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Using the analytical expression for the energy of elastic interaction of radiation point defects with a prismatic
edge dislocation loop of zirconium (Burgers vector b° =1/3<11§ 0> , {11§ O} occurrence plane), the bias of loops

of different nature (vacancy and interstitial) was calculated by the finite difference method. The toroidal geometry of
the reservoir was used. It allowed one to calculate biases for loops of any size without any correction of the elastic
field in its area of influence. In the dilatation center approximation the dependences of the loop bias on the loop
radius were obtained. The principal possibility of coexistence of loops of different nature in the prismatic plane of
zirconium is shown. A qualitative concept of the radiation growth (RG) mechanism was formulated within the

framework of the classical elastic ideology.
PACS: 62.20Dc;62.20.Fe

INTRODUCTION

The development of the domestic nuclear power
industry at present is mainly based on the use of light-
water reactors with the use of zirconium materials in the
core that are low-absorbing in the thermal neutron
spectrum [1, 2]. Ensuring the operational reliability,
specified service life and safety of nuclear installations,
taking into account economic and environmental
factors, is feasible with compliance with very strict
requirements for these materials, taking into account the
degradation of their physical and mechanical properties
under the influence of high temperatures, neutron
irradiation and corrosion in the coolant. An example of
such requirements is the high radiation [3] and
mechanical [4] durability of the structural materials of
fuel elements and fuel assemblies, in particular, their
dimensional stability. This problem has many aspects.
One of them is related to the radiation growth effect
(RG). This term refers to the shape-change of crystalline
solids under conditions of irradiation by energetic
particles without the application of an external load. The
volume of the material does not change, in contrast to
the effect of radiation swelling. The RG phenomenon is
particularly characteristic of anisotropic materials, in
particular zirconium (hcp). So, the fuel cladding and fuel
assemblies of all conventional nuclear reactors that
generate power from the fission of uranium by thermal
neutrons are made from zirconium alloys because of
their low thermal neutron absorption cross-section. The
stability of their dimensions, as well as the ability to
predict changes in their shape, is very important to the
designers and operators of such reactors, since
deformation affects the operability and service life of
the reactor core. Therefore, RG of zirconium and its
alloys has been the subject of intensive research since
the second half of the last century [5, 6]. It has been

found that zirconium during growth expands in the <a> -

direction and shrinks along the (c) -axis [7, 8]. Such its

behavior is associated with the idea of Buckley S.N.
[5, 6] that interstitial loops are formed predominantly on
the prismatic planes of zirconium, {1010}, and vacancy
loops on the basic (0001). The reason is the stresses
caused by the thermal peaks of the collision cascades
and the corresponding thermal expansion along the
different zirconia axes. Although the physics of the RG
mechanism has changed over the years, Buckley's
general concept has remained the same: vacancy loops
nucleating and growing on the base planes “eating” the

crystal along the (c)-axis, while growing interstitial
loops, forming additional extra planes in the (a)-

direction, increase its size. Moreover, it turned out that
dislocation loops of different nature (vacancy and
interstitial) can coexist on prismatic planes [7, 8]. And
that does not fit at all into the standard concept of the
dislocation bias (EID — elastic interaction difference)
[9], since it is believed [10] that the dislocation loop
bias does not depend on its nature. Therefore, the joint
coexistence of interstitial and vacancy loops, as well as
the growth of basic vacancy loops within the standard
elastic ideology seems inexplicable.

The most popular version of the cause of radiation
growth of zirconium is anisotropic diffusion of radiation
point defects (PD) between its planes (DAD theory —
diffusional anisotropy difference) [9, 11]. Its main

assumption is as follows D7 /D > D?/Djg. Here Dg
is the diffusion coefficient of PD of m-type in the basal
plane of zirconium, Dy, is the coefficient of diffusion in
<c> -direction (subscript v and i refer to vacancies and

self-interstitial atoms (SIA) respectively). However,
there is no experimental confirmation of this inequality
to date. Moreover, numerical calculations [12] have
shown that the inequality in the range of reactor
temperatures (T <800K) is just the opposite
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D7 /Df < DI /D;. Therefore, a physical cause of

RG associated only with anisotropic diffusion of
radiation PD seems doubtful.

In [13, 14], within the framework of the classical
elastic ideology (EID), the bias for basic zirconium
loops (edge dislocation with the Burgers vector

b® =1/2[0001] and mixed with b® =1/6<2023>)

of different nature was numerically calculated
depending on their radius. It was shown that the
existence of vacancy type loops is possible only in the
presence of an uncompensated source of vacancies into
the basal plane. It was suggested that such a source
could be interstitial loops on prismatic planes. In order
to verify it, in this work, a similar problem is solved for
a prismatic edge dislocation loop (the Burgers vector

b® :1/3<11§0>, the {Lli O}} occurrence plane [8]),

using the analytical expression for the energy of its
elastic interaction with the PD.

