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Various approaches to describe phase transitions in crystalline media are considered: Landau phenomenological
approach of second-order phase transitions as well as Kolmogorov's, Avrami's and Christian's theories of
crystallization. An analysis of the existing approaches indicates that they do not always adequately describe the
experimental results. A qualitative model for describing the dependence of a crystalline substance heat capacity on
temperature at a constant volume is proposed in this paper. The model describes the change in the number of
particles of a new phase of a crystalline substance at a constant volume and is based on Einstein principle of detailed
balance. An expression for metal heat capacity adequately corresponded to Dulong-Petit heat capacity is obtained. A
model for describing the dependence of heat capacity on temperature in case of phase transitions is proposed.
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INTRODUCTION

A change in the state of a system during second-
order phase transitions (PT) can be described as a
change in its symmetry (for example, a crystal transition
from a phase with cubic symmetry to a tetragonal one or
vice versa). A the heart of Landau's phenomenological
theory of second-order PT is PT understanding as a
change in the symmetry of a system, for example, a
crystal [1]. To describe the change in symmetry the
concept of an order parameter is introduced in this
theory and a certain parameter that is linearly
transformed under the action of the symmetry group of
the system is chosen. This can be, for example, shear
strain, atom displacement amplitude and charge density
wave amplitude, striction amplitude, [2], the magnetic
moment in a ferromagnetic, the wave function of a
Bose-condensate in *He,.

The approach proposed by Landau is to represent the
thermodynamic potential in the form of the function

q)(P,T,ry):

O(P,T,7)=d,(P,T,0)+ Ay’ +Br* +..., 1)
where 7 — the order parameter characterized the phase
10°®(P,T,0)
symmetry, A(PT)==2—\ " 7/,
ymmetry (PT)=5—5 7
4
B(P,T):ia (D(P,T,O)>O.

4 ont
In expansion (1) the coefficients at uneven degrees
n are equal to zero due to the crystal symmetry [1]. The

order parameter in expression (1) is equal to zero for an
unperturbed crystal with the highest degree of
symmetry. When symmetry is broken as a result of
external factors, it becomes nonzero.

The body heat capacity at the Curie point is
determined by the expression:

T (6AY
C,=Co+—|—1|, 2
PoT0 ZB[aTJ @)
where c,, — body heat capacity with the greatest
symmetry.
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Thus, heat capacity at the Curie point (A=0)
changes abruptly, besides it increases when passing
from a more symmetric c, to a less symmetric crystal.

However, it is not always possible to describe PT by
introducing the order parameter, for example,
martensitic  transformations (MT) of steels [2].
Therefore, it is proposed in the scientific literature to
use other types of the order parameter for describing
MT. The order parameter can be the atoms displacement
amplitude [3], the amplitude of electrostriction and
ferroelectricity [4, 5], or the amplitude of charge density
waves [6].

Further development of Landau [1] and Devonshire
[4] theories was carried out by F. Falk in [7] based on
using shear strain as an order parameter. In this work,
based on the Landau theory, a phenomenological model
of the Gibbs free energy function G=U -TS+PV is
presented, which considers the PT and is presented as a
series in order parameter degrees (shear strain) ¢ :

G(&T,0)=G,+a(T-M)é&’ —be* +ce®—oe, (3)

where T,M - absolute temperature and temperature of
the beginning of the phase transformation, respectively;
o — external stress; a,b,c — positive constants.

The dependence of Gibbs free energy (3) on strain,
temperature and external stress follows from the
condition  of  the  minimum  free  energy
dG(e,T,0)/de=0, and from the condition
d’G(e,T,0)/de” >0 [2].

However, the representation of free energy in the

form (3) does not correspond to the experimental data
[8]. Although the dependence o (&)=const at constant

temperature is in qualitative agreement with the
experimental data for certain values of the order
parameter, the description of martensitic
transformations using model (3) near the onset
temperature of martensitic transformation contradicts
the results of experiments [2].

