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PHYSICS OF RADIATION DAMAGES AND EFFECTS IN SOLIDS 
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Using the analytical expression for the energy of elastic interaction of radiation point defects with a prismatic 

edge dislocation loop of zirconium (Burgers vector Db 1/ 3 112 0 ,  0211  occurrence plane), the bias of loops 

of different nature (vacancy and interstitial) was calculated by the finite difference method. The toroidal geometry of 

the reservoir was used. It allowed one to calculate biases for loops of any size without any correction of the elastic 

field in its area of influence. In the dilatation center approximation the dependences of the loop bias on the loop 

radius were obtained. The principal possibility of coexistence of loops of different nature in the prismatic plane of 

zirconium is shown. A qualitative concept of the radiation growth (RG) mechanism was formulated within the 

framework of the classical elastic ideology. 

PACS: 62.20Dc;62.20.Fe 
 

INTRODUCTION 

The development of the domestic nuclear power 

industry at present is mainly based on the use of light-

water reactors with the use of zirconium materials in the 

core that are low-absorbing in the thermal neutron 

spectrum [1, 2]. Ensuring the operational reliability, 

specified service life and safety of nuclear installations, 

taking into account economic and environmental 

factors, is feasible with compliance with very strict 

requirements for these materials, taking into account the 

degradation of their physical and mechanical properties 

under the influence of high temperatures, neutron 

irradiation and corrosion in the coolant. An example of 

such requirements is the high radiation [3] and 

mechanical [4] durability of the structural materials of 

fuel elements and fuel assemblies, in particular, their 

dimensional stability. This problem has many aspects. 

One of them is related to the radiation growth effect 

(RG). This term refers to the shape-change of crystalline 

solids under conditions of irradiation by energetic 

particles without the application of an external load. The 

volume of the material does not change, in contrast to 

the effect of radiation swelling. The RG phenomenon is 

particularly characteristic of anisotropic materials, in 

particular zirconium (hcp). So, the fuel cladding and fuel 

assemblies of all conventional nuclear reactors that 

generate power from the fission of uranium by thermal 

neutrons are made from zirconium alloys because of 

their low thermal neutron absorption cross-section. The 

stability of their dimensions, as well as the ability to 

predict changes in their shape, is very important to the 

designers and operators of such reactors, since 

deformation affects the operability and service life of 

the reactor core. Therefore, RG of zirconium and its 

alloys has been the subject of intensive research since 

the second half of the last century [5, 6]. It has been 

found that zirconium during growth expands in the a -

direction and shrinks along the c -axis [7, 8]. Such its 

behavior is associated with the idea of Buckley S.N. 

[5, 6] that interstitial loops are formed predominantly on 

the prismatic planes of zirconium, {1010}, and vacancy 

loops on the basic (0001). The reason is the stresses 

caused by the thermal peaks of the collision cascades 

and the corresponding thermal expansion along the 

different zirconia axes. Although the physics of the RG 

mechanism has changed over the years, Buckley's 

general concept has remained the same: vacancy loops 

nucleating and growing on the base planes “eating” the 

crystal along the c -axis, while growing interstitial 

loops, forming additional extra planes in the a -

direction, increase its size. Moreover, it turned out that 

dislocation loops of different nature (vacancy and 

interstitial) can coexist on prismatic planes [7, 8]. And 

that does not fit at all into the standard concept of the 

dislocation bias (EID – elastic interaction difference) 

[9], since it is believed [10] that the dislocation loop 

bias does not depend on its nature. Therefore, the joint 

coexistence of interstitial and vacancy loops, as well as 

the growth of basic vacancy loops within the standard 

elastic ideology seems inexplicable. 

The most popular version of the cause of radiation 

growth of zirconium is anisotropic diffusion of radiation 

point defects (PD) between its planes (DAD theory – 

diffusional anisotropy difference) [9, 11]. Its main 

assumption is as follows / /a c a c

i i v vD D D D . Here a

mD  

is the diffusion coefficient of PD of m-type in the basal 

plane of zirconium, c

mD  is the coefficient of diffusion in 

c -direction (subscript v  and i  refer to vacancies and 

self-interstitial atoms (SIA) respectively). However, 

there is no experimental confirmation of this inequality 

to date. Moreover, numerical calculations [12] have 

shown that the inequality in the range of reactor 

temperatures (T < 800 K) is just the opposite 
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/ /a c a c

i i v vD D D D . Therefore, a physical cause of 

RG associated only with anisotropic diffusion of 

radiation PD seems doubtful. 

