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     A stationary weakly ionized highly nonisothermal plasma is considered in the hydrodynamic approximation. 

Taking into account the effects of ionization, recharging, and a self-consistent field, the effect of ion viscosity on the 

distribution of plasma discharge parameters in the sheath was investigated. Distributions of hydrodynamicion 

velocity and ion density, electron density, and self-consistent field potential in the sheath were obtained. 
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INTRODUCTION 

The interaction of plasma with surfaces that contact 

this plasma is an important area of research into the 

stationary state of a gas discharge. The negative 

potential of a wall with respect to the plasma, which 

arises due to the high mobility of electrons, attracts ions 

and repels electrons. Thus, a region of a positive space 

charge is formed near the wall and this space charges 

creens the neutral plasma from the negatively charged 

wall. Under these conditions, it is convenient to separate 

the plasma into two parts. The first part is the main 

plasma volume with characteristic size L (plasma size) 

where the quasi-neutrality condition is satisfied almost 

exactly. This part will be called below the quasi-

neutrality region. The second part is a narrow region 

near the wall where ions are mainly concentrated, and 

the quasi-neutrality condition is not satisfied. This part 

will be called below the sheath. The characteristic width 

of the she at his in the range from several to several tens 

of Debye-Hückel screening radius rDe = (Te/(4πe2ne0))1/2, 

where Te – electron temperature, e – the charge of the 

electron, and ne0 – hydrodynamic density of electrons in 

the middle of the plasma. Typically, the value of rDe is 

small compared to other characteristic quantities, such 

as the plasma size L or the mean free paths of ions due 

to ionization, charge exchange, or collisions. 

Notable early works devoted to studies of stationary 

plasma include [1-4]. In [1], it was assumed for the first 

time that the velocity of ions is determined by a static 

self-consistent electric field created by the balance of 

electric charges of electrons and ions. Based on this, an 

integral equation for the distribution of the plasma-

sheath potential for different geometries, ion mean free 

paths and ionization methods was obtained. The 

solution of this equation in the case of a short ion mean 

free path in a cylinder with an ions generation 

proportional to the electron density gave the same 

potential distribution as found by Schottky [2, 3] for a 

positive column using the theory of ambipolar diffusion. 

As Bohm showed [4], the formation of a stationary layer 

of space charge was possible only under the condition 

that ions entered the region of the sheath at a speed 

larger than the ion-sound speed, ʋs = ʋB = (Te/mi)1/2. 

This condition was obtained in the case of cold ions 

(Ti = 0) and without taking the viscosity into account. At 

Ti ≠ 0 Bohm's speed is equal to ʋB = ʋs(1 + τ)1/2, where 

τ = Ti/Te ≪ 1. Consequently, the ions are preliminarily 

accelerated by a self-consistent electric field in the 

quasi-neutrality region. If the ions move towards the 

plasma-confining surfaces under the action of a self-

consistent electric field, there must be a potential 

maximum in the plasma. In the case of plane walls that 

will be considered in the paper, the symmetry dictates 

that this maximum is located in a plane in the middle of 

the plasma. It is convenient to choose the origin of 

coordinates x = 0 in this plane. Then, the dielectric walls 

that confine the plasma are located at x = ±L (Fig. 1).  

 

Fig. 1. Schematic layout of the plasma layer and the 

dielectric, confining the plasma, concerning  

the x coordinate 

Further studies of the stationary state of plasma 

generated a large number of papers. Numerous 

references can be found, for example, in the works of 

Riemann [5, 6]. 

In the majority of works, the ions viscosity is 

considered a small parameter and disregarded in the 

ions motion equation. For example, [7] gives the 

condition when effects associated with viscosity can be 

neglected in the transport equations: ʋi ≪ νLʋ , where ʋi  

is the hydrodynamic velocity of ions, ν is the frequency 
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of collisions, Lʋ is the characteristic scale of change in 

the hydrodynamic velocity. It is questionable that 

ʋi ≪ νLʋ is satisfied in the sheath even when this 

condition holds true in the quasi-neutrality region. 

In [8], in the case of a stationary, weakly ionized, 

strongly noni so thermal plasma, estimates were 

obtained on how the viscosity of ions affects solutions 

of the system of hydrodynamic equations, taking into 

account the effects of ionization, charge exchange, and 

the self-consistent field together with the Poisson 

equation in the entire plasma volume. Solutions to this 

system of equations were also obtained taking into 

account the viscosity of the ions but only in the quasi-

neutrality region. 