Such a contradiction requires searching for another
order parameter related to MT.
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As noted above, the set of possible order parameters
responsible for PT or MT s large enough. However,
despite this, the main features of MT described by order
parameters differ in physical meaning have one
common feature: the existence of a nonzero value of the
order parameter in the low-temperature phase should be
accompanied by a deformation. The physical reason for
strain occurrence lies in the fact that those changes in
the lattice, which are described by the order parameter,
cause certain internal stresses and deform the unit cell
of the formed phase. This mechanism of deformation
occurrence in the process of MT is called strictional.

Internal stress o;, (¢) can be considered as a function

of the order parameter ¢, which allows the possibility

of its expansion in a series in this parameter [9].

Thus, the free energy becomes a function of two
variables (order parameter, and deformation (striction),
in which it can be expanded in a series and presented in
the form of a scalar model. It should be noted that such
a representation of a free energy is only the simplest
possible version of the theory describing second-order
PT in bodies with striction. Therefore, in the general
case, the deformation is a symmetric tensor of second
rank.

Moreover, as practice shows, even a simple scalar
model describes MT and thermodynamic parameters of
a solid with sufficient accuracy.

However, the theoretical studies of MT
thermodynamic features within the framework of a
model that considers striction and a comparison of their
conclusions with experiments, as well as models that
use the deformation as an order parameter indicate a
qualitative, but not quantitative agreement between the
model under consideration and the experiment [2].

Therefore, in order to achieve a quantitative
agreement between the theory and the experiment on PT
including MT in solids it is necessary to continue
searching for and developing new models of PT in
crystalline media.

Other processes that are closely related to second-
order PTs are crystallization processes that occur during
cooling of solids from a high-temperature phase state.
Any transition of a crystal to a liquid, or vice versa, or
to crystals of a different symmetry is associated with
disappearance or appearance of some symmetry
elements [1]. Therefore, we can assume, that the
processes similar to the processes of the second-order
PT, in which the symmetry of the system changes, are
observed during substance crystallization.

Crystallization of a substance under certain
schematic and general enough assumptions was first
described in [10]. Later M. Avrami [11], J. Christian
[12] and also [13, 14] devoted their studies to this topic
in more complex formulations of this problem.

The kinetics of isothermal PT in solid condition is
usually described by the Avrami equation:

f(t,K,n)=1—exp(-Kt"), (4)
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where f(t,K,n) — part of the transformed value; t—

reaction time and K and n — constant coefficients. The
coefficient K in equation (4) is a certain combination
of the velocities of nucleation and growth of particles of
the new phase and the coefficient n describes the
“spatial dimension” of growth, as well as the possible
time dependence of the above velocities.

The theory of phase change kinetics is presented in
[11]. This theory is based on experimentally proved
assumptions that the new phase is generated from the
germ nuclei that already exist in the old phase and the
number of which can be changed by preliminary
treatment. The density of the germ nuclei decreases due
to the activation of some of them in order to become
nuclei of grain growth of a new phase and the
absorption of other grains by their growing analogs.
Here, quantitative relationships between the density of
germ nuclei, growth nuclei, and transformed volume
were obtained. These relationships are reflected in a
characteristic time scale for any substance and process.
It is shown that the kinetics of a phase reaction depends
on solution of a functional equation of a certain type.
Some general properties of temperature-time and
transformed phase-time curves are described and
explained.

In the simplest case of formula (4), when nucleation
of particles of a new phase occurs uniformly over the
volume of the sample and the velocities of their
nucleation and growth are constant, then the increase in
the fraction of the transformed volume occurs

isotropically, according to A.M. Kolmogorov’s
expression:
fK(t,K,n)zl—exp(—%Iaft“). (5)

The exponent in (4) and (5) appears as a result of
considering collisions of growing particles. The
coefficients K and n can be evaluated by plotting the
experimental data in double logarithmic coordinates

y=In(=In(1-f)) and x=Int obtaining a straight
line of the form: y=InK +nx.

