23

Na nuclei. 

Ei(2J
π
) and Ef(2J

π
) denote energies (MeV), spins 2J,  

and parities π of initial and final states 

Ei(2J
π
) → Ef(2J

π
) Γγi(E1)ex Γγi(E1)th 

2.640 (1−) → 0.000 (3+) (7.9±1.5) ·10−3 7.9·10−3 
 

Table 12 

Experimentally measured Γγi(M1)ex and calculated 

Γγi(M1)th partial gamma widths (eV) for 
23

Na nuclei. 

Ei(2J
π
) and Ef(2J

π
) denote energies (MeV), spins 2J,  

and parities π of initial and final states 

Ei(2J
π
) → Ef(2J

π
) Γγi(M1)ex Γγi(M1)th 

2.391 (1+) → 0.00 (3+) (5.00 ±0.07) ·10−4  5.00·10−4  

4.430 (1+) → 0.00 (3+) (1.92 ±0.11) ·10−0 1.92·10−0  
 

 Experimental data were taken from Refs. [28, 29] 

and the software were tuned as for 
25

Al nucleus. 

 We have achieved very good consistency between 

calculated and measured observables for the 
23

Na 

nucleus. The shape of the 
23

Na nucleus in the ground 

and in the first low-laying excited states has a dominant 

quadrupole deformation. The ground and the first two 

single-particle excited states of 
23

Na nucleus have a 

small deformation compared to the third excited state, 

which may indicate the continuous spherical phase of 

the 
23

Na nucleus formed by these states and the point of 

phase transition into a non-spherical state. The nucleons 

of the 
23

Na nucleus do not change their characteristics, 

and the only particle that changes its quantum state is 

the valence proton, the quantum numbers of which 

determine the spin and parity of the 
23

Na nucleus, both 

in the ground and in the excited single-particle states. 

7. DISCUSSION 

The evolutionary procedure of determining the 

shape of a nucleus in single-particle states presented in 

this article is aimed at searching for the globally optimal 

solution. However, being aware of the complexity of the 

problem under study and the fact that the actual number 

of fitting parameters is substantially greater than the 

actual number of data points, we do not expect to 

achieve it. Therefore we consider the obtained results 

(Figs. 1–3, and Tables 1–12) as very promising. 

We see that the shapes of the nuclei studied in the 

ground and low-laying single-particle excited states ob-

tained in different runs of the procedure go rather close 

to each other. Besides, the variations of the parameter 

that takes into account the deviation of the energy scale 

from its simple estimate ε and of the spin-orbit interac-

tion strength κ from run to run of the optimization pro-

cedure are found to be insignificant. This result is a con-

sequence of application of the requirements imposed on 

the weight parameters 
  i
k2  from the decomposition 

(10). Namely, the number of these parameters must be 

the smallest possible for each level and the values of 

these parameters must be the smallest possible, ensuring 

a good description of experimental data along with that. 

From the formally mathematical viewpoint, these re-

quirements are equivalent to the numerous constraints 

. 
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imposed on the variables   i
k2 , which leads to the sub-

stantial reduction of the parameter space of the problem 

(the “effective” number of free parameters is much 

smaller than the “actual” one). One should also bear in 

mind that the measured probabilities of electromagnetic 

transitions between single-particle states of nuclei are 

highly correlated data that is difficult to analyze. Thus, 

in this case, the belief that “anything can be fitted with a 

sufficient number of parameters”, is a substantial over-

simplification (see, e.g., Ref. [2]). 

From the computational viewpoint, in general, the 

parameter space of our problem is highly dimensional, 

highly nonlinear, and has unknown and unpredictable 

topography. This makes the choice of an appropriate 

search method crucial. Evolutionary (or genetic) algo-

rithms have many times proved very efficient in dealing 

with very difficult physical problems (see, e.g., Refs. 

[30–35]), so we have chosen it as a key element of our 

procedure. Usually, in evolutionary computations, the 

mutation amplitude is either constant, or decreases 

across the run of the evolutionary procedure. Often this 

leads the search algorithm in a local optimum in the pa-

rameter space. To avoid premature convergence in a 

local optimum, we have devised the special schedule of 

tuning the mutation amplitude, in which the latter be-

haves as a smooth oscillatory function of generation. 

