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In the paper, relativistic equations of local hydrodynamics for the laboratory fusion plasmas are obtained. 

Relativistic effects in the physics of electron transport appear primarily because of macroscopic features of relativistic 

thermodynamic equilibrium given by the Maxwell-Jüttner distribution function, and the characteristic velocity of 

plasma flow is significantly small: 𝑉 ≪ 𝑣𝑡𝑒 < 𝑐. We propose an approach in which the plasma electrons are treated 

as fully relativistic and the hydrodynamic flow is treated in the weakly relativistic approximation. For convenience, 

the obtained relativistic effects are divided between “quasi-relativistic” terms, which in the nonrelativistic limit 

coincide with well-known expressions, and fully relativistic terms, which disappear at𝑐 → ∞. The considered mixed 

approach can be useful for construction of transport models for numerical studies of both astrophysical objects and 

hot fusion plasma. 
     PACS: 52.55.Dy, 52.25.Fi, 52.27.Ny 

 

INTRODUCTION 
 

Relativistic effects in astrophysical objects and fusion 

plasmas do not necessarily require extremely high 

temperatures and energies. They appear to be non-

negligible even for electronic temperatures 𝑇𝑒 of the 

order of tens keV, i.e. when 𝑇𝑒 ≪ 𝑚𝑒𝑐2. Relativistic 

effects in kinetics, hydrodynamics and transport physics 

in collisional plasmas appear due to a macroscopic 

features of relativistic thermodynamic equilibrium given 

by the Maxwell-Jüttner distribution function (or 

relativistic Maxwellian) [1]. In fusion devices such as 

ITER [2, 3] and DEMO [4], where electron temperatures 

must reach several tens of keV, relativistic effects for 

electron transport become noticeable. The same is true 

for aneutronic fusion reactors, where the expected 

electron temperature should be about 50...70 keV and 

above [5-9]. 

It has recently been shown [10, 11] that relativistic 

effects can modify electron transport, making the fluxes 

noticeably different from those calculated in the 

nonrelativistic limit for both tokamaks and stellarators. 

At the same time, virtually all transport codes developed 

to date for modeling fusion reactor scenarios are based 

on a nonrelativistic approach.  

Usually, in the literature devoted to relativistic 

kinetics and MHD of plasmas the covariant formalism 

with the 4-vectors is applied [12, 13]. This is the most 

general and straightforward way to obtain the transport 

and MHD equations with conservation of Lorentz 

invariance [14, 15]. Usually, this formalism is applied to 

describe astrophysical objects. However, for the 

problems, where the Lorentz invariance is of low 

importance, the kinetics is considered in the same way as 

in the non-relativistic limit [10, 11, 16-20]. 

The present work is focused on description of 

transport processes in a hot collisional plasmas with 

relativistic electrons and macroscopic flows with 

characteristic velocities 𝑉 ≪ 𝑣𝑡𝑒. The main goal is to 

derive the equations of local hydrodynamics in the 

weakly relativistic approach with respect to the mean 

flow, i.e.  neglecting  the  terms  of the order 𝑉3/(𝑐2𝑢𝑡𝑒), 

𝑉4/(𝑐2𝑢𝑡𝑒
2 ) and above, while the thermal effects 

involving plasma electrons are described as fully 

relativistic. The final equations are mathematically 

similar to the non-relativistic ones and have a transparent 

physical interpretation. 

 

FIRST MOMENTS IN THE REST FRAME 
 
First, it is convenient to write a relativistic kinetic 

equation for the electron distribution function𝑓𝑒 in 

divergent form and without 4-vectors,  

 
𝜕𝑓𝑒

𝜕𝑡
+

𝜕

𝜕𝑥𝑘
(𝑣𝑘𝑓𝑒) +

𝜕

𝜕𝑢𝑘
(�̇�𝑘𝑓𝑒) = 𝐶𝑒(𝑓𝑒) ,        (1) 