However, the calculations of PT kinetics during
crystallization do not always lead to a correct
description of the experimental results, since the value
of the fraction of the transformed volume depends on
the coefficient n that can change during the PT [15].
This fact is confirmed by an analysis of diagrams of
isothermal transformation in alloys obtained by
magnetometric [16-18] and dilatometric [19] methods.

Therefore, the above-considered discrepancies
between the theoretical description and experimental
data on PT in metals and alloys require searching for
new physical models that more adequately correspond
to experiment.

One of such qualitative models described the
second-order PT in crystal lattices under the effect of
temperature can be a model based on the Einstein's
principle of detailed balance. Let's consider the
conditions for applying this model in more detail.
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QUALITATIVE MODEL FOR DESCRIBING
THE DEPENDENCE OF THE HEAT
CAPACITY OF A CRYSTALLINE
SUBSTANCE ON THE TEMPERATURE
AT A CONSTANT VOLUME

To describe phase changes (PT or MT) let us
consider a qualitative model based on a change in the
number of particles of a new phase of a crystalline
substance at a constant volume. By the fraction of a new
phase according to the accepted assumption of the
Dulong and Petit law [20] we mean an atom of the solid
crystal lattice that performs harmonic vibrations in three
directions determined by the geometry of the lattice.
Moreover, the vibrations in different directions are
absolutely independent of each other. We denote the
atom energy as &, =NKT, where N — the number of
degrees of freedom, which is 3 for simple solids; T —
the temperature of the solid, and k — the Boltzmann
constant.

A particle of the original (old) phase is an atom of
the crystal lattice of a solid, which is characterized by
energy &, <&,.

The number of particles of a new phase is
determined from Einstein principle of detailed balance:

M
n(t)= Z%(l—exp(—;pt)) =n, (1—exp(-u-t)) [21,
22], where n(t) — the number of particles of a new
phase; n, —he number of particles of the original (old)
phase equal to Avogadro number
N, =6.0221-10® mol™; t — time; x — probability of
induced transitions of particles between energy levels
& and &, [23]. The expression for n(t) was obtained

under the condition of a significant excess of the
characteristic time of balance establishing in the system
over the time of induced transitions of particles between
energy levels ¢, and ¢, .

The probability of induced transitions p is
proportional to the number of phonons n, that

promote transitions between energy levels [24]. In turn,
the number of phonons is proportional to the
equilibrium  statistical ~ Gibbs  distribution  [25]

Ny =N o €XP(—a(T,/T)), where a — dimensionless
constant characterized the average phonon energy, T, -
Debye temperature, which is related to the solid melting

point T* (Lindemann criterion) [26]. Under these
assumptions the probability of induced transitions can

be represented as 4«(T) = #y (T/TD)exp (—a(TD /T)) .
Further, we assume that s, (T/T,) is a power
function of temperature T :u, (T/Ty) = (T/T,)
where y —a constant.
The time t in the expression for the number of
particles of a new phase n(t) can be considered
proportional to the temperature t=aT , because we
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consider the process of time -
transformation to be linear.

Based on the foregoing, the heat capacity of the
metal ¢, can be estimated by the value proportional to

the number of particles of a new phase of solid [27, 28]:
CV = Avn (T) = Avno (l_ ef(T/TD)LJ b . e’a(TD/T) ) ’

temperature

where

A — proportionality factor, v - number of atoms in a
crystal cell, b=y T, — constant number.

The constant A is defined as follows. According to
the empirical Dulong and Petit law the heat capacity of
simple solids ¢, at temperatures above the Debye
temperature is close to ¢, #3vR, where
R =8.31J/(mol K) is an universal gas constant. Since
C, >C, [29] and the difference c,—c, is relatively
small in solid bodies [27], then we can assume that
C, =C, . Therefore, the proportionality factor in the
expression for heat capacity is equal A=3vR. The

expression for heat capacity at a constant pressure takes
the form:

¢ =C, =3vR [1—exp(—(T/TD )l”)x

xboexp(—a(TD/T))}.
In Fig. 1 markers “x” depicts a curve that describes
the dependence of heat capacity (6) on dimensionless
temperature T/T, . This curve was obtained by
selecting constants a, b, ¥ using the ORIGIN software
package in such a way that its deviation from the Debye
curve was minimal. Indicators of statistical processing
of the curve deviation (6) from the Debye curve are
presented in Table.
1 WW

0.8

(6)

cp/3Rv
s e
B =)}
—

0

0 0.5 1 1.5

T/T,
Fig. 1. Dependence of heat capacity c,/3Rv on

temperature T /T, for a crystalline solid.

Solid line “—* Debye theory, markers “o” — solid
silver with melting point 962 K and Debye temperature
225 K [30], markers ”x” —formula (6)

Statistical processing shows a sufficiently small
average deviation of the curve (6) from the Debye curve
at the level of 4.8509-10°. Its deviation in the high-
temperature area is a value within a range of 0.5...1.5%,
which is significantly less, for example, the value of the
standard deviation for measurement of the relative heat
capacity of ARMCO iron, which is about 4% [31].

Thus, the qualitative model (6) based on induced
transitions gives a quantitatively true description of the
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dependence of heat capacity of crystalline mediums on
temperature.

Result of statistical processing of the
curve deviation (6) from the Debye curve

b v
Value Standard Value Standard
Error Error
4.27803 0.00405 —0.69449 0.00191
a Statistics
Value Standard | Red. Chi-Sqr. | Adj. R-Sqr.
Error
0.34485 | 8.1375-10™ | 4.8509-10° | 0.99992

HEAT CAPACITY JUMPS OF A
CRYSTALLINE SUBSTANCE BY THE
EXAMPLE OF IRON (EXPERIMENT)

Appearance of a new phase of the crystal lattice,
when quenching low carbon steels, for example, is
accompanied by austenite — martensite PT, change in
the crystal symmetry and heat capacity jump [2].

An example of a heat capacity jump is also given in
[31], where the jump of the second-order of ARMCO
iron heat capacity has been investigated near the
temperature of 1180 K (BCC-FCC PT) and near the
temperature of 1665 K (PT FCC-BCC).

A sample of such jump for ARMCO iron is given in
Fig. 2.
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Fig. 2. Dependence of ARMCO iron heat capacity on
temperature at PT: a— BCC- FCC; b — FCC-BCC

Curves in Fig. 2 noted by barcode - dotted line and
markers indicate a jump down of heat capacity within
the temperature of 1180 K as a result of changing the
symmetry of crystal BCC to FCC — Fig. 2,a and within
the temperature of 1670 K — the jump up as a result of
changing the crystal symmetry FCC to BCC — Fig. 2,b.

As we see, the heat capacity jump (heat capacity
jump — the difference in the heat capacity of the
substance in the final and initial PT) within the
temperature of 1180 K is the amount of order
ACp, #—(0.1...0.12);-0.1 [32] kJ/(kg'K) and within
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the temperature of 1670 K — Ac,, ~0.05...0.07; 0.04
[32] kJ/(kg-K).
Thus, change in the crystal symmetry Fe, — Fe, at

a temperature of 1180 K and vice versa at a temperature
of 1670 K, as noted in [1], leads to marked in Fig. 2
jumps of heat capacity. However, as noted in [31], the
amplitude of such jumps is small.

HEAT CAPACITY JUMPS OF A
CRYSTALLINE SUBSTANCE BY THE
EXAMPLE OF IRON (MODEL)

The jumps in the heat capacity can be associated
with a change in the probability of induced transitions
of atoms in the crystal cell as a result of the crystal
symmetry change. But the probability of induced
transitions in expression (6) depends on four
parameters: a,b,y,T,. To describe jumps in heat

capacity it is necessary to choose jumps of only one of
them according to the Occam's razor methodological
principle.