This mechanism resembles, in part, the so-called “sim-

ulated annealing” approach to solve the optimization 

problems of combinatorial complexity. Due to the con-

secutive cycles of increasing and decreasing of the mu-

tation amplitude, the population hops from the less 

fitted optimum to the more fitted one situated in the 

close vicinity. To have an opportunity to explore the 

parameter space much further, we have allowed the 

population as a whole to periodically jump to the new 

point in the parameter space. As a consequence, we 

have managed to localize the region of the nuclear 

shapes that give the lowest values to the χ
2
 magnitude: 

Tables 1–12 show very good agreement between the 

calculated and measured observables. 

In principle, our algorithm could treat    as a nu-

merical array and evolve it as a whole quantity with 

help of the diffused mutation operator devised in Refs. 

[21, 22]. We emphasize that the devised approach of 

extracting nuclear shapes from the data does not depend 

on the particular nuclear data and the particular analyti-

cal tools (nuclear models) to analyze it. For instance, 

our approach, with minor changes, could be used to 

extract the matter-density distributions in nuclei [36], 

the radial dependence of the nuclear potentials [37], etc. 

from the suitable data. Our preliminary investigations 

show that our method enables to extract the radial 

dependence of the nuclear potentials from the set of 

energy levels. Thus our method could be applied to the 

wide set of nuclear problems in wide mass region.  

Applications of the Landau theory of phase transi-

tions, briefly mentioned in the Introduction, are based 

on the decomposition of the radius of a nucleus, which 

depends on spherical angles, into a series of spherical 

functions [5]. Thus, the potential energy of the nucleus 

contains collective forces that act on the deformation 

parameters, but not on the angular variables. Strictly 

speaking, to predict the equilibrium shape of the nu-

cleus, the theory must contain angular derivatives of 

various orders. 

Spatial derivatives naturally arise in the Landau-type 

theory of phase transitions with a spatially inhomoge-

neous order parameter (see, e.g., Ref. [38] or any text-

book on phase transitions). This theory turned out to be 

very effective in describing phase transitions in ferroe-

lectrics and magnetics with incommensurate phases 

(see, e.g., Refs. [39–42] and also Ref. [33]). These 

phases are states in which the period of spatial 

modulation of the order parameter is not commensurate 

with (or does not depend on) the period of the crystal 

lattice. In this case, the Landau-type potential is a 

functional of the order parameter and its derivatives. 

The competition and compromise of different powers of 

the order parameter and its derivatives lead to the 

appearance of various stable spatially inhomogeneous 

states of the system. 

Assuming that the characteristic size at which the 

angular function describing the deviation of the nucleus 

shape from sphericity changes significantly is not com-

mensurate with both the size of the nucleon and the dis-

tance between the nucleons, the deformed nucleus can 

be considered as an incommensurate phase. Therefore, 

the Landau-type theory of phase transitions with a spa-

tially inhomogeneous order parameter could be a useful 

tool to study the shape of a deformed nucleus. 
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ДЕФОРМАЦІЯ НЕПАРНИХ ЯДЕР 
23

Na, 
25

Mg ТА 
25

Al В ОДНОЧАСТИНКОВИХ СТАНАХ 

В.Ю. Корда, Л.П. Корда, В.Ф. Клепіков, І.С. Тімченко 

За допомогою розробленого нами нового еволюційного підходу форми непарних ядер 2s1d оболонки 
23

Na, 
25

Mg та 
25

Al в основних та одночастинкових збуджених станах визначені з експериментальних даних 

про енергії, спіни та парності цих станів, а також виміряних ймовірностей електромагнітних переходів між 

ними. В одночастинкових спектрах досліджених ядер знайдені окремі стани та послідовності станів з анома-

льно малою деформацією. Це свідчить про наявність фазових переходів із сферичного стану ядра в дефор-

мований стан. 

 

 