LOOP BIAS

The sink bias is determined by a relation of the form
B=1-2,/Z,. Here subscripts v and i correspond to
vacancies and SIA respectively. If B>0, one says that
the loop has a preference to SIA. The dimensionless
quantity Z ; is called the absorption efficiency of the

PD by the sink. It appears as a result of calculating the
PD diffusion flux to a specific sink. Under the
assumption of diffusion isotropy of the medium
(Djj = Doj) the PD flux J to the dislocation loop is
found by solving the following diffusion problem in its

region of influence using the quasi-stationary
approximation;
odivj(r)=0; j(r)=-DC(r)BVu(r);
p =1/ kBT ; (l)
pu(r)=1 [ Qexp(pem)|
H[n i(r) Jdo-

Here C(r) is the concentration of migrating PD; j(r),

u(r) — their flux density and chemical potential,
respectively; E(r) — their interaction energy with the

loop; C°® — equilibrium thermal concentration of PD in
the crystal in the absence of a stress field E . The
integral is taken over an arbitrary surface containing the
loop with the outer normal n. Equation (1) should be
supplemented with boundary conditions. The inner
surface S. is usually chosen in the form of a torus
containing a dislocation line. The torus minor radius r.

corresponds to the dislocation core radius. The
boundary condition on it has the form:

C(r)exp(E(r))ls,=0. )

B bD er! )
E(N=aV P——1 [ ——Q(z)+(C, -
4z g r=r|

Sp

Cy) J

Q) = (1-3e)[ CY () +Cu¥W(r)) |+ 200 (- 70) — =

The condition has the traditional form and corresponds
to the value of the PD chemical potential at the
dislocation core | =0, when we neglect the linear

tension of the loop and the effect of coalescence of
loops of the same nature during annealing. Outer
surface S, following the authors [10] we choose in the

form torus coaxial with S_ with generating circle radius
R, which corresponds to the radius of the loop

influence region. By analogy with (2) we formulate it
for the chemical potential in the form:

B uls, =In(C/C®). Here C is the average PD

concentration in an effective medium that simulates the
influence of all sinks. This is the standard form of the
PD chemical potential in an effective medium, where
the influence of a particular sink is neutralized by the
others. Then:

C(r)exp(E(r))ls,,=C. )

The central element of system (1)-(3) is the interaction
energy of PD with the loop. According to [13], in
zirconium in the case of a dilatation center, it has the
form:

E(r)=—AV P Spu,(r),
— Cu — (C11 +C12) Css . (4)
4Gy —2C,; - (Cn + Clz)

Here Cj; is the crystal elastic moduli, AV - the change in
the volume of the finite crystal, associated with PD;
u; (r) — deformation field caused by the loop in the

point where the PD is situated. In contrast to the basic
loop (axial symmetry); there is only one option for
calculating the deformation field u;(r) — through the

tensor Green's function G; (TGF) equations of

equilibrium of a given elastic medium, which allows
calculating the displacements created by a loop with any
Burgers vector

u(r)=Cpp? [0 Bl gs )

5 OX,

Here Cjun is the tensor of elastic moduli of the medium,
modeling crystal; b, is the m — component of the
dislocation Burgers vector; n\° is | — component of the
normal vector to an arbitrary surface Sp, based on the
dislocation line; r is the observation point coordinate;
r’ is the surface point coordinate Sp. TGF is calculated
by the method Lifshitz-Rosenzweig [15]. For a -loop,

the direction of the Burgers vector b® =1/3(1120) and
the normal n to the plane of occurrence {11?0} of the

loop coincide, so it is natural to choose the axis “x” of
the Cartesian coordinate system in the same direction.
As a result, for the vacancy a -loop we have [12]:

fl {3\(( )+212°I }} (6)
de?

d |:C12Y (73) +Cy,¥(z; )J (Cu—Cp)Y (%)
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Y()=V(@)+W(z);  Y(5)=K(@)+V(z);
o, =x/|r=r'; r,=(z-2)I|r-r.
The functions K(zZ), W(z), V(zZ) are quite
complicated. Their explicit expressions are given in
[16]. It is important that they all depend on only one
variable z;.