We assume that the Debye temperature changes in
jumps with a change in the crystal symmetry. Leave the
rest of the parameters unchanged. For the model
calculation of jumps in the iron heat capacity we assume
that the parameter T, in (6) changes abruptly as

follows:

— at temperatures
T, =420 K [20, 33];

— at temperature T =1180 K the Debye temperature
increases abruptly from T, =420 K to
T, =420-0.9=378 K and remains the same until the

temperature is reached T =1670 K;
— at temperature T =1670 K the Debye temperature
increases abruptly from T,=420.-09=378 K to

T, =420-1.2=504 K and remains the same until the

temperature is reached the iron melting point.
Heat capacity c,/3Rv vs. temperature T/T, graph

for iron with PT, which occur near temperatures of 1180
and 1670 K is presented in Fig. 3.

It follows from Fig. 3 that the proposed qualitative
model for describing the heat capacity based on the
model of induced transitions between the energy levels
of particles of new and old phases can be used to
calculate heat capacity jumps in the presence of phase
transitions in crystalline media. The given example of
calculating the behavior of iron heat capacity during
phase transitions are in qualitative agreement with the
experimental results given in [31]. The proposed model
for describing dependence of temperature on heat
capacity in the presence of a PT has a physical
explanation, which is based on considering the change
in the probability of induced transitions of atoms in the
crystal cell due to a change in the crystal symmetry.
Such a change in the probability of induced transitions
is due to the fact that with increasing temperature the
linear dimensions of the crystal lattice increase [34], and
this, in turn, leads to increasing the energy of the energy
level ¢,. Therefore, the probability of induced

transition of the old phase into a new one decreases.

T <1180K the parameter
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Fig. 3. Dependence of heat capacity ¢, /3Rv on
temperature T/T, for iron with PT Fe, & Fe, .

Debye temperatures are marked as:
0—T,=420K;0—- T, =378K; A— T, =504 K

Thus, the model of a second-order PT in crystal
lattices under the effect of external factors, based on the
principle of detailed balance, can be used to describe
their heat capacity and other thermodynamic parameters
at temperature change.

CONCLUSIONS

Various approaches describing phase
transformations in crystalline media are analyzed in the
paper: Landau's phenomenological approach to describe
second-order phase transitions and Kolmogorov’s,
Avrami’s, Christians’ theories of crystallization
obtained under certain schematic and general enough
assumptions. The analysis of existing theories points to
not always adequate description of the processes of
experimental results. And first of all, due to the
uncertainty of the order parameter choice in Landau
theory, or the inconstancy of the transformed volume
fraction in the PT process. Therefore, a qualitative
model for describing the dependence of heat capacity of
a crystalline substance on temperature at a constant
volume is proposed in the paper. The model allows
considering the change in the number of particles of a
new phase of a crystalline substance at a constant
volume and is based on Einstein's principle of detailed
balance. It is shown that a metal heat capacity can be
estimated by a value proportional to the number of
particles of a new phase of a solid. Comparison of the
obtained expression for the heat capacity of a metal with
the Dulong-Petit formula, for example, for solid silver
gives a small difference. Statistical processing shows a
fairly small average deviation of curves at the level of
4.8509-10°. The resulting expression for the heat
capacity is applied to describe the jumps in the heat
capacity for iron near PT temperatures Fe, = Fe, . An

example of calculating the behavior of the iron heat
capacity during PTs, which qualitatively agrees with the
experimental results, is given. The proposed model for
describing temperature dependence on heat capacity
during PT has a physical explanation, which is based on
considering the change in the probability of induced
transitions of crystal cell atoms as a result of a change in
the crystal symmetry. Such a change in the probability
of induced transitions is due to the fact that with
increasing temperature the linear dimensions of the
crystal lattice increase, which, in turn, leads to
increasing energy of the upper energy level and

36

decreasing the probability of induced transition of the
old phase to a new one.

