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The values of the slope B(s,t) and curvature parameter C(s,t) have been calculated within the framework of 

the maximal Pomeron and Odderon approach in the wide s- and low t-range with  the allowance made for the 

diffraction cone shape. The absolute values of the averaged curvature parameter <C(s,t)> is predicted to be 

decreasing depending on s and change  of sign at asymptotically large energies far from achievable ones. 
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INTRODUCTION 

Concerning the search for “asymptopia” many 

years ago Jorge Dias de Deus and Antonio Braz de 

Padua [1] rightly argued: “At the moment, the 

situation is such that we do not find any evidence for 

new and not old-fashioned physics in hadronic 

diffraction at high energies. Odderon and threshold 

effects may be there, but do not seem to be relevant for 

the description of the bulk of the interactions: total 

cross-section, ratio ρ, differential cross-section, etc”. 

Many others think that we are still extremely far from 

the asymptopia, the region where some known 

asymptotic relations should hold. The time has come 

when you can reconsider these predictions. Now the 

ideal place to search for the asymptopia is the LHC   

[2–4].  

1. CHOICE OF DATA 

The Collider experiments on elastic pp-scattering 

brought us closer to answering the question where is 

asymptopia? In the elastic hadron-hadron scattering the 

fine structure parameters of diffraction cone such as the 

slope 

     (1) 

and curvature  

         (2) 

considered as a sensitive indicator of the transition to 

asymptopia [5].   

Recently it was found that the curvature effects  

while small, lead to significant changes in the forward 

slope parameter relative to  that determined in purely 

exponential fit and concluded that the effect of 

curvature in the small – t differential cross sections 

should be included in fits to new data [6]. Curvature 

has been studied previously at much lower energies [7].     

In [8] we found that the non-exponential function 

entering to the Pomeron pole residue, as well as the 

non-linearity of its trajectory is strongly suggested by 

the data. As a result, one can observe that the curvature 

parameter has a tendency to decrease and change the 

sign in a remote TeV area. In this relation the idea 

arises to revise the elastic pp-scattering data for wide 

interval of s from ISR to LHC energies for diffraction 

cone within the framework of the maximal Pomeron 

(Froissaron) and Odderon model (FMO). Due to the 

unified approach in calculating the characteristics of 

slope and curvature parameter we shall predict their 

energy behavior. For this we have collect the data set of 

differential cross-section for pp-scattering where the 

non-exponential behavior of diffraction cone is clearly 

present in broad area of energy and appropriate interval 

of momentum transfer to select the most suitable form 

of this non-exponentiality. 

Next we chose the best form of Pomeron and 

Odderon as well as Reggeons for description of selected 

data set choosing non-exponential pole residue 

contributions of Pomeron and Odderon. For the 

completeness of the fit, we also added the experimental 

data of ( )stot  and ( )s  from compilation [9] at t=0 for 

√s ≥ 5 GeV which are important to describe the 

mentioned data set. 

To look for non-exponential behavior similar to 

that observed in the ISR [10, 11] and LHC [1, 2] we 

have separate those experimental data for pp-scattering 

which contains large number of experimental points, 

namely: at Ecm = 19.4 [10]; 23.5; 30.7; 44.7; 52.8; 

62.5 GeV [11]; 8 [1] and 13 TeV [2].  

Concerning the boundary of t-range taking into 

account the Coulomb-nuclear interference region of the 

diffraction in general this boundary not less than 

|t| = 0.03 GeV
2
. The opposite boundary for large – |t|  

excluding the dip-bump region, namely |t| = 0.85 GeV
2
. 