The present work is a continuation of [8]. It 

investigates the solution of the system of the above 

equations in the sheath at the plasma boundary, taking 

into account the viscosity of the ions. The temperature 

of electrons and ions and the density of neutral particles 

(hydrogen) are assumed to be constant. An original 

numerical algorithm was developed to solve a system of 

three differential equations, two of which are of the 

second order and the third one is of the first order, by 

the Cauchy method for the initial values problem, taking 

into account the condition on the right boundary of the 

solution domain. This method is an alternative to 

solving the boundary value problem for eigenfunctions 

and eigenvalues. The position of the wall was 

determined by the condition of the equality of electron 

and ion fluxes. 

The work is organized as follows. Section 2 

describes the formulation of the problem and derives the 

basic equations. Section 3 is devoted to the description 

of the quasi-neutral approximation for solving the main 

system of equations. Section 4 describes the procedure 

for solving the basic equations in the sheath and 

presents the main results. Section 5 presents the 

conclusions of this research work. 

1. BASIC EQUATIONS 

To solve the problem of the stationary distribution of 

plasma parameters in gas discharges, we will use the 

hydrodynamic approximation. This approach can be 

used when the macroscopic parameters of the plasma, 

such as the hydrodynamic velocity 𝑣 and density 𝑛 of 

the particles, change rather slowly in space and time. 

Namely, the characteristic distances at which the values 

of macroscopic quantities change are much larger than 

the mean free path [9]. This approach is also valid in the 

case of a collision less plasma if the thermal motion of 

particles can be neglected, that is, the plasma must be 

sufficiently cold [10]. However, even if these conditions 

are not fulfilled, the hydrodynamic approach can be 

used for a qualitative analysis of plasma parameters. 

To calculate the effect of viscosity on the 

distribution of plasma parameters, we will use the 

stationary system of the hydrodynamic equations of 

continuity and motion, complemented by the Poisson 

equation. We consider the one-dimensional case for 

dimensionless variables ʋ = ʋi/ʋs, n = ni/ne0, Φ = eφ/Te 

taking into account the effects of ionization, charge 

exchange, and a self-consistent electric field, where ʋi, 

ni – hydrodynamic velocity and density of ions, φ – the 

self-consistent electric field potential. We assume that 

the electron density is determined by the Boltzmann 

formula ne = ne0exp(eφ/Te). 

𝑣𝑣′ = −𝛷′ − (𝜈 + 𝛼
𝑒𝛷

𝑛
) 𝑣 − 𝜏

𝑛′

𝑛
+

4

3
𝜂𝑣′′,       (1) 

𝑛′𝑣 + 𝑛𝑣′ = 𝛼𝑒𝛷 ,                                    (2) 

𝛷′′ = 𝑒𝛷 − 𝑛,                                           (3) 

where α = αe/ωpi, ν = νex/ωpi, 𝜂 = 4𝜂
𝑖
/(3mini), α, αe, ν, 

νex,  𝜂 , and  𝜂
𝑖
 – dimensionless and dimensional 

frequencies of electron impact ionization and charge 

exchange of ions on hydrogen atoms and kinematic 

viscosity coefficients of ions. The prime denotes the 

derivative with respect to the dimensionless coordinate 

x/rDe. A detailed derivation of the system of equations 

(1)-(3) and a description of the hydrodynamic 

coefficients are given in the work [8]. 

System of differential equations (1)-(3) considering 

the viscosity of the ions is a fifth-order nonlinear system 

for the unknown functions. It must be supplemented by 

the boundary conditions. For reasons of symmetry, at 

the center of the plasma, the following is true 

𝑣(0) = 𝑣′′(0) = 𝑛′(0) = 𝛷′(0) = 0.           (4) 

Also, we can assume that Φ(0) = 0 because the 

potential is defined up to a constant. One more 

boundary condition is the condition at the plasma-wall 

boundary: the hydrodynamic ions flux is equal to the 

electrons flux in the direction of the coordinate x 

growth. Additionally, it is assumed that the electrons are 

distributed according to the Maxwell-Boltzmann 

distribution, and there are no effects of reflection from 

the wall and electron emission on the wall [11] 

𝛤(𝐿) = 𝑛(𝐿)𝑣(𝐿) = √𝑚𝑖 (2𝜋𝑚𝑒)⁄ exp(𝛷(𝐿)).    (5) 

Thus, we have a system of fifth-order equations with 

five boundary conditions, i.e., the problem of 

determining the eigenvalues. For example, if L, Te, Ti, 

and nn are given, then stationary gas discharge is 

possible at a certain valuene0 that is determined by the 

solution of the system. 

