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Various approaches to describe phase transitions in crystalline media are considered: Landau phenomenological 

approach of second-order phase transitions as well as Kolmogorov's, Avrami's and Christian's theories of 

crystallization. An analysis of the existing approaches indicates that they do not always adequately describe the 

experimental results. A qualitative model for describing the dependence of a crystalline substance heat capacity on 

temperature at a constant volume is proposed in this paper. The model describes the change in the number of 

particles of a new phase of a crystalline substance at a constant volume and is based on Einstein principle of detailed 

balance. An expression for metal heat capacity adequately corresponded to Dulong-Petit heat capacity is obtained. A 

model for describing the dependence of heat capacity on temperature in case of phase transitions is proposed. 

PACS: 05.45.Yv, 61.72.Bb, 61.72.Lk, 62.20.F-, 83.10.Rs 

 

INTRODUCTION  
 

A change in the state of a system during second-

order phase transitions (PT) can be described as a 

change in its symmetry (for example, a crystal transition 

from a phase with cubic symmetry to a tetragonal one or 

vice versa). A the heart of Landau's phenomenological 

theory of second-order PT is PT understanding as a 

change in the symmetry of a system, for example, a 

crystal [1]. To describe the change in symmetry the 

concept of an order parameter is introduced in this 

theory and a certain parameter that is linearly 

transformed under the action of the symmetry group of 

the system is chosen. This can be, for example, shear 

strain, atom displacement amplitude and charge density 

wave amplitude, striction amplitude, [2], the magnetic 

moment in a ferromagnetic, the wave function of a 

Bose-condensate in 
4
He2. 

The approach proposed by Landau is to represent the 

thermodynamic potential in the form of the function 

 , ,P T  :  

    2 4

0, , , ,0 ...,P T P T A B        (1) 

where   – the order parameter characterized the phase 

symmetry,            
 2

2

, ,01
,

2

P T
A P T



 



, 

 
 4

4

, ,01
, 0

4!

P T
B P T



 
 


.  

In expansion (1) the coefficients at uneven degrees 

  are equal to zero due to the crystal symmetry [1]. The 

order parameter in expression (1) is equal to zero for an 

unperturbed crystal with the highest degree of 

symmetry. When symmetry is broken as a result of 

external factors, it becomes nonzero. 

The body heat capacity at the Curie point is 

determined by the expression: 
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where 0pc  – body heat capacity with the greatest 

symmetry. 

Thus, heat capacity at the Curie point ( 0A ) 

changes abruptly, besides it increases when passing 

from a more symmetric 
0pc  to a less symmetric crystal. 

However, it is not always possible to describe PT by 

introducing the order parameter, for example, 

martensitic transformations (MT) of steels [2]. 

Therefore, it is proposed in the scientific literature to 

use other types of the order parameter for describing 

MT. The order parameter can be the atoms displacement 

amplitude [3], the amplitude of electrostriction and 

ferroelectricity [4, 5], or the amplitude of charge density 

waves [6]. 

Further development of Landau [1] and Devonshire 

[4] theories was carried out by F. Falk in [7] based on 

using shear strain as an order parameter. In this work, 

based on the Landau theory, a phenomenological model 

of the Gibbs free energy function G U TS PV    is 

presented, which considers the PT and is presented as a 

series in order parameter degrees (shear strain)  : 

    2 4 6

0, ,G T G a T M b c           , (3) 

where ,T M  – absolute temperature and temperature of 

the beginning of the phase transformation, respectively; 

  – external stress; , ,a b c  – positive constants. 

The dependence of Gibbs free energy (3) on strain, 

temperature and external stress follows from the 

condition of the minimum free energy 

 , , 0dG T d    , and from the condition 

 2 2, , 0d G T d     [2]. 