 

where 𝑥�̇� = 𝑣𝑘 is the velocity with 𝑘 = 1,2,3, 𝑢𝑘 = 𝑣𝑘𝛾 

is the momentum per unit mass with 𝛾 = √1 + 𝑢2/𝑐2 as 

the relativistic factor, and 𝑚�̇�𝑘 = 𝑒𝐸𝑘 +
𝑒

𝑐
[𝒗 × 𝑩]𝑘 is 

the force with electric field 𝑬 and magnetic field 𝑩, 

respectively. Here and below, the standard rule of 

summation over the repetitive indexes is supposed. The 

operator 𝐶𝑒(𝑓𝑒) describes the collisions of electrons with 

themselves and ions, i.e. 𝐶𝑒(𝑓𝑒) = 𝐶𝑒𝑒(𝑓𝑒) + 𝐶𝑒𝑖(𝑓𝑒), 

where ions are considered non-relativistic. 

In order to derive the equations for such values as the 

mean flow velocity, density and temperature of plasma 

electrons, it is natural to assume that plasma is very close 

to the thermodynamical equilibrium given by the 

“drifting” Maxwell-Jüttner distribution function, 

 

𝑓𝑒0 = 𝐶𝑀𝐽
𝑛𝑒

𝜋3/2𝑢𝑡𝑒
3 exp (−𝜇𝛾0 [𝛾 −

1

𝛾0
−

𝑉𝑘𝑢𝑘

𝑐2 ]),    (2) 

 

where 𝑛𝑒 is the density of electrons measured in the rest 

frame which moves with mean flow velocity 𝑽, 𝛾0 =

1/√1 − 𝑉2/𝑐2 is the relativistic dilation factor, 𝑢𝑡𝑒 ≡

𝑝𝑡𝑒/𝑚𝑒 = √2𝑇𝑒/𝑚𝑒 is the thermal momentum per unit 
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mass (formally, 𝑢𝑡𝑒 coincides with the thermal velocity 

in non-relativistic limit, but is not limited by speed of 

light), 𝑇𝑒 is the electron temperature and 𝜇 =
𝑚𝑒𝑐2

𝑇𝑒
> 1 

(typically, μ > 10 for fusion plasmas). The normalizing 

coefficient equals 

 

𝐶𝑀𝐽 = √
𝜋

2𝜇

𝑒−𝜇

𝐾2(𝜇)
= 1 −

15

8𝜇
+

345

128𝜇2 +,               (3) 

 

with 𝐾𝑛(𝜇) as the modified Bessel function of second 

kind of the n-th order. 

While 𝑇𝑒 is assumed here to be arbitrary high (with only 

natural limitation 𝑇𝑒 < 𝑚𝑒𝑐2, just to exclude a generation of 

the electron-positrons pairs), the mean velocity satisfies the 

conditions 𝑉/𝑢𝑡𝑒 ≪ 1 and 𝑉2/𝑐2 ≪ 1. The last condition 

makes possible to apply the weakly relativistic approach 

with respect to flow, 

 

𝛾0 = 1/√1 − 𝑉2/𝑐2 ≃ 1 + 𝑉2/2𝑐2,              (4) 

 

and reduce 𝑓𝑒0 to 

 

𝑓𝑒0 ≃ 𝐶𝑀𝐽
𝑛𝑒

𝜋
3
2𝑢𝑡𝑒

3
exp [−𝜇 (𝛾 − 1 −

𝑉𝑘𝑢𝑘

𝑐2 ) −
𝑚𝑒𝑉2

2𝑇𝑒
].   (5) 

 

The form of representations of 𝑓𝑒0 in Eqs. (2) and (5) with 

coefficient given by Eq. (3) is chosen in such a way that 

the limit of 𝑓𝑒0 (which is the classical drifting 

Maxwellian) when 𝑐 → ∞would be the most obvious. 

Now we will adapt to our notations the definitions 

given by other authors; see [12, 13, 16]. In order to obtain 

the equations for density, momentum and energy, one 

needs to integrate kinetic equation Eq. (1) with the 

corresponding weight functions: 1, 𝑚𝑒𝑢𝑘 and  𝑚𝑒𝑐2(𝛾 −
1), respectively. For that, following to the algorithm of 

Braginskii [21], the Lorentz transformation from the 

local coordinate system to the rest frame is required, 

where𝑽 = 0 and 𝛾0 = 1. The variables that correspond 

to the rest frame are labeled by prime. For compactness, 

let us introduce the notations: 〈𝐹〉 = (1/𝑛𝑒) ∫ 𝐹𝑓𝑒𝑑3 𝑢 

and 〈𝐹′〉 = (1/𝑛𝑒) ∫ 𝐹′𝑓𝑒
′𝑑3 𝑢′. Evidently, that in the rest 

frame 〈1〉 = 1and〈𝑣𝑘
′ 〉 = 0. 