Finding eigenfunctions and eigenvalues of a 

nonlinear system (1)-(3) is a rather difficult problem. 

Therefore, an alternative approach is used. We take 

boundary conditions (4) as initial conditions, 

supplement them with an arbitrary initial value for ne0, 

and integrate system (1)-(3) in the direction of positive 

𝑥, that is, we solve the Cauchy problem (see, for 

example, [6], [12], where the case of cold ions was 

considered). 

2. QUASI-NEUTRAL APPROXIMATION 

We use the smallness of the second derivative of the 

potential in equation (3): Φ'' ≪ n, eΦ. Let's call this 

approach the “quasi-neutral approximation”. In the 1st 

iteration (Φ'' = 0), from equation (3) we get 

𝑛1 = 𝑒𝛷1 , 𝛷1 = ln 𝑛1 , 𝛷1
′ =

𝑛1
′

𝑛1
,                      (6) 

𝛷1
′′ =

𝑛1
′′

𝑛1
− (

𝑛1
′

𝑛1
)

2

.                                    (7) 

Expressions (6) are then substituted in equations (1) 

and (2), which take the form 

𝑣1𝑣1
′ = −(1 + 𝜏)

𝑛1
′

𝑛1
 − (𝜈 + 𝛼)𝑣1 +

4

3
𝜂𝑣1

′′,        (8) 

𝑛1
′ 𝑣1 + 𝑛1𝑣1

′ = 𝛼𝑛1.                           (9) 
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In the 1st iteration, we consider Φ'' = 0 and by 

solving equations (6), (8) and (9) we find the solutions 

ʋ1, n1 and Φ1. In the 2nd iteration, Φ'' = Φ1'' is 

determined by expression (7) and equations (6), (8) and 

(9) take the form 

𝑛2 = 𝑒𝛷2 − 𝛷1
′′, 𝛷2 = ln(𝑛2 + 𝛷1

′′),   

 𝛷2
′ =  

𝑛2
′ +𝛷1

′′′

𝑛2+𝛷1
′′ ,                                        (10) 

𝑣2𝑣2
′ = −

𝑛2
′ + 𝛷1

′′′

𝑛2 + 𝛷1
′′  − (𝜈 + 𝛼

𝑛2 + 𝛷1
′′

𝑛2
) 𝑣2 − 𝜏

𝑛2
′

𝑛2
+ 

+
4

3
𝜂𝑣2

′′,                                                (11) 

𝑛2
′ 𝑣2 + 𝑛2𝑣2

′ = 𝛼(𝑛2 + 𝛷1
′′).                       (12) 

It is convenient to find the initial values of the 

plasma parameters at the origin of coordinates using 

expansions of the plasma parameters near this point 

𝛷 = (𝑎0 + 𝑎1𝑥̅2+. . )𝑥̅2, 𝑣 = (𝑏0 + 𝑏1𝑥̅2+. . )𝑥̅,   
𝑛 = 𝑐0 + 𝑐1𝑥̅2+. .,                                                (13) 

where 𝑥̅ = x/rDe. We find coefficients of these 

expansions with the required accuracy by substituting 

(13) into (1)-(3) and equating terms with equal powers 

while considering the sufficient number of expansion 

terms. In [6], a similar expansion was used to overcome 

the problem of the singularity in the middle of the 

plasma in the region near x = 0 for the case of cold ions 

(Ti = 0). 

Using the quasi-neutral approximation for the 

system of equations (1)-(3) without the viscosity was 

necessary to overcome the singularity at the point 

ʋ = ʋTi. When the viscosity was included in 

consideration, the order of equation (1) increased, and 

this singularity was eliminated. However, the necessity 

of using the quasi-neutral approximation remained. 