CALCULATION PROCEDURE

Consider a circular vacancy loop of radius R, lying
in the zirconium prismatic plane (x'=0) of a
cylindrical system coordinates (», ¢, x). All calculations
are performed using dimensionless coordinates
r—r/b®; rP=y*+7*; y=rcosp; z=rsing;
x— x/b°; |r—r’|2=x2+r2—2rr'cos((p—(p’)+r'2;
(z=2")=rsinp—r'sing’. The integration in (6) is
carried out over the area of the loop. Figs. 1 and 2 for
loop with radius R=100 in plane x =40 illustrate
dependency of the dimensionless energy E/ AV P (6)
on the azimuth angle ¢ for two regions: inner r=50
(Fig. 1) and external r=150 (Fig. 2). Wherein
experimental values of the elastic moduli of zirconium
according to [17] (Mbar) look like: Cy; =1.554;
Cy, =0.672; C13=0.646; Cs3 = 1.725;
C55 = C44 = 0.363.

E

Function —— x10*
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azimuth angle

Fig. 1. Dependence of the interaction energy
E(p)/ AV P of the vacancy loop and SIA

on the azimuth angle ¢ for R =100; x = 40
and the inner region of the loop r = 50

E

Function ——x10*
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azimuth angle

Fig. 2. Dependence of the interaction energy
E(p)/ AV P of the vacancy loop and SIA on the

azimuth angle ¢ for R =100; x = 40
and outer region of the loop r = 50

Note that in (4) for zirconium, the value P>0.
Therefore, for SIA (AV >0), the inner region of the
vacancy loop must be the attraction region
(E(r)/ AV P <0), and the outer region, the repulsion
region (E(r)/ AV P >0). It is this behavior of energy

that takes place in Figs. 1, 2. For a vacancy (AV <0),
the illustration will be reversed. We note a very weak
dependence on the azimuth angle ¢, which does not
change the nature of the interaction (sign) in each
region. The interaction changes sign only when passing
from the inner region of the loop (r=>50) to the outer
one (r=150). However, this dependence greatly
complicates the calculations for numerical calculations.
Therefore, as in [14], we will eliminate it by averaging
the right side of (6) over the azimuthal angle ¢, making
the problem isotropic in the “ yz ” plane. And one more
note. In the expression for energy (6), the dependence
on the variable “x“ is quadratic, i.e. replacement
X ——x doesn't change anything. Therefore, as in the

case of the basic loop, b®=1/2[0001] numerical
calculations can be carried out only in one part of the

half-space x>0.
In terms of a variable

w(r,x)=C(r,x)expE(r,x)/C the diffusion problem
(1)—(3) in dimensionless cylindrical coordinates taking
into account isotropy after averaging has the form:

az_gf_g{zﬁ)a_w_@_wzo -
or-  ox r orj)or oOx oX
with boundary conditions w(r,x)=0 on the inner
toroidal surface

R-r, <r<R+r, (8)
w(r,x)=1 on the outer toroidal surface
R-R,<r<R+R, for R>R,; 0<r<R+R,
for R<R,,.

Then for the flux and absorption efficiency Z,; we

have:

J =2ﬂR%Z(rC,R,REXI),
[0

2(R Ret) =5z [ XP(-E ) [NV () Jdor - (9)

The diffusion problem (7), (8) was solved
numerically by the finite difference method. Fig. 3
shows a cross section of a toroidal reservoir containing
a loop [14], taking into account the reflection symmetry
in the plane x=0 and symmetry (mocne ycpemHenus
no ¢ ) about rotation around the x-axis. The specified

symmetry imposes additional boundary conditions:
ow/ox=0 on DA, BC, OA, corresponding to zero flux
through the plane x=0, and dw /or =0 on DO (axis
of symmetry). An arbitrary inner surface S in (9) is
chosen for the convenience of calculations in the form
of a rectangle of rotation. In Fig. 3, this is the contour L.
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Fig. 3. Coordinate system for a toroidal reservoir: a — R>Rgy, b — R<Rey

RESULTS
Fig. 4 shows the dependences of the bias of the

prismatic loops of zirconium B on their radius (in b°)
for three values of the outer size of the toroidal

reservoir: R, =200b°, which corresponds to the
dislocation density p=~8-10° cm™
R, =120b° (p=~2-10°cm™, see Fig. 4,b) and
R, =60b° (p~8.4-10° cm™, see Fig. 4,c). Curves

with a maximums refer to interstitial (@) loops, with a
minimum to vacancy (m).

(see Fig. 4,a),

O35 ) Re=200
0.20
m; 0.15 -/-,_r‘-‘“
S
ha 0.10 N/
Radius loop, R
“ 1) Re=120
m‘ 020
E 0.15 1
e
Q.05
Radius loop, R

Bias, B.