2. FMO APPROACH 

The Maximal Pomeron (Froissaron) and Maximal 

Odderon approach (FMO) give a good description of all 

accessible pp- and pp ‒elastic scattering at GeV and 

TeV energies and wide momentum transfer [13, 14]. Let 
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us recall that this is one of the few approximations in 

which all the basic requirements are taken into account, 

including both for the scattering forward of  Froissart 

theorem and the Auberson-Kinoshita-Martin theorem 

for t ≠ 0. Taking into account the latest data from LHC 

[4], to describe the selected dataset, it is necessary to 

take into account not only the Pomeron, but also the 

contribution of the Odderon. The Pomeron contribution 

to the scattering amplitude in this case is: 

( ) ( ) ( ) ( )t,sPt,sPt,sPt,sP 210 ++= .             (3) 

The simple and dipole Pomerons have a 

conventional form: 

( ) ( )t)t(

0,P0
0

p
P es~at,sP 

= ,              (4) 

( ) ( )
s~lnes~at,sP t)t(

1,P1
1

p
P 

= ,         (5) 

2

2

m2

m2s

is~ = ,
                                 (6) 

( ) t1t '

pp  += ,                                    (7) 

while the tripole term has the form 

( ) ( )
s~lne as~t,sP 2t

Z

)(z2J

2,p2
2

p

p

p1 =             (8) 

according the AKM asymptotic theorem, 

   s~lnrz pp = ,                               (9) 

0t/t= ,  t0 = 1 GeV
2
.                        (10) 

The common form of residue functions suggests the 

non-linear exponent: 

( ) ( )tttt pp

p

ii,p  = ,                        (11) 

2

p m4t = .                                        (12) 

Contribution of Odderon reads as: 

( ) ( ) ( ) ( )t,sOt,sOt,sOt,sO 210 ++= ,       (13) 

( ) ( )t)t(
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0

pO
O es~iat,sO 

= ,               (14) 
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O
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= ,                  (15) 
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O
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O1 = ,            (16) 

( ) ( )tttt oo

O

i

O
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29 ,Ot m                                   (18) 

( ) t1t '

OO  += ,                         (19) 

s~lnrz OO = .                        (20) 

Contributions of the secondary Reggeons,   and   

have a standard form 
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In this model we use the following normalization of the 

total amplitude: 
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k = 0.38938 mb·GeV
2
, and 
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Table 1  

Parameters of Simplified Froissaron  

and Maximal Odderon model 

Pomeron contribution  

Parameter Dimension Value Error 
( )S

p,1g
  

mb     44.536 0.907 

( )D

p,1g
  

mb     -2.7191 0.1552 

( )T

p,1g
  mb    0.34725 0.00631 

α'P, GeV
-2 

GeV
-2

   0.57380 0.0274 

rp GeV
-1

 0.29450 0.00153 
( )S

p,1
  

GeV
-1

   2.4211 0.1775 

( )D

p,1   
GeV

-1 
 6.1907 0.2159 

( )T

p,1   
GeV

-1
 5.6113 0.0995 

Odderon contribution  

Parameter Dimension Value Error 
( )S

o,1g
 

mb   -4.716     0.4822 

( )D

o,1g
  mb  1.0319 0.0924 

( )T

o,1g
  mb  -5.3758 0.0493   

α'o, GeV
-2 

GeV
-2

  0.68863 0.43704 

ro GeV
-1

 0.24139 0.02795  
( )S

o,1
  

GeV
-1

  0.000 fix at lim. 

( )D

o,1   
GeV

-1
  1.3180     1.9230  

( )T

o,1   
GeV

-1 
 7.5320 1.4536 

Reggeons contribution  

Parameter Dimension Value Error 
( )f

1g
 

mb 41.725 4.104 

( )0f
 

 0.43681  0.03528    

'

f
 
 GeV

-2
  0.8 fix at lim. 

( )f

1b
  

GeV
-2 

 17.402   5.215 

( )

1g
 

mb  32.369  2.821    

( )0  
 0.30355  0.0417   

'

  
 GeV

-2
 0.8 fix at lim. 

( )

1b
  

GeV
-2

  0.000 fix at lim.  

 

 

, 
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Free parameters of the model were determined from 

the fit to the selected data. Results of the fits in 

considered model with χ
2
/DOF = 1.16 are shown in 

Table 1. Based on the foregoing, we can conclude that 

the simplified FMO model, taking into account the non-

exponential form of the Pomeron and Odderon residue, 

gives a good description of the selected set of 

experimental data for the ISR and LHC energies and 

momentum transfer of diffraction cone.  

3. CALCULATION OF SLOPE  

AND CURVATURE PARAMETER 

Dependence of slope on t at various energies in the 

FMO model has a concave shape (Fig. 1).  