The following values of dimensional and 

dimensionless quantities were used in the calculations: 

ne0 = 1010  cm-3, Te = 2 eV, Ti = 0.1 eV, nn = 1014  cm-3, 

ʋTe = 5.93∙107 cm/c, ʋTi = 3.09∙105 cm/с, 

ʋs = 1.38∙106 cm/c, rDe = 1.05∙10-2 cm, ωpi=1.32∙108 c-1, 

αe = 1.39∙103 c-1, νex = 2.74∙105 c-1, νCi = 1.49∙105 c-1, 

𝜂
𝑖
 = 2.25∙105  cm2/c, α = 1.05∙10-5, ν = 2.08∙10-3, 

νC = 1.13∙10-3, 𝜂 = 15.5. Solutions of the systems of 

equations (8), (9) using (6) and (11), (12) using (7) and 

(10) taking into account the viscosity were obtained in 

the work [8]. Viscosity influences the variation of 

plasma parameters in the quasi-neutrality region very 

little and produces only a slight increase of the size of 

this region. Fig. 2 shows the dependences of the 

dimensionless hydrodynamic ions velocity ʋ2, the 

densities of ions n2 and electrons ne2/ne0, the potential of 

the self-consistent electric field – Φ2, the flow of ions 

n2ʋ2 in the second iteration of the quasi-neutral 

approximation and the hydrodynamic density of ions n1 

in the first iteration of the quasi-neutral approximation 

on the coordinate x at the plasma boundary in the case 

when the viscosity is taken into account. Dependencies 

in Fig. 2 are limited when the condition (5) on the wall 

(Lq ≈ 105.857 cm) is satisfied. It should be noted that 

deviation of the quasi-neutral solution n2from the exact 

solution n of the system of equations (1)-(3) increases 

with an increase of the space charge (n2 – ne2/ne0). As is 

known, the beginning of the sheath and the boundary of 

the region of applicability of the quasi-neutral 

approximation are defined by the point in space where 

the fraction of the space charge becomes noticeable: 

(n2 – ne2/ne0)/n2 ≈ 0.01. In Fig. 2, this condition 

corresponds to the point x ≈ 105.5 cm. Therefore, when 

x ≿ 105.5 cm, the dependencies in this figure are 

qualitative only and are different from the exact 

solutions of the system of equations (1)-(3). 

 

Fig. 2. Dependencies of the dimensionless 

hydrodynamic ions velocity ʋ2 (1), the densities of ions 

n2 (2) and electrons ne2/ne0 (3), the potential of the self-

consistent electric field – Φ2 (4), the flow of ions 

Γ2=n2ʋ2 (5) in the second iteration of the quasi-neutral 

approximation and the dimensionless hydrodynamic 

density of ions n1 (6) in the first iteration of this 

approximation on the coordinate x at the plasma 

boundary, taking the viscosity into account 

3. SOLUTION OF THE SYSTEM OF BASIC 

EQUATIONS IN THE SHEATH 

Without taking the viscosity into account, the system 

of equations (1)-(3) has a singularity at the point ʋ = ʋTi. 

Therefore, from the middle of the plasma (x = 0) to the 

point ʋ = ʋs, the problem was solved by the Cauchy 

method with the help of the quasi-neutral 

approximation. The quasi-neutral solutions in the 

second iteration n2, ʋ2 and Φ2 were obtained. 

At the point ʋ = ʋs, the quasi-neutral solution has a 

singularity. After passing the singularity point ʋ = ʋTi at 

the point ʋTi < ʋ < ʋs (the joining point), these solutions 

n2, ʋ2, Φ2, and Φ2' were used as initial conditions for 

solving the system of equations (1)-(3) without the last 

term in (1). In this way, the solution n of the system of 

equations (1)-(3) was obtained from the joining point to 

the plasma boundary without taking into account the 

viscosity [8]. However, it should be understood that the 

mathematical solutions of systems of equations without 

viscosity n2 and n always differ by some value n2 – n. 