0.15
0.40 C]RC’KI:60
0.35
0.30
0.25
0.20
01
0.10
0.05
10? 102 107

Radius loop, R
Fig. 4. Dependences of the bias of the prismatic loops of
zirconium, B, on their radius for three values of the
outer size of the toroidal reservoir:
a-R,=200b°;b- R, =120b";c- R, =60Db".
“e 7 —refer to interstitial loop; “m ” — to vacancy

First, it should be noted that prismatic dislocation
loops in zirconia are biased sinks, which absorb SIAs
more efficiently than vacancies, since B>0 for both
types of loops (see Fig. 4). The bias depends on the loop
radius and the sink density. And this is consistent with
the general conclusions [10]. However, in [10] there is
an important conclusion that the bias does not depend
on the nature of the loop. In our case, this is not the
case.

Secondly, and this is the most important, there is
always a region in space of the size, in which the bias of
interstitial loop B,, (e) is higher, than bias vacansion

one B (m). Those, in this region, SIAs are mainly

vac
absorbed by interstitial loops. The remaining in excess
vacancies can be absorbed by the existing vacancy loops
or migrate to the basal plane and contribute to the
nucleation and further growth of vacancy basis loops. In
our opinion, this makes it possible in principle to
explain two experimentally observed points: the joint
coexistence of loops of both types in the prismatic plane
of zirconium, as well as the nucleation and subsequent
growth of vacancy loops in the basal plane. Note that

the lower boundary of this region B,,(R")=B,.(R")
moves towards smaller sizes with an increase in the
total dislocation density p (or a decrease in R,,,). So,

at p~2-10°cm? (see Fig. 4b) R*~60b° or
~20 nm. And these are quite real loops visible in a

microscope. In the region R < R" the existence of loops
within the framework of EID is difficult to explain,
since here B, <B Those SIAs should be

int vac *
predominantly absorbed by vacancy loops and dissolve
them. Excess vacancies should, accordingly, dissolve
the emerging interstitial loops. Therefore, this area is the
subject of research in the theory of nucliation. Thus, the
following picture emerges. At a low dislocation density
(the initial stage of irradiation), the loops in the
prismatic plane cannot grow due to their large value R*
(see Fig. 4,a). As the dislocation density increases, it
moves towards lower values. There is a real possibility
of diffusion growth of emerging interstitial loops. And
they, in turn, stimulate the nucleation and growth of
vacancy loops, first on the prismatic and then on the
basal planes of zirconium. However, here we must also
include the bias of the basis loops and only then
formulate a qualitative possible RR mechanism based
on the classical elastic ideology. In conclusion, we note
that understanding the physics of the RR mechanism
may be useful for predicting the behavior of fuel
cladding during long-term storage of spent fuel in dry
reservoir.
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SUMMARY

1. Prismatic loops in zirconia are biased sinks, which
absorb SIAs more efficiently than vacancies, since for
both types of loops (see Fig. 4) B>0.

2. The principal possibility of coexistence of loops
of different nature in the prismatic plane of zirconium is
shown.

3. A qualitative concept of the RG mechanism was
formulated within the framework of the classical elastic
ideology.
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®AKTOP INEPEBATY MIPU3MATUUYHUX JUCJTOKAIIMHUX NETEJb Y IIUPKOHII.
YUCEJBbHUM AHAJI3

O.I. Tpoyenxo, A.B. baoiu, II.M. Ocmanuyk

BuxopucToByloUH aHANITHIHHNA BUpa3 IS €HEprii MpyKHOI B3aeMOIii pamiallifHMX TOYKOBHX Ie(EKTIB i3

TIPU3MATHYHOK KpaiioBOIO JHCIOKAIIIHOI MeTIero IUpKoHito (BekTop Broprepca bP :1/3<11§0>, IUIOIHA

3aJsIraHHs {1120}) METOJIOM KIHIEBHX pI3HHIb IOpPaxoBaHO (DAaKTOp TMepeBard IeTellb pPi3HOI HPUPOIH

(BakaHCioHHOT Ta MiXKBY3710B01). BukoprcTOoByBanacst TopoifanbHa TeOMeTpisi pe3epByapa, 10 J03BOJISE IPOBECTH
PO3paxyHKH Ul TeTI Oyab-sKoro po3Mipy 0e3 Oyab-skoi Kopekuii mpykHoro mois B ii obnacti BIuMBy. Y
HaOMIDKEHHI [EHTPY AWiIaTallii OTpUMaHi 3aJIeXKHOCTI (pakTopa HepeBard meTeib BiJ iXHbOTO pamiycy. [lokazaHo
BRXJIMBY MOXUIMBICTh CHUIBHOTO CIIBICHYBaHHS B NMPU3MAaTHUYHIA TUIONIMHI ITUPKOHIIO TIETENh Pi3HOI MPUPOIH.
CohopmyisoBaHO SIKICHY KOHIIEMINO MeXaHi3My pamiamiiiHoro 3pocrtanus (P3) y paMkax KIIaCHYHOI MPY>KHOT

imeostorii.
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