In [13, 14], within the framework of the classical 

elastic ideology (EID), the bias for basic zirconium 

loops (edge dislocation with the Burgers vector  

 Db 1/ 2 0001  and mixed with DSb 1/ 6 2023   ) 

of different nature was numerically calculated 

depending on their radius. It was shown that the 

existence of vacancy type loops is possible only in the 

presence of an uncompensated source of vacancies into 

the basal plane. It was suggested that such a source 

could be interstitial loops on prismatic planes. In order 

to verify it, in this work, a similar problem is solved for 

a prismatic edge dislocation loop (the Burgers vector 
Db 1/ 3 112 0 , the  0211 } occurrence plane [8]), 

using the analytical expression for the energy of its 

elastic interaction with the PD.  

LOOP BIAS 

The sink bias is determined by a relation of the form 

1 /  v iB Z Z . Here subscripts v and i correspond to 

vacancies and SIA respectively. If B>0, one says that 

the loop has a preference to SIA. The dimensionless 

quantity 
,v iZ  is called the absorption efficiency of the 

PD by the sink. It appears as a result of calculating the 

PD diffusion flux to a specific sink. Under the 

assumption of diffusion isotropy of the medium 

(Dij = Dδij) the PD flux J to the dislocation loop is 

found by solving the following diffusion problem in its 

region of influence using the quasi-stationary 

approximation:  

  0div j r ;      ( ) ( )DC   j r r r ;  

    1/ Bk T  ;                                                   (1) 

   
( )

ln exp ( )
e

C
E

C
  

 
  

 

r
r r ;     

     
S

J dn j r . 

Here ( )C r  is the concentration of migrating PD;  j r , 

( ) r  – their flux density and chemical potential, 

respectively; ( )E r  – their interaction energy with the 

loop; eC  – equilibrium thermal concentration of PD in 

the crystal in the absence of a stress field E . The 

integral is taken over an arbitrary surface containing the 

loop with the outer normal n. Equation (1) should be 

supplemented with boundary conditions. The inner 

surface 
CS  is usually chosen in the form of a torus 

containing a dislocation line. The torus minor radius rc 

corresponds to the dislocation core radius. The 

boundary condition on it has the form: 

 ( ) ( |exp 0)
CSC E r r .                           (2)

 

The condition has the traditional form and corresponds 

to the value of the PD chemical potential at the 

dislocation core | 0
CS  , when we neglect the linear 

tension of the loop and the effect of coalescence of 

loops of the same nature during annealing. Outer 

surface 
extS  following the authors [10] we choose in the 

form torus coaxial with 
CS  with generating circle radius 

extR which corresponds to the radius of the loop 

influence region. By analogy with (2) we formulate it 

for the chemical potential in the form: 

| ln( / )e

Sext
C C   . Here C  is the average PD 

concentration in an effective medium that simulates the 

influence of all sinks. This is the standard form of the 

PD chemical potential in an effective medium, where 

the influence of a particular sink is neutralized by the 

others. Then:  

 ( ) ( )ex |p Sext
C E Cr r .                                (3) 

The central element of system (1)-(3) is the interaction 

energy of PD with the loop. According to [13], in 

zirconium in the case of a dilatation center, it has the 

form:  

( ) ( )ijV PE Spur = r , 
 

       
2

13 11 12 33

13 33 11 12

2 ( )

4 2 ( )

C C C C
P

C C C C

 


  
.                   (4) 

Here Cij is the crystal elastic moduli, V - the change in 

the volume of the finite crystal, associated with PD; 

( )iju r  – deformation field caused by the loop in the 

point where the PD is situated. In contrast to the basic 

loop (axial symmetry); there is only one option for 

calculating the deformation field ( )iju r  – through the 

tensor Green's function ijG  (TGF) equations of 

equilibrium of a given elastic medium, which allows 

calculating the displacements created by a loop with any 

Burgers vector  

 
 

D

i jD D

i jklm m l

kS

G
u C b n dS

x

 



r r

r .            (5) 

Here Cjklm is the tensor of elastic moduli of the medium, 

modeling crystal; bm
D
 is the m – component of the 

dislocation Burgers vector; nl
D
 is l – component of the 

normal vector to an arbitrary surface SD, based on the 

dislocation line; r is the observation point coordinate; 

r’ is the surface point coordinate SD. TGF is calculated 

by the method Lifshitz-Rosenzweig [15]. For a -loop, 

the direction of the Burgers vector 1/ 3 1120=D
b  and 

the normal n to the plane of occurrence  1120  of the 

loop coincide, so it is natural to choose the axis “x” of 

the Cartesian coordinate system in the same direction. 

As a result, for the vacancy a -loop we have [12]:  

2 2
2 2 2 2

3 11 12 1 3 33 3 2

3

( ) ( ) ( ) 3 ( ) 2
4

D D

D

S S

b d r d r dY
E Q C C Y

d
V P    

 

    
    

    




 
r r r r

r = ;                                  (6) 

2 2 2 2 2 2 2 2 2
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d
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
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2 2 2

3 3 3( ) ( ) ( )V W     ;       2 2 2

3 3 3( ) ( ) ( )Y V     ;         

1 /x  r r ;         
3 ( ) /z z    r r . 