This value n2 – n ≪ |Φ1''| is small in the quasi-neutrality 

region and increases as the plasma boundary is 

approached. For a smoother joining, one can take into 

account the difference ∆n in the initial conditions of the 

system of equations (1)-(3) at the joining point without 

taking into account the viscosity. Any iteration of the
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quasi-neutral approximation can be chosen as an 

approximate solution. Then, these initial conditions can 

be written as: 

𝑛 = 𝑛2 + ∆𝑛                                 (14) 

and from the system of equations (1) - (3)  

𝑣 = 𝑣2 + ∆𝑣 ≈
𝑛2𝑣2

𝑛2+∆𝑛
,                         (15) 

𝛷 = 𝛷2 + ∆𝛷 ≈ ln(𝑒𝛷2 + ∆𝑛).              (16) 
 

When obtaining (15) and (16), we neglected changes in 

the derivatives of the plasma parameters when the 

density changes by ∆n at the joining point. 

Our calculations have shown that the system of 

equations (1)-(3) is stable against a change in the value of 

∆n in the initial conditions (14)-(16). When ∆n is taken 

into account, the solution of the system of equations (1)-

(3) without taking into account viscosity is shifted by a 

distance x(n2+∆n) – x(n2), which is much smaller than the 

size of the sheath. Therefore, for calculations without 

taking into account the viscosity [8] in the initial 

conditions of the system of equations (1)-(3), the value 

∆n = 0 was chosen at the joining point. 

As already noted above, taking into account the 

viscosity increases the order of the equation of motion 

of ions (1). This leads to the situation when two second-

order equations appear in the system (1)-(3). The 

eigenfunctions of these equations are exponential 

functions. In addition, the singularity disappears from 

systems (1)-(3), (8)-(9), and (11)-(12). In this case, the 

system of equations (1)-(3) is unstable against a change 

in the value of ∆n in the initial conditions (14)-(16). 

Fig. 3 shows the dependences of the difference n2 - n of 

the dimensionless hydrodynamic ion densities, which 

were obtained in the second iteration of the quasi-

neutral approximation and when solving the system of 

equations (1)-(3), on x coordinate for different values of 

∆n in the initial conditions on different scales. The blue 

line corresponds to the solution with ∆n ≈ 4.079∙10-6 

and L1 ≈ 104.29 cm. In this case, as L is approached 

(condition (5) is satisfied), the ion density sharply 

increases. The green line corresponds to the solution 

with ∆n ≈ 4.086∙10-6 and L2 ≈ 104.25 cm. Here, when 

approaching L (condition (5) is not satisfied), the 

potential and density of electrons → ∞.These two 

solutions are not physical because their graphical 

dependences cannot pass near the nominal boundary of 

the quasi-neutrality region (x ≈ 105.5 cm).The magenta 

line corresponds to a solution with ∆n ≈ 4.081∙10-6 and 

L3 ≈ 105.833 cm (condition (5) is satisfied).This 

solution can be a possible solution of the system of 

equations (1)-(3). Unfortunately, it is impossible to find 

the unique “correct” solution of the system of equations 

(1)-(3) with this formulation of the problem. Boundary 

condition (5) determines the potential Φ(L) and the 

hydrodynamic ion flux n(L)ʋ(L) ≈ const(L) at the 

plasma boundary uniquely, but there is a certain 

arbitrariness in the choice of n(L) and ʋ(L). Therefore, 

the system of equations (1)-(3) can have many possible 

solutions in this case. The physically meaningful 

solutions can be defined as follows: near the nominal 

boundary of the quasi-neutrality region (x ≈ 105.5 cm), 

the graphic dependences of the solutions of the system 

of equations (1)-(3) on x coordinate should not differ 

much from the second iteration of the quasi-neutral 

solution. 

By setting ∆n at the joining point between the blue 

and green lines (Fig. 3), the dichotomy method can be 

used to obtain a solution with any boundary values of 

the hydrodynamic ions density n(L) or ions velocity 

ʋ(L) and the corresponding value of L. 

The joining of the solutions of the system of 

equations (1)-(3) and the second iteration of the quasi-

neutral approximation was carried out at the point 

x ≈ 103.52 cm. This point was chosen from the 

condition that the number of decimal places in the 

variable ∆n is sufficient to obtain solutions with 

different values of hydrodynamic ions density n(L) or 

velocity ʋ(L) by the dichotomy method. That is, if the 

value of this point is taken less, then 32 decimal places 

may not be enough to reach solutions with the desired 

n(L) or ʋ(L). In the chosen case, x = 9850 rDe. 
 