For Maxwell-Jüttner distribution function, the 

relation between the total relativistic energy and 

temperature is well known [12], 

 

ℇ𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑒𝑚𝑒𝑐2〈𝛾′〉 = 𝑛𝑒 (𝑚𝑒𝑐2 𝐾3(𝜇)

𝐾2(𝜇)
− 𝑇𝑒).       (6) 

 

Alternatively, the internal thermal energy Eq. (6) can be 

represented in different form [10],  

 

𝑊 ≡ 𝑛𝑒𝑚𝑒𝑐2〈𝛾′ − 1〉 = (
3

2
+ ℛ) 𝑛𝑒𝑇𝑒 ,        (7) 

 

which reminds the classical expression, where ℛ is the 

relativistic correction term, 

 

ℛ = 𝜇 (
𝐾3(𝜇)

𝐾2(𝜇)
− 1) −

5

2
=

15

8𝜇
−

15

8𝜇2 +
135

128𝜇3 +       (8) 

 

Here, Eqs. (7) and (8) give a quasi-classical form for 

energy. Similarly, also the heat flux can be defined, 

which, however, is equal in the rest frame to the energy 

flux, 

 

𝑞𝑘 = 𝑛𝑒𝑚𝑒𝑐2〈(𝛾′ − 1)𝑣𝑘
′ 〉,                     (9) 

 

which is also related to the averaged momentum as 

follows,  

 

𝑛𝑒𝑚𝑒〈𝑢𝑘
′ 〉 =

1

𝑐2 𝑞𝑘.                       (10) 

 

It is useful to mention that the moment in Eq. (10) 

represents a purely relativistic effect and is equal to zero in 

the classical limit, while the heat flux Eq. (9) is    “quasi-

classical”  in  the  above  sense.  Indeed,  for 

  𝑐 → ∞𝑚𝑒𝑐2(𝛾 − 1) → 𝑣2/𝑣𝑡𝑒
2 , and the values 𝑢𝑘

′   and 

𝑣𝑘
′  become indistinguishable, while 〈𝑣𝑘

′ 〉 =0. 

The next required moment is the momentum flux, 

 

𝑛𝑒𝑚𝑒〈𝑣𝑘
′ 𝑢𝑗

′〉 = 𝑝𝑒𝛿𝑘𝑗 + 𝜋𝑘𝑗 ,                (11) 

 

which, similarly to the non-relativistic representation, 

decomposes into hydrostatic scalar pressure𝑝𝑒, 

 

𝑝𝑒 =
1

3
𝑛𝑒𝑚𝑒 〈

𝑢′2

𝛾′
〉 = 𝑛𝑒𝑇𝑒 ,                 (12) 

 

and (traceless) viscous stress tensor𝜋𝑘𝑗, 

 

𝜋𝑘𝑗 = 𝑛𝑒𝑚𝑒〈𝑣𝑘
′ 𝑢𝑗

′〉 − 𝑝𝑒𝛿𝑘𝑗 .             (13) 

 

The moments related to the collisional operator are 

also required. Since the conservation laws of momentum 

and energy in Coulomb collisions of electrons with 

themselves are satisfied automatically, only the 

contribution from electron-ion collisions survives in 

integration. Then, by definition, electron-ion collisional 

friction force is the following: 

 

𝑅𝑘
𝑒𝑖 = ∫ 𝑚𝑒𝑢𝑘

′ 𝐶𝑒𝑖(𝑓𝑒
′) 𝑑3𝑢′            (14) 

 

Similarly, the stress tensor generated by the electron-ion 

collisions can be defined as 

 

𝐹𝑘𝑗
𝑒𝑖 = ∫ 𝑚𝑒𝑣𝑘

′ 𝑢𝑗
′𝐶𝑒𝑖(𝑓𝑒

′)𝑑3𝑢′.             (15) 