The functions 2

3( ) , 2

3( )W  , 2

3( )V   are quite 

complicated. Their explicit expressions are given in 

[16]. It is important that they all depend on only one 

variable 2

3 .  
 

CALCULATION PROCEDURE  

Consider a circular vacancy loop of radius R , lying 

in the zirconium prismatic plane ( 0x  ) of a 

cylindrical system coordinates (r, φ, x). All calculations 

are performed using dimensionless coordinates 
Dbrr / ; 2 2 2r y z  ; cosry  ; sinrz  ; 

Dbxx / ; 
2 2 2 22 cos( )x r rr r         r r ; 

( ) sin sinz z r r      . The integration in (6) is 

carried out over the area of the loop. Figs. 1 and 2 for 

loop with radius 100R   in plane x = 40 illustrate 

dependency of the dimensionless energy E V P/  (6) 

on the azimuth angle   for two regions: inner 50r   

(Fig. 1) and external 150r   (Fig. 2). Wherein 

experimental values of the elastic moduli of zirconium 

according to [17] (Mbar) look like: C11 = 1.554; 

C12 = 0.672; C13 = 0.646; C33 = 1.725; 

C55 = C44 = 0.363.  

 
Fig. 1. Dependence of the interaction energy 

( )E V P /  of the vacancy loop and SIA  

on the azimuth angle   for R = 100; x = 40  

and the inner region of the loop r = 50 
 

 
Fig. 2. Dependence of the interaction energy 

( )E V P /  of the vacancy loop and SIA on the 

azimuth angle   for R = 100; x = 40  

and outer region of the loop r = 50 

 

 

Note that in (4) for zirconium, the value 0P . 

Therefore, for SIA ( 0V  ), the inner region of the 

vacancy loop must be the attraction region 

( ( ) 0V PE  r / ), and the outer region, the repulsion 

region ( ( ) 0V PE  r / ). It is this behavior of energy 

that takes place in Figs. 1, 2. For a vacancy ( 0V  ), 

the illustration will be reversed. We note a very weak 

dependence on the azimuth angle  , which does not 

change the nature of the interaction (sign) in each 

region. The interaction changes sign only when passing 

from the inner region of the loop ( 50r  ) to the outer 

one ( 150r  ). However, this dependence greatly 

complicates the calculations for numerical calculations. 

Therefore, as in [14], we will eliminate it by averaging 

the right side of (6) over the azimuthal angle  , making 

the problem isotropic in the “ yz ” plane. And one more 

note. In the expression for energy (6), the dependence 

on the variable “ x “ is quadratic, i.e. replacement 

xx   doesn't change anything. Therefore, as in the 

case of the basic loop,  Db 1/ 2 0001  numerical 

calculations can be carried out only in one part of the 

half-space 0x .  

In terms of a variable 

( , ) ( , )exp ( , ) /r x C r x E r x C   the diffusion problem 

(1)–(3) in dimensionless cylindrical coordinates taking 

into account isotropy after averaging has the form: 
2 2

2 2

1
0

E E

r x r r r x x

         
     

      
               (7) 

with boundary conditions ( , ) 0r x   on the inner 

toroidal surface   

   c cR r r R r ,                                (8) 

( , ) 1r x   on the outer toroidal surface    

   ext extR R r R R    for    extR R ;  0 extr R R    

for extR R . 

Then for the flux and absorption efficiency 
,v iZ we 

have: 

 2 , , c ext

D
J R Z r R R

C



, 

 

    
1

, , ( , ) ( ,ex )p
2

c ext

S

Z r R R E r x r x d
R

 


  n .  (9) 

The diffusion problem (7), (8) was solved 

numerically by the finite difference method. Fig. 3 

shows a cross section of a toroidal reservoir containing 

a loop [14], taking into account the reflection symmetry 

in the plane 0x  and symmetry (после усреднения 

по  ) about rotation around the x -axis. The specified 

symmetry imposes additional boundary conditions: 

/ 0x    on DA, BC, OA, corresponding to zero flux 

through the plane 0x , and / 0r    on DO (axis 

of symmetry). An arbitrary inner surface S in (9) is 

chosen for the convenience of calculations in the form 

of a rectangle of rotation. In Fig. 3, this is the contour L. 
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                                                                     a                                                             b 

Fig. 3. Coordinate system for a toroidal reservoir: a – R>Rext, b – R<Rext 

 

RESULTS 

Fig. 4 shows the dependences of the bias of the 

prismatic loops of zirconium B  on their radius (in Db ) 

for three values of the outer size of the toroidal 

reservoir: D

extR 200 b , which corresponds to the 

dislocation density 9 28 10 cm    (see Fig. 4,а), 

D

extR 120 b  ( 10 22 10 cm   , see Fig. 4,b) and 

D

extR 60 b  ( 10 28.4 10 cm   , see Fig. 4,c). Curves 

with a maximums refer to interstitial ( ) loops, with a 

minimum to vacancy ( ).  
 