However, the representation of free energy in the 

form (3) does not correspond to the experimental data 

[8]. Although the dependence   const    at constant 

temperature is in qualitative agreement with the 

experimental data for certain values of the order 

parameter, the description of martensitic 

transformations using model (3) near the onset 

temperature of martensitic transformation contradicts 

the results of experiments [2]. 

Such a contradiction requires searching for another 

order parameter related to MT. 
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As noted above, the set of possible order parameters 

responsible for PT or MT is large enough. However, 

despite this, the main features of MT described by order 

parameters differ in physical meaning have one 

common feature: the existence of a nonzero value of the 

order parameter in the low-temperature phase should be 

accompanied by a deformation. The physical reason for 

strain occurrence lies in the fact that those changes in 

the lattice, which are described by the order parameter, 

cause certain internal stresses and deform the unit cell 

of the formed phase. This mechanism of deformation 

occurrence in the process of MT is called strictional. 

Internal stress  in   can be considered as a function 

of the order parameter  , which allows the possibility 

of its expansion in a series in this parameter [9]. 

Thus, the free energy becomes a function of two 

variables (order parameter, and deformation (striction), 

in which it can be expanded in a series and presented in 

the form of a scalar model. It should be noted that such 

a representation of a free energy is only the simplest 

possible version of the theory describing second-order 

PT in bodies with striction. Therefore, in the general 

case, the deformation is a symmetric tensor of second 

rank. 

Moreover, as practice shows, even a simple scalar 

model describes MT and thermodynamic parameters of 

a solid with sufficient accuracy. 

However, the theoretical studies of MT 

thermodynamic features within the framework of a 

model that considers striction and a comparison of their 

conclusions with experiments, as well as models that 

use the deformation as an order parameter indicate a 

qualitative, but not quantitative agreement between the 

model under consideration and the experiment [2]. 

Therefore, in order to achieve a quantitative 

agreement between the theory and the experiment on PT 

including MT in solids it is necessary to continue 

searching for and developing new models of PT in 

crystalline media. 

Other processes that are closely related to second-

order PTs are crystallization processes that occur during 

cooling of solids from a high-temperature phase state. 

Any transition of a crystal to a liquid, or vice versa, or 

to crystals of a different symmetry is associated with 

disappearance or appearance of some symmetry 

elements [1]. Therefore, we can assume, that the 

processes similar to the processes of the second-order 

PT, in which the symmetry of the system changes, are 

observed during substance crystallization. 

Crystallization of a substance under certain 

schematic and general enough assumptions was first 

described in [10]. Later M. Avrami [11], J. Christian 

[12] and also [13, 14] devoted their studies to this topic 

in more complex formulations of this problem. 

The kinetics of isothermal PT in solid condition is 

usually described by the Avrami equation: 

   , , 1 nf t K n exp Kt   , (4) 

where  , ,f t K n  – part of the transformed value; t –

reaction time and K  and n  – constant coefficients. The 

coefficient K  in equation (4) is a certain combination 

of the velocities of nucleation and growth of particles of 

the new phase and the coefficient n  describes the 

“spatial dimension” of growth, as well as the possible 

time dependence of the above velocities. 

The theory of phase change kinetics is presented in 

[11]. This theory is based on experimentally proved 

assumptions that the new phase is generated from the 

germ nuclei that already exist in the old phase and the 

number of which can be changed by preliminary 

treatment. The density of the germ nuclei decreases due 

to the activation of some of them in order to become 

nuclei of grain growth of a new phase and the 

absorption of other grains by their growing analogs. 

Here, quantitative relationships between the density of 

germ nuclei, growth nuclei, and transformed volume 

were obtained. These relationships are reflected in a 

characteristic time scale for any substance and process. 

It is shown that the kinetics of a phase reaction depends 

on solution of a functional equation of a certain type. 

Some general properties of temperature-time and 

transformed phase-time curves are described and 

explained. 