 

The collisional rate of the heat-flux generation is, 

respectively, 

 

𝐺𝑘
𝑒𝑖 = ∫ 𝑚𝑒𝑐2(𝛾′ − 1)𝑣𝑘

′ 𝐶𝑒𝑖(𝑓𝑒
′)𝑑3𝑢′.    (16) 

 

The rate of collisional energy exchange between 

relativistic electrons and classical ions is: 

 

𝑃𝑒𝑖 = ∫ 𝑚𝑒𝑐2(𝛾′ − 1)𝐶𝑒𝑖(𝑓𝑒
′)𝑑3𝑢′.         (17) 

 

In this case, only the dominant part of the energy 

exchange is taken into account for the calculation, i.e. in 

Eq. (17) both electrons and ions distribution functions are 

assumed to be equilibrium (Maxwellian for ions and 

Maxwell-Jüttner for electrons, but with their own 
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temperatures). Then, the result of integration can be 

presented as follows [22], 

𝑃𝑒𝑖 = 𝑃(𝑐𝑙)
𝑒𝑖 𝐶𝑀𝐽 (1 +

2

𝜇
+

2

𝜇2),                  (18) 

 

where 𝑃(𝑐𝑙)
𝑒𝑖  is the classical (non-relativistic) electron-ion 

energy exchange rate [23], 

 

𝑃(𝑐𝑙)
𝑒𝑖 = −

4

√𝜋
𝜈𝑒0

𝑚𝑒

𝑚𝑖
𝑛𝑖𝑍𝑖

2(𝑇𝑒 − 𝑇𝑖) ∝ −
𝑇𝑒−𝑇𝑖

𝑇𝑒

3
2

.     (19) 

 

In somewhat different form Eq. (18) was obtained also in 

[14, 16]. 

 

HYDRODYNAMIC EQUATIONS IN 

LABORATORY FRAME 
 

For integration in the local coordinate system, a 

Lorentz invariance of 4-momentum volume has to be 

taken into account, that can be written in our notations as 

𝑑3𝑢/𝛾 = 𝑑3𝑢′/𝛾′. The Lorentz transformation of the 

momentum and energy from the local coordinate system 

into the rest frame [24] can be reformulated in our 

notations as following, 

 

𝑢𝑘 = 𝛾0𝛾′𝑉𝑘 + 𝑢𝑘
′ + (𝛾0 − 1)

𝑉𝑘𝑉𝑗

𝑉2
𝑢𝑗

′,                  

𝛾 = 𝛾0 (𝛾′ +
𝑉𝑗𝑢𝑗

′

𝑐2 ).                            (20) 

 

     Relations in Eq. (20) are precise. However, below we 

will apply a weakly relativistic approach with respect to 

𝑉; see Eq. (4). In the local frame, where𝑉 ≠ 0, the 

moments get an additional contributions related to the 

mean flow, which are accounted in the weakly relativistic 

approach, neglecting the terms of order 𝑉3/(𝑐2𝑢𝑡𝑒),      

   𝑉4/(𝑐2𝑢𝑡𝑒
2 )  and above.  

It is convenient to represent all moments as a sum of 

two parts: “quasi-classical” contribution and the term of 

purely relativistic correction that completely disappear in 

a non-relativistic limit 𝑐 → ∞. Thus, it was found more 

appropriate to group the relativistic correction terms with 

the formal factor 1/𝜇.  

Direct integration of Eq. (1) requires two lowest 

moments    for     the      local     coordinate        system, 

𝑛𝑒〈1〉 = 𝛾0𝑛𝑒 and 𝑛𝑒〈𝑣𝑘〉 = 𝛾0𝑛𝑒V𝑘 ≡ 𝛾0Γ𝑘, which 

correspond to density and particles flux, respectively. 

Here we accounted that 〈𝑣𝑘
′ 〉 = 0. From that, the 

continuity equation can be obtained, 

 
𝜕

𝜕𝑡
(𝛾0𝑛𝑒) +

𝜕

𝜕𝑥𝑘
(𝛾0Γ𝑘) = 0.                   (21) 

 

Note that formally this equation has exactly the same 

form as in a fully relativistic approach. The weakly 

relativistic expansion Eq. (4) is supposed, but not applied 

directly here for compactness. 