 

 

Fig. 3. Dependences of the difference n2 - n of the 

dimensionless hydrodynamic ion densities, which were 

obtained in the second iteration of the quasi-neutral 

approximation and when solving the system of 

equations (1)-(3), on x coordinate for different values of 

∆n in different scales (a, b) 

As an example, let us consider the behavior of plasma 

parameters for three cases when the graphical dependences 

are slightly different from the second iteration of the quasi-

neutral solution near the point x ≈ 105.5 cm. 

     Fig. 4 shows the dependences of the ratio of the fraction 

of the dimensionless space charge – Φ'' to the 

dimensionless electron density eΦ on the distance L – x to 

the edge of the plasma for solving the system of equations 

(1)-(3) for various plasma sizes, taking the viscosity into 
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account, L3, L4 ≈ 105.869 cm, L5 ≈ 105.920 cm and without 

viscosity L0 ≈ 104.593 cm. In the absence of viscosity, the 

size of the sheath is ≈ 0.335 cm. Taking the viscosity into 

account, for the chosen solutions this value increases to 

0.34...0.44 cm (≾15 %). In this case, the plasma size L 

increases by ~1 %. 
 

 

Fig. 4. Dependences of the ratio of the proportion of the 

dimensionless space charge – Φ'' to the dimensionless 

electrons density eΦ on the distance L - x for solutions of 

the system of equations (1)-(3) for different plasma 

sizes, taking the viscosity into account L3 (1), L4 (2), 

L5 (3) and without viscosity for L0(4) 

 

 

Fig. 5. Dependences of the dimensionless hydrodynamic 

densities of ions n (a, 1–4) and electrons ne/ne0 (a, 5–8), 

the ions velocity ʋ (b, 1–4) and the potential of the self-

consistent electric field – Φ (b, 5–8) on x coordinate for 

various plasma sizes L3 (1.5), L4 (2.6), L5 (3.7) and the 

second iteration of the quasi-neutral approximation for 

Lq (4.8) taking the viscosity into account 

Fig. 5 shows the dependences of the dimensionless 

hydrodynamic ions velocity ʋ, ions density n, electrons 

density ne/ne0, and self-consistent electric field potential 

– Φ on x coordinate for various values of the plasma 

size L3, L4, L5 and the second iteration (Lq) of the quasi-

neutral approximation when the viscosity is taken into 

account. Solutions of the system of equations (1)-(3), 

taking into account the viscosity for L3, L4, and L5 at 

x ≈ 105.5 cm, do not visually differ from the quasi-

neutral solution. It should be understood that such a 

condition can be satisfied by an infinite number of 

solutions with different L. 

In Fig. 6 the dependences of the dimensionless 

hydrodynamic velocities ʋ of ions, the densities of ions 

n and electrons ne/ne0 and the potential of the self-

consistent electric field – Φ on the coordinate L – x in 

the sheath at the edge of the plasma are shown for cases 

with the viscosity for L3, L4, and L5 and without it for L0. 

The size of the sheath for various cases is visible in 

Fig. 4. 

 

 

Fig. 6. Dependences of the dimensionless hydrodynamic 

densities of ions n (a, 1–4) and electrons ne/ne0 (a, 5–8), 

the ions velocity ʋ (b, 1–4) and the potential of the self-

constrained electric field – Φ (b, 5–8) on x coordinate 

with the viscosity for L3 (1,5), L4 (2,6), L5 (3,7)  

and without the viscosity for L0 (4,8) 

     Taking the viscosity into account increases the 

hydrodynamic velocity of ions at the boundary of the 

sheath from ʋs to ≈ 1.5ʋs and makes the change in 

plasma parameters smoother.
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CONCLUSIONS 
 

As is known, in a stationary gas discharge near a 

surface with which the plasma interacts, a sheath is 

formed. This is because electrons, due to their greater 

mobility, charge the wall negatively relative to the rest 

of the plasma volume. The negative potential of the wall 

attracts the ions. As a result, a narrow region (the 

sheath) is formed that screens the surface from the rest 

of the plasma volume (the quasi-neutrality region). The 

sheath boundary can be determined from the condition 

ni – ne ≈ 0.01ne. The size of the sheath can be 

≈ 30...50 rDe. 