In the simplest case of formula (4), when nucleation 

of particles of a new phase occurs uniformly over the 

volume of the sample and the velocities of their 

nucleation and growth are constant, then the increase in 

the fraction of the transformed volume occurs 

isotropically, according to A.M. Kolmogorov᾽s 

expression: 

  3 4, , 1 .
3

Kf t K n exp I t



 

   
 

 (5) 

The exponent in (4) and (5) appears as a result of 

considering collisions of growing particles. The 

coefficients K  and n  can be evaluated by plotting the 

experimental data in double logarithmic coordinates 

  ln ln 1y f    and lnx t  obtaining a straight 

line of the form: lny K nx  . 

However, the calculations of PT kinetics during 

crystallization do not always lead to a correct 

description of the experimental results, since the value 

of the fraction of the transformed volume depends on 

the coefficient n  that can change during the PT [15]. 

This fact is confirmed by an analysis of diagrams of 

isothermal transformation in alloys obtained by 

magnetometric [16–18] and dilatometric [19] methods.  

Therefore, the above-considered discrepancies 

between the theoretical description and experimental 

data on PT in metals and alloys require searching for 

new physical models that more adequately correspond 

to experiment. 

One of such qualitative models described the 

second-order PT in crystal lattices under the effect of 

temperature can be a model based on the Einstein's 

principle of detailed balance. Let's consider the 

conditions for applying this model in more detail. 
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QUALITATIVE MODEL FOR DESCRIBING 

THE DEPENDENCE OF THE HEAT 

CAPACITY OF A CRYSTALLINE 

SUBSTANCE ON THE TEMPERATURE  

AT A CONSTANT VOLUME 
 

To describe phase changes (PT or MT) let us 

consider a qualitative model based on a change in the 

number of particles of a new phase of a crystalline 

substance at a constant volume. By the fraction of a new 

phase according to the accepted assumption of the 

Dulong and Petit law [20] we mean an atom of the solid 

crystal lattice that performs harmonic vibrations in three 

directions determined by the geometry of the lattice. 

Moreover, the vibrations in different directions are 

absolutely independent of each other. We denote the 

atom energy as 
2 NkT  , where N  – the number of 

degrees of freedom, which is 3 for simple solids; T  – 

the temperature of the solid, and k  – the Boltzmann 

constant. 

A particle of the original (old) phase is an atom of 

the crystal lattice of a solid, which is characterized by 

energy 
1 2  . 

The number of particles of a new phase is 

determined from Einstein principle of detailed balance: 

       0
0

1

1 e 1 expxp
2

M

i
i

nn t t
N

t  


        [21, 

22], where  n t  – the number of particles of a new 

phase; 
0n  –he number of particles of the original (old) 

phase equal to Avogadro number 
236.0221 10AN    mol

-1
; t  – time;   – probability of 

induced transitions of particles between energy levels 

1  and 
2  [23]. The expression for  n t  was obtained 

under the condition of a significant excess of the 

characteristic time of balance establishing in the system 

over the time of induced transitions of particles between 

energy levels 
1  and 

2 . 

The probability of induced transitions   is 

proportional to the number of phonons 
phn  that 

promote transitions between energy levels [24]. In turn, 

the number of phonons is proportional to the 

equilibrium statistical Gibbs distribution [25] 

  ,0 expph ph Dn n a T T  , where a  – dimensionless 

constant characterized the average phonon energy, 
DT  - 

Debye temperature, which is related to the solid melting 

point *T  (Lindemann criterion) [26]. Under these 

assumptions the probability of induced transitions can 

be represented as     ( ) exp
0

T T T a T T
D D

   .  

Further, we assume that  0 DT T  is a power 

function of temperature T :    0 0D DT T T T


   , 

where   – a constant. 

The time t  in the expression for the number of 

particles of a new phase  n t  can be considered 

proportional to the temperature t T , because we 

consider the process of time – temperature 

transformation to be linear. 