The next equation is the momentum balance that has 

to be obtained integrating Eq. (1) weighed by 𝑚𝑒𝑢𝑘. 

Here, both the momentum and the momentum flux are 

required. It can be shown that the momentum Eq. (10) in 

the rest frame can be represented as 

 

𝑛𝑒𝑚𝑒〈𝑢𝑘〉 = 𝑛𝑒𝑚𝑒(𝑉𝑘 + 𝛿𝑈𝑘
(𝑟)

),               (22) 

 

where the additional term, which has the meaning of 

relativistic correction for momentum per particle of unit 

mass, is 

 

𝛿𝑈𝑘
(𝑟)

=  
1

𝜇
[(

5

2
+ ℛ) 𝑉𝑘 +

1

𝑝𝑒
(𝜋𝑘𝑗𝑉𝑗 + 𝑞𝑘)].      (23) 

 

Here, the hydrostatic pressure 𝑝𝑒 and viscous stress 

tensor 𝜋𝑖𝑗 are given by Eqs. (12) and (13), and the terms 

of order 𝑉3/(𝑐2𝑢𝑡𝑒) and above are neglected. 

Similarly, the flux of momentum Eq. (11) in the rest 

frame can be represented as 

 

𝑛𝑒𝑚𝑒〈𝑣𝑘𝑢𝑗〉 = Π𝑘𝑗 + 𝛿Π𝑘𝑗
(𝑟)

,                 (24) 

 

with the lowest “quasi-classical” term formally 

coinciding with the non-relativistic definition [23], 

 

Π𝑘𝑗 = 𝑝𝑒𝛿𝑘𝑗 + 𝜋𝑘𝑗 + 𝑛𝑒𝑚𝑒𝑉𝑘𝑉𝑗 ,            (25) 

 

while and the correction term is 

 

𝛿Π𝑘𝑗
(𝑟)

=
1

𝑐2 [𝑞𝑘𝑉𝑗 + 𝑞𝑗𝑉𝑘 + (
5

2
+ ℛ) 𝑝𝑒𝑉𝑘𝑉𝑗 +

1

2
(𝜋𝑘𝑙𝑉𝑗 + 𝜋𝑗𝑙𝑉𝑘)𝑉𝑙].                (26) 

 

Using Eq. (23), it may be convenient to rewrite the 

relativistic correction term Eq. (26) as following, 

 

𝛿Π𝑘𝑗
(𝑟)

=
1

𝑐2 [𝑝𝑒𝛿𝑈𝑘
(𝑟)

𝑉𝑗 + 𝑞𝑗𝑉𝑘 +
1

2
(𝜋𝑘𝑙𝑉𝑗 + 𝜋𝑗𝑙𝑉𝑘)𝑉𝑙].                       

(27) 

 

The collisional friction that required for momentum 

balance can also be represented in the similar form: 

 

∫ 𝑚𝑒𝑢𝑘𝐶𝑒𝑖(𝑓𝑒) 𝑑3𝑢 = 𝑅𝑘
𝑒𝑖 + 𝛿𝑅𝑘

𝑒𝑖(𝑟)
,              (28) 

 

with zero-order term equal to that defined in Eq. (14), 

while the relativistic correction is 

 

𝛿𝑅𝑘
𝑒𝑖(𝑟)

=
3𝑉2

2𝑐2 (
𝑉𝑘𝑉𝑗

𝑉2
+

1

3
𝛿𝑘𝑗) 𝑅𝑗

𝑒𝑖 +
1

𝑐2
(𝑉𝑘𝑃𝑒𝑖 + 𝐹𝑘𝑗

𝑒𝑖).    (29) 

 

Taking into account the terms, given by Eqs. (22-29), 

the momentum balance equation can be written as 

follows, 

 
𝜕

𝜕𝑡
[𝑛𝑒𝑚𝑒(𝑉𝑘 + 𝛿𝑈𝑘

(𝑟)
)] +

𝜕

𝜕𝑥𝑗
(Π𝑘𝑗 + 𝛿Π𝑘𝑗

(𝑟)
) = 

= 𝑒𝑛𝑒𝐸𝑘 +
1

𝑐
[𝑱 × 𝑩]𝑘 + 𝑅𝑘

𝑒𝑖 + 𝛿𝑅𝑘
𝑒𝑖(𝑟)

.             (30) 

 

Here, 𝑱 = 𝑒𝑛𝑒𝑽 = 𝑒𝑛𝑒(𝑽𝑒 − 𝑽𝑖) is the electron electric 

current that corresponds to the mean flow. 