The system of hydrodynamic equations of motion 

and continuity for ions together with the Poisson 

equation was solved by the Cauchy method. The values 

of the parameters at the center of the plasma were used 

as the initial conditions. The plasma boundary was 

determined from the condition of equality of the 

hydrodynamic ions flux and the kinetic electrons flux. 

The paper proposes and applies a method for finding 

the parameters of a weakly ionized, strongly 

nonisothermal stationary plasma with Ti ≠ 0, taking into 

account the viscosity of ions in the sheath. Calculations 

have shown that when the viscosity is taken into 

account, plots of the dependences of the plasma 

parameter on the spatial coordinate become smoother, 

the size of the sheath increases lightly (≾15 %), and the 

hydrodynamic velocity of ions at the boundary of the 

sheath increases approximately by ~ 50 %. 
 

ACKNOWLEDGEMENTS 
 

In conclusion, the author expresses deep gratitude to 

Doctor of Physical and Mathematical Sciences Dmytro 

Leonidovich Grekov for constructive discussions and 

valuable advice during the work. 
 

 

 

 

 

REFERENCES 
 

1. I. Langmuir, L. Tonks. A General Theory of the 

Plasma of an Arc // Phys. Rev. 1929, v. 34, p. 876-922. 

2. W. Schottky. Wundestem und Theorie der positiven 

säule // Physikalische Zeitschrift. 1924, v. 25, p. 342-

348. 

3. W. Schottky. Diffusions theorie der positiven säule // 

Physikalische Zeitschrift. 1924, v. 25, p. 635-640. 

4. D.J. Bohm. The Characteristics of Electrical 

Discharges in magnetic fields / Ed. by A. Guthrie and 

R.K. Wakerling. New York: “McGraw Hill”, 1949. 

5. K.U. Riemann. The Bohm criterion and sheath 

formation // J. Phys. D: Appl. Phys. 1991, v. 24, № 4, 

p. 493-518. 

6. K.U. Riemann, J. Seebacher, D.D. Tskhakaya, 

S. Kuhn. The plasma–sheath matching problem // 

Plasma Phys. Control Fusion. 2005, v. 47, p. 1949-

1970. 

7. V.Ye. Golant, A.P. Zhilinskiy, I.Ye. Sakharov. 

Osnovy fiziki plazmy. M.: “Atomizdat”, 1977 (in 

Russian). 

8. Ya.F. Leleko, D.L. Grekov. Influence of Ion 

Viscosity on the Distributions of Plasma Parameters in 

Stationary Gas Discharge // Ukr. J. Phys. 2021, v. 66, 

№ 4, р. 316-325. 

9. A.I. Akhiyezer, I.A. Akhiyezer, R.V. Polovin, 

A.G. Sitenko, K.N. Stepanov. Elektrodinamika plazmy. 

M.: “Nauka”, 1974 (in Russian). 

10. V.P. Silin, A.A. Rukhadze. Elektromagnitnyye 

svoystva plazmy i plazmopodobnykh sred. M.: 

“Gosatomizdat”, 1961 (in Russian). 

11. Yu. M. Kagan, V. I. Perel’. Probe methods in 

plasma research // Physics-Uspechi. 1964, № 6, p. 767-

793. 

12. R.N. Franklin, J.R. Ockerdon. Asymptotic matching 

of plasma and sheath inactive law pressure discharge // 

J. Plasma Phys. 1970, v. 4, p. 371. 

 

Article received 13.12.2022 

.

ВПЛИВ В’ЯЗКОСТІ ІОНІВ НА РОЗПОДІЛ ПАРАМЕТРІВ У ПЕРЕХІДНОМУ ШАРІ НА МЕЖІ 

СТАЦІОНАРНОЇ СЛАБКО ІОНІЗОВАНОЇ СИЛЬНО НЕІЗОТЕРМІЧНОЇ ПЛАЗМИ 

Я.Ф. Лелеко 

     Розглянуто стаціонарну слабко іонізовану сильно неізотермічну плазму в гідродинамічному наближенні. 

З урахуванням ефектів іонізації, перезарядки самоузгодженого поля досліджено вплив в’язкості іонів на 

розподіл параметрів плазмового розряду в перехідному шарі. Отримано розподіли гідродинамічних 

швидкості та густини іонів, густини електронів і потенціалу самоузгодженого поля у цьому шарі. 