Based on the foregoing, the heat capacity of the 

metal 
Vc  can be estimated by the value proportional to 

the number of particles of a new phase of solid [27, 28]: 

      
1

0 1 e eD Da TT T T

Vc A n T A n b


 


 
    , where 

A  – proportionality factor,   - number of atoms in a 

crystal cell, 
0 Db T  – constant number.  

The constant A  is defined as follows. According to 

the empirical Dulong and Petit law the heat capacity of 

simple solids 
Vc  

at temperatures above the Debye 

temperature is close to 3Vc R , where 

8.31R  J/(mol K) is an universal gas constant. Since 

P Vc c  [29] and the difference 
P Vc c  is relatively 

small in solid bodies [27], then we can assume that 

P Vc c . Therefore, the proportionality factor in the 

expression for heat capacity is equal 3A R . The 

expression for heat capacity at a constant pressure takes 

the form: 

   
  

1
3 1 exp

exp .

P V D

D

c c R T

T

T

b a T





   

   


 (6) 

In Fig. 1 markers “×” depicts a curve that describes 

the dependence of heat capacity (6) on dimensionless 

temperature 
DT T . This curve was obtained by 

selecting constants , ,a b   using the ORIGIN software 

package in such a way that its deviation from the Debye 

curve was minimal. Indicators of statistical processing 

of the curve deviation (6) from the Debye curve are 

presented in Table. 

 
Fig. 1. Dependence of heat capacity 3Pc R  on 

temperature 
DT T  for a crystalline solid.  

Solid line “–“ Debye theory, markers “○” – solid 

silver with melting point 962 К and Debye temperature 

225 К [30], markers ”×” – formula (6) 
 

Statistical processing shows a sufficiently small 

average deviation of the curve (6) from the Debye curve 

at the level of 4.8509·10
-6

. Its deviation in the high-

temperature area is a value within a range of 0.5…1.5%, 

which is significantly less, for example, the value of the 

standard deviation for measurement of  the relative heat 

capacity of ARMCO iron, which is about 4% [31]. 

Thus, the qualitative model (6) based on induced 

transitions gives a quantitatively true description of the 

https://ru.wikipedia.org/wiki/ARMCO
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dependence of heat capacity of crystalline mediums on 

temperature. 

 

Result of statistical processing of the 

curve deviation (6) from the Debye curve 

b    

Value Standard 

Error 

Value Standard 

Error 

4.27803 0.00405 ‒0.69449 0.00191 

a  Statistics 

Value Standard 

Error 

Red. Chi-Sqr. Adj. R-Sqr. 

0.34485 8.1375·10
-4

 4.8509·10
-6

 0.99992 
 

HEAT CAPACITY JUMPS OF A 

CRYSTALLINE SUBSTANCE BY THE 

EXAMPLE OF IRON (EXPERIMENT)  
 

Appearance of a new phase of the crystal lattice, 

when quenching low carbon steels, for example, is 

accompanied by austenite   martensite PT, change in 

the crystal symmetry and heat capacity jump [2]. 

An example of a heat capacity jump is also given in 

[31], where the jump of the second-order of ARMCO 

iron heat capacity has been investigated near the 

temperature of 1180 K (BCC-FCC PT) and near the 

temperature of 1665 K (PT FCC-BCC). 

A sample of such jump for ARMCO iron is given in 

Fig. 2. 

 

 
Fig. 2. Dependence of ARMCO iron heat capacity on 

temperature at PT: a – BCC- FCC; b – FCC-BCC 

Curves in Fig. 2 noted by barcode - dotted line and 

markers indicate a jump down of heat capacity within 

the temperature of 1180 K as a result of changing the 

symmetry of crystal BCC to FCC – Fig. 2,a and within 

the temperature of 1670 K – the jump up as a result of 

changing the crystal symmetry FCC to BCC – Fig. 2,b. 