The lastshould be the energy balance equation, which 

should be obtained by integrating kinetic equation 

weighted by kinetic energy 𝑚𝑒𝑐2(𝛾 − 1). Processing as 

above and taking into account Eq. (7), we obtain 
 

𝑛𝑒𝑚𝑒𝑐2〈𝛾 − 1〉 = (
3

2
+ ℛ) 𝑝𝑒 + 𝑛𝑒

𝑚𝑒𝑉2

2
+ 𝛿ℰ(𝑟),  (31) 
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with, respectively, 

 

𝛿ℰ(𝑟) =
𝑉2

𝑐2 (
5

2
+ ℛ) 𝑝𝑒 +

1

𝑐2 (𝜋𝑘𝑗𝑉𝑗 + 𝑞𝑘)𝑉𝑘.       (32) 

 

Additionally, comparing Eq. (32) and Eq. (23), one can 

find a useful relation, 

 

𝛿ℰ(𝑟) =
1

𝑐2 𝑝𝑒𝛿𝑈𝑘
(𝑟)

𝑉𝑘 .                      (33) 

 

Here, the standard rule of summation over the repetitive 

indexes is supposed.  

In the same way, the energy flux can be obtained, 

 

𝑛𝑒𝑚𝑒𝑐2〈(𝛾 − 1)𝑣𝑘〉 = 𝑄𝑘 + 𝛿𝑄𝑘
(𝑟)

,                   
 

where “quasi-classical” part formally coincides with the 

classical definition, 

 

𝑄𝑘 = 𝑞𝑘 + (
5

2
+ ℛ) 𝑝𝑒𝑉𝑘 + 𝜋𝑘𝑗𝑉𝑗 + 𝑛𝑒

𝑚𝑒𝑉2

2
𝑉𝑘, (34) 

 

while the term of pure relativistic correction is 

 

𝛿𝑄𝑘
(𝑟)

=
2𝑉2

𝑐2 [(
5

2
+ ℛ) 𝑝𝑒𝑉𝑘 +

1

2
(

𝑉𝑘𝑉𝑗

𝑉2 + 𝛿𝑘𝑗) 𝜋𝑗𝑙𝑉𝑙 +

   
3

2
(

𝑉𝑘𝑉𝑗

𝑉2 +
1

3
𝛿𝑘𝑗) 𝑞𝑗].                                       (35) 

 

Note that the terms proportional to 𝑚𝑒𝑉2/2 in Eq. 

(31) and Eq. (34), which are related to the mean flow 

kinetic energy, can be excluded from the energy balance 

by simple manipulation and using the continuity equation 

Eq. (21). After that, the energy balance equation would 

describe only the balance of internal thermal energy.  

The last term to be considered is the collisional 

energy exchange, which can also be written as follows, 

 

∫ 𝑚𝑒𝑐2(𝛾 − 1)𝐶𝑒𝑖(𝑓𝑒) 𝑑3𝑢 = 𝑃𝑒𝑖 + 𝑅𝑘
𝑒𝑖𝑉𝑘 + 𝛿𝑃𝑒𝑖(𝑟),  (36) 

 

where𝑃𝑒𝑖 is given by Eq. (18) with classical part given 

by Eq. (19), 𝑅𝑘
𝑒𝑖is given by Eq. (14), and the correction-

term to relativistic flow is 

 

𝛿𝑃𝑒𝑖(𝑟) =
2𝑉2

𝑐2 [𝑃𝑒𝑖 + 𝑅𝑘
𝑒𝑖𝑉𝑘 + 𝐺𝑘

𝑒𝑖𝑉𝑘 +
𝑉𝑘𝑉𝑗

𝑉2 𝐹𝑘𝑗
𝑒𝑖].  (37) 

Here, 𝐺𝑘
𝑒𝑖 and 𝐹𝑘𝑗

𝑒𝑖 are given by Eqs. (15) and (16), 

correspondingly. 