Therefore in this case it is more convenient consider 

the slope <B(s)> and curvature <C(s)> averaged in 

some interval of | t | [13].  

 

Fig. 1. Slope B(s,t) calculated in model  
 

We did it in the intervals in accordance Table 2 for 

TeV energies. 

     
  min

max

/

/
1/ ln ,

d t dt

t d t dt
B s




   
 

        (29) 

where   

Δt = tmx- tmin,                                 (30) 

( ) ( ) ( )( ( )) .tBtB2/1sC minmax>=<       (31)  

To calculate the slope B (t) at the points tmax and 

tmin, we use the formula for numerical differentiation: 

( ) ( )
( ) ( )( )

( )
.

t,sd

tt,sdtt,sd
2/1t,sB t 




+
=           (32) 

The step was chosen as Δt = 10
-6

 GeV
2
. 

To calculate <C(s)> according to the simplified 

MFO, the interval of momentum transfer with a 

descending branch of local slope B (s, t) should be 

selected (see Table 2 and Fig. 1). 

Table 2  

The boundaries for calculating the averaged curvature 

parameter in simplifies FMO model 

Set √                            

ISR    19.4-62 0.030 0.850 

 

LHC 
8000 0.041 0.207 

13000 0.042 0.155 
 

 

Within these boundaries the calculated averaged 

curvature shown in the Fig. 2 and has a decreasing 

character, which qualitatively corresponds to the 

behavior of the curvature determined directly from the 

experiment (squares). The value of curvature parameter 

depending on s changes its sign at asymptotically large 

energies. 

 
 

Fig. 2. Averaged curvature parameter calculated 

in simplifies FMO model (solid line). Open squares – 

“experimental” averaged curvature parameters. 

The bar represents the fitting uncertainty 
 

The “experimental” averaged curvature parameter 

<C(s)> calculated by Eqs. (28) with parameters 

obtained from the fit by the model of eq. (33) [7] for all 

selected sets of experimental data.  

,
                    

(33) 

where 2

0 m4t = .   

4. CONCLUSIONS 

We have studied the phenomenology of the   -
elastic scattering within both GeV and TeV energy 

range by using a model in which the analytical 

properties of the scattering amplitude are accounted for 

by the threshold singularity in the cross-channel. It has 

been shown that such features reflect adequately the 

“non-exponential” part of the  -dependence of the 

differential cross-section. To do this we have explored 

the FMO model, which naturally consider the curvature 

as the manifestation of the threshold structure of the 

scattering amplitude required by  -channel unitarity. 

The scattering amplitude represented by Froissaron, 

Maximal Odderon as well as by standard reggeons 

contributions was able to describe not only the total 

cross section and rho [12], but also the existing 

experimental data on differential [13] cross section and 

polarisation of   - and  ̅ -scattering [14]. We 

emphasize that the non-exponential functions  ( ) 

entering to in the Pomeron and Odderon pole residue 

are strongly suggested by the data. As a result, one can 

observe that the averaged curvature <C(s)> behavior 

is predicted within the simplified maximum Pomeron 

and Odderon (FMO) model that satisfies the basic 

principles and has a tendency to decrease and change 

the sign in a area of hundreds TeV (see Fig. 2). It means 

that the “asymptopia” lies in a distant area. 

  t
=

dt

tdσ tγ+δt 
0ae
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КРИВИЗНА ДИФРАКЦІЙНОГО КОНУСА ПРОТОН-ПРОТОННОГО ПРУЖНОГО РОЗСІЯННЯ  

ПРИ ВИСОКИХ ЕНЕРГІЯХ У МОДЕЛІ МАКСИМАЛЬНОГО ПОМЕРОНА ТА ОДДЕРОНА 

О. Лендeл, Н. Бенце, I. Сані 

Нахил B(s,t) та параметр кривизни C(s,t) розраховані у рамках моделі максимального Померона та 

Оддерона у широкому діапазоні s і при малих t з урахуванням форми дифракційного конуса. 

Передбачається, що абсолютне значення усередненого параметра кривизни <C(s,t)> спадає залежно від s і 

змінює знак при асимптотично високих енергіях, далеких від досяжних. 
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