          

 

 
Fig. 4. Dependences of the bias of the prismatic loops of 

zirconium, B , on their radius for three values of the 

outer size of the toroidal reservoir: 

a – D

extR = 200 b ; b – D

extR = 120 b ; c – D

extR = 60 b . 

“ ” – refer to interstitial loop; “ ” – to vacancy 

First, it should be noted that prismatic dislocation 

loops in zirconia are biased sinks, which absorb SIAs 

more efficiently than vacancies, since B>0 for both 

types of loops (see Fig. 4). The bias depends on the loop 

radius and the sink density. And this is consistent with 

the general conclusions [10]. However, in [10] there is 

an important conclusion that the bias does not depend 

on the nature of the loop. In our case, this is not the 

case.  

Secondly, and this is the most important, there is 

always a region in space of the size, in which the bias of 

interstitial loop 
intB  ( ) is higher, than bias vacansion 

one 
vacB  ( ). Those, in this region, SIAs are mainly 

absorbed by interstitial loops. The remaining in excess 

vacancies can be absorbed by the existing vacancy loops 

or migrate to the basal plane and contribute to the 

nucleation and further growth of vacancy basis loops. In 

our opinion, this makes it possible in principle to 

explain two experimentally observed points: the joint 

coexistence of loops of both types in the prismatic plane 

of zirconium, as well as the nucleation and subsequent 

growth of vacancy loops in the basal plane. Note that 

the lower boundary of this region 
int vacB (R ) B (R )   

moves towards smaller sizes with an increase in the 

total dislocation density   (or a decrease in 
extR ). So, 

at 10 22 10 cm    (see Fig. 4,b) DR 60b   or 

20  nm. And these are quite real loops visible in a 

microscope. In the region R R  the existence of loops 

within the framework of EID is difficult to explain, 

since here 
int vacB B . Those SIAs should be 

predominantly absorbed by vacancy loops and dissolve 

them. Excess vacancies should, accordingly, dissolve 

the emerging interstitial loops. Therefore, this area is the 

subject of research in the theory of nucliation. Thus, the 

following picture emerges. At a low dislocation density 

(the initial stage of irradiation), the loops in the 

prismatic plane cannot grow due to their large value R  

(see Fig. 4,а). As the dislocation density increases, it 

moves towards lower values. There is a real possibility 

of diffusion growth of emerging interstitial loops. And 

they, in turn, stimulate the nucleation and growth of 

vacancy loops, first on the prismatic and then on the 

basal planes of zirconium. However, here we must also 

include the bias of the basis loops and only then 

formulate a qualitative possible RR mechanism based 

on the classical elastic ideology. In conclusion, we note 

that understanding the physics of the RR mechanism 

may be useful for predicting the behavior of fuel 

cladding during long-term storage of spent fuel in dry 

reservoir.  
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SUMMARY 

1. Prismatic loops in zirconia are biased sinks, which 

absorb SIAs more efficiently than vacancies, since for 

both types of loops (see Fig. 4) 0B  .  

2. The principal possibility of coexistence of loops 

of different nature in the prismatic plane of zirconium is 

shown.  

3. A qualitative concept of the RG mechanism was 

formulated within the framework of the classical elastic 

ideology.  
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ФАКТОР ПЕРЕВАГИ ПРИЗМАТИЧНИХ ДИСЛОКАЦІЙНИХ ПЕТЕЛЬ У ЦИРКОНІЇ. 

ЧИСЕЛЬНИЙ АНАЛІЗ 

О.Г. Троценко, А.В. Бабіч, П.М. Остапчук 

Використовуючи аналітичний вираз для енергії пружної взаємодії радіаційних точкових дефектів із 

призматичною крайовою дислокаційною петлею цирконію (вектор Бюргерса Db 1/ 3 112 0 , площина 

залягання  0211 ) методом кінцевих різниць пораховано фактор переваги петель різної природи 

(вакансіонної та міжвузлової). Використовувалася тороїдальна геометрія резервуара, що дозволяє провести 

розрахунки для петлі будь-якого розміру без будь-якої корекції пружного поля в її області впливу. У 

наближенні центру дилатації отримані залежності фактора переваги петель від їхнього радіусу. Показано 

важливу можливість спільного співіснування в призматичній площині цирконію петель різної природи. 

Сформульовано якісну концепцію механізму радіаційного зростання (РЗ) у рамках класичної пружної 

ідеології.  