Finally, taking into account the terms, given by Eqs. 

(31)-(37), the equation for the balance of thermal energy 

can be written in the following form: 

 
𝜕

𝜕𝑡
[(

3

2
+ ℛ) 𝑝𝑒 + 𝛿ℰ(𝑟)] +

𝜕

𝜕𝑥𝑗
(Q𝑘 + 𝛿Q𝑘

(𝑟)
) = 

= 𝐽𝑘𝐸𝑘 + 𝑃𝑒𝑖 + 𝑅𝑘
𝑒𝑖𝑉𝑘 + 𝛿𝑃𝑒𝑖(𝑟).                          (38) 

 

The equations Eqs. (21), (30), and (38) describe the 

collisional relativistic hydrodynamics, derived in the 

mixed approach, fully relativistic for the thermal 

electrons and weakly relativistic for the mean flow. 

 

 

 

FURTHER STEPS 
 

Since the final transport equations require, as in the 

classical treatment, a knowledge of only the few first 

moments and only in the rest frame, it is necessary to 

make a closure of the model. Here we will draw only the 

preliminary sketch of such closure, which itself is beyond 

the scope of the present paper.  

The first step is to formulate and solve a linearized 

kinetic equation with thermodynamic forces on the right-

hand side (gradients of plasma parameters and electric 

field). As it was shown in [25], where the relativistic 

effects in radial neoclassical fluxes for the toroidal 

systems were considered, the most adequate method for 

solving the linearized relativistic kinetic equation is to 

represent the solution in the form of a series of the 

generalized Laguerre polynomials of order 𝛼 = 3/2 +
ℛ. For the low temperature limit, 𝑇𝑒/𝑚𝑐2 → 0, this 

representation comes to the classical form with the 

Sonine polynomials.   

As a final step, we need to calculate the necessary 

moments of the distribution function using the obtained 

solution. To make the results most transparent, the 

obtained moments can be expanded into a 1/𝜇 series, 

retaining only the first relativistic correction term. 

 

CONCLUSIONS 
 

In this paper, the relativistic hydrodynamics of 

collisional hot plasmas is considered. Equations for first 

moments are obtained, which allow us to create a 

numerical transport model for the study of astrophysical 

and fusion hot plasmas.  

The main point of the model is the use of “mixed” 

approach, when plasma electrons are described in fully 

relativistic approach and mean plasma flow is considered 

in weakly relativistic approach.  

The equations obtained in the paper have been written 

in a form convenient enough for implementation of the 

relativistic approach into the transport codes which so far 

are based only on the classical approach. Such 

modification is necessary for the development and 

predictive investigation of the fusion reactor scenarios 

with hot plasmas and relativistic electrons. 
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РЕЛЯТИВІСТСЬКІ РІВНЯННЯ ЛОКАЛЬНОЇ ГІДРОДИНАМІКИ З ПОВІЛЬНИМИ 

ПОТОКАМИ 
 

І. Марущенко, М.О. Азарєнков 

 

     Отримано релятивістські рівняння локальної гідродинаміки для плазми лабораторного термоядерного 

синтезу. Релятивістські ефекти у фізиці транспорту електронів проявляються насамперед через макроскопічні 

особливості релятивістської термодинамічної рівноваги, яка задається функцією розподілу Максвелла-

Ютнера, а характерна швидкість течії плазми є суттєво малою: 𝑉 ≪ 𝑣𝑡𝑒 < 𝑐. Запропоновано підхід, у якому 

електрони плазми вважаються повністю релятивістськими, а гідродинамічна течія розглядається у 

слабкорелятивістському наближенні. Для зручності отримані релятивістські ефекти розділено між 

«квазірелятивістськими» членами, які в нерелятивістській межі збігаються з відомими виразами, та повністю 

релятивістськими членами, які зникають при 𝑐 → ∞. Розглянутий змішаний підхід може бути корисним при 

побудові транспортних моделей для чисельних досліджень як астрофізичних об'єктів, так і плазми гарячого 

термоядерного синтезу. 