As we see, the heat capacity jump (heat capacity 

jump – the difference in the heat capacity of the 

substance in the final and initial PT) within the 

temperature of 1180 K is the amount of order 

 1 0.1 ...0.12 ; 0.1Pc    [32] kJ/(kg·K) and within 

the temperature of 1670 К – 
2 0.05...0.07; 0.04Pc   

[32] kJ/(kg·K). 

Thus, change in the crystal symmetry Fe Fe   at 

a temperature of 1180 K and vice versa at a temperature 

of 1670 K, as noted in [1], leads to marked in Fig. 2 

jumps of heat capacity. However, as noted in [31], the 

amplitude of such jumps is small. 
 

HEAT CAPACITY JUMPS OF A 

CRYSTALLINE SUBSTANCE BY THE 

EXAMPLE OF IRON (MODEL) 
 

The jumps in the heat capacity can be associated 

with a change in the probability of induced transitions 

of atoms in the crystal cell as a result of the crystal 

symmetry change. But the probability of induced 

transitions in expression (6) depends on four 

parameters: , , , Da b T . To describe jumps in heat 

capacity it is necessary to choose jumps of only one of 

them according to the Occam's razor methodological 

principle. 

We assume that the Debye temperature changes in 

jumps with a change in the crystal symmetry. Leave the 

rest of the parameters unchanged. For the model 

calculation of jumps in the iron heat capacity we assume 

that the parameter 
DT  in (6) changes abruptly as 

follows:  

– at temperatures 1180T  K the parameter 

420DT   K [20, 33]; 

– at temperature 1180T  К the Debye temperature 

increases abruptly from 420DT   К to 

420 0.9 378DT     К and remains the same until the 

temperature is reached 1670T   К;  

– at temperature 1670T   К the Debye temperature 

increases abruptly from 420 0.9 378DT     К to 

420 1.2 504DT     К and remains the same until the 

temperature is reached the iron melting point.  

Heat capacity 3Pc R  vs. temperature 
DT T  graph 

for iron with PT, which occur near temperatures of 1180 

and 1670 K is presented in Fig. 3. 

It follows from Fig. 3 that the proposed qualitative 

model for describing the heat capacity based on the 

model of induced transitions between the energy levels 

of particles of new and old phases can be used to 

calculate heat capacity jumps in the presence of phase 

transitions in crystalline media. The given example of 

calculating the behavior of iron heat capacity during 

phase transitions are in qualitative agreement with the 

experimental results given in [31]. The proposed model 

for describing dependence of temperature on heat 

capacity in the presence of a PT has a physical 

explanation, which is based on considering the change 

in the probability of induced transitions of atoms in the 

crystal cell due to a change in the crystal symmetry. 

Such a change in the probability of induced transitions 

is due to the fact that with increasing temperature the 

linear dimensions of the crystal lattice increase [34], and 

this, in turn, leads to increasing the energy of the energy 

level 
2 . Therefore, the probability of induced 

transition of the old phase into a new one decreases. 

https://ru.wikipedia.org/wiki/ARMCO
https://ru.wikipedia.org/wiki/ARMCO
https://ru.wikipedia.org/wiki/ARMCO
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Fig. 3. Dependence of heat capacity 3Pc R  on 

temperature 
DT T  for iron with PT Fe Fe  . 

Debye temperatures are marked as:  

○ – 420DT  К; □ – 378DT  К; ∆ – 504DT   К 

Thus, the model of a second-order PT in crystal 

lattices under the effect of external factors, based on the 

principle of detailed balance, can be used to describe 

their heat capacity and other thermodynamic parameters 

at temperature change. 