The proposed model for describing the heat capacity
of crystalline media is based on the Einstein's principle
of detailed balance and can be used to describe the heat
capacity and other thermodynamic parameters of such
media.
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®A30BI IEPEXO/ I APYT'OI'O POY B KPUCTAJIIYHUX CEPEJJOBHUIIIAX
g AI€EI0 TEMIIEPATYPH
b.B. bopu, C.®. Cxopomna, B.1. Tkauenxo

PosrnsiHyTO pi3HI miaxoau a0 onucy (a3oBHX MEPEXOMAIiB Y KPUCTATIYHUX CepeoBUINaxX: (EHOMEHOJIOTIUHU MiaXia
Jlannay no onmcy ¢a3oBUX MEPEXOiB APYroro poay, a Takox Teopii kpuctamizaiii Kommoroposa, ABpami Ta Kpicriana.
AHaji3 iCHyI04uX HiJXO0/iB MOKa3ye, 0 BOHHU HE 3aBXK/H aJ€KBaTHO ONUCYIOTh EKCIIEPUMEHTAJIbHI pe3ynbTaTi. Y poOoTi
3aIpONOHOBaHA SKICHA MOJEINb IS OTIHCY 3aJIeKHOCTI TEINIOEMHOCTI KPHCTAIIYHOT PEYOBHHHU BiJ TeMmepaTypu. Moenb
ONUCy€e 3MiHYy KUIBKOCTI YacTMHOK HOBOI (pa3u KpUCTaliuHOi PEYOBHUHU NPH IOCTiHHOMY 00'eMi Ta 3acHOBaHAa Ha
NPUHLMII JeTaidbHOi piBHOBark EifHmTeliHa. OTprMaHO BHpa3 Ul TEINIOEMHOCTI MeTaiy, IO aJeKBaTHO BiIIOBizae
TernoeMHocTi  Jrononra-IITi. 3anpomnoHOBaHO MOAENb ISl ONKCY 3alCKHOCTI TEIIOEMHOCTI BiJ TeMIepaTtypu B
KPHUCTATIYHUX CEPETOBHIIAX.

®A30BBIE ITIEPEXO/bI BTOPOI'O POJA B KPUCTAJIVIMYECKUX CPEJAX
MOJ AEMCTBUEM TEMITEPATYPBI
B.B. bopuy, C.®. Cxopomnas, B.H. Tkauenko

PaCCMOTpeHBI pas3jinYHbIC TIOAXOAbl K  OIIMCAHHUIO (I)a?,OBBIX npeBpame}mﬁ B KpPHUCTAJULIMYECKUX Cpeaax:
(eHoMmeHonornyeckuil moxaxon Jlanmay Kk omucaHuio (a3oBBIX IHEPEXOAOB BTOPOrO poAa, a TaKKe TEOPHU
kpucraiuzauuu Koiamoroposa, ABpamu u Kpuctuana. AHanu3 CylecTBYIOIIMX JJaHHBIX IIOKa3bIBAET, UTO OHU HE BCeraa
a/IeKBaTHO OIUCHIBAIOT 3KCHEPHMEHTANIbHbIE Pe3yNbTaThl. B paboTe mpennoikeHa KaueCTBEHHAs MOJENb AJs OINMCAHUS
3aBUCUMOCTH TCIJIOEMKOCTH KpI/ICTaHJTI/I‘{CCKOﬁ Cpe€abl OT TEMIIEPATYPHI. MO)ICJ'IB OIIMCBHIBACT HM3MCHCHHUC KOJIMYCCTBA
YaCTUI HOBOHW (pa3bl KPUCTAUIMIECKOH Cpelbl HMPH MOCTOSHHOM OOBeMe M OCHOBaHA Ha MPHHIWIE ACTAIBHOTO
paBHOBecus OlHIUTeHHa. [lomyyeHo BbIpaXKeHHE i1 TEIUNIOEMKOCTH METajljgd, KOTOPOE aJeKBAaTHO COOTBETCTBYET
temnoeMkoct rononra-Iltu. Ilpeanosxena Moienb 1 ONUCAHUS 3aBUCUMOCTHU TEINIOEMKOCTU OT TEMIIEPATYPBI.
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