CONCLUSIONS 

Various approaches describing phase 

transformations in crystalline media are analyzed in the 

paper: Landau's phenomenological approach to describe 

second-order phase transitions and Kolmogorov᾽s, 

Avrami᾽s, Christians’ theories of crystallization 

obtained under certain schematic and general enough 

assumptions. The analysis of existing theories points to 

not always adequate description of the processes of 

experimental results. And first of all, due to the 

uncertainty of the order parameter choice in Landau 

theory, or the inconstancy of the transformed volume 

fraction in the PT process. Therefore, a qualitative 

model for describing the dependence of heat capacity of 

a crystalline substance on temperature at a constant 

volume is proposed in the paper. The model allows 

considering the change in the number of particles of a 

new phase of a crystalline substance at a constant 

volume and is based on Einstein's principle of detailed 

balance. It is shown that a metal heat capacity can be 

estimated by a value proportional to the number of 

particles of a new phase of a solid. Comparison of the 

obtained expression for the heat capacity of a metal with 

the Dulong-Petit formula, for example, for solid silver 

gives a small difference. Statistical processing shows a 

fairly small average deviation of curves at the level of 

4.8509·10
-6

. The resulting expression for the heat 

capacity is applied to describe the jumps in the heat 

capacity for iron near PT temperatures Fe Fe  . An 

example of calculating the behavior of the iron heat 

capacity during PTs, which qualitatively agrees with the 

experimental results, is given. The proposed model for 

describing temperature dependence on heat capacity 

during PT has a physical explanation, which is based on 

considering the change in the probability of induced 

transitions of crystal cell atoms as a result of a change in 

the crystal symmetry. Such a change in the probability 

of induced transitions is due to the fact that with 

increasing temperature the linear dimensions of the 

crystal lattice increase, which, in turn, leads to 

increasing energy of the upper energy level and 

decreasing the probability of induced transition of the 

old phase to a new one. 

The proposed model for describing the heat capacity 

of crystalline media is based on the Einstein's principle 

of detailed balance and can be used to describe the heat 

capacity and other thermodynamic parameters of such 

media. 
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ФАЗОВІ ПЕРЕХОДИ ДРУГОГО РОДУ В КРИСТАЛІЧНИХ СЕРЕДОВИЩАХ  

ПІД ДІЄЮ ТЕМПЕРАТУРИ 

Б.В. Борц, С.Ф. Скоромна, В.І. Ткаченко  

Розглянуто різні підходи до опису фазових переходів у кристалічних середовищах: феноменологічний підхід 

Ландау до опису фазових переходів другого роду, а також теорії кристалізації Колмогорова, Аврамі та Крістіана. 

Аналіз існуючих підходів показує, що вони не завжди адекватно описують експериментальні результати. У роботі 

запропонована якісна модель для опису залежності теплоємності кристалічної речовини від температури. Модель 

описує зміну кількості частинок нової фази кристалічної речовини при постійному об'ємі та заснована на 

принципі детальної рівноваги Ейнштейна. Отримано вираз для теплоємності металу, що адекватно відповідає 

теплоємності Дюлонга-Птi. Запропоновано модель для опису залежності теплоємності від температури в 

кристалічних середовищах. 

 

ФАЗОВЫЕ ПЕРЕХОДЫ ВТОРОГО РОДА В КРИСТАЛЛИЧЕСКИХ СРЕДАХ  

ПОД ДЕЙСТВИЕМ ТЕМПЕРАТУРЫ 

Б.В. Борц, С.Ф. Скоромная, В.И. Ткаченко  

Рассмотрены различные подходы к описанию фазовых превращений в кристаллических средах: 

феноменологический подход Ландау к описанию фазовых переходов второго рода, а также теории 

кристаллизации Колмогорова, Аврами и Кристиана. Анализ существующих данных показывает, что они не всегда 

адекватно описывают экспериментальные результаты. В работе предложена качественная модель для описания 

зависимости теплоемкости кристаллической среды от температуры. Модель описывает изменение количества 

частиц новой фазы кристаллической среды при постоянном объеме и основана на принципе детального 

равновесия Эйнштейна. Получено выражение для теплоемкости металла, которое адекватно соответствует 

теплоемкости Дюлонга-Пти. Предложена модель для описания зависимости теплоемкости от температуры. 
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