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The Bateman-type variational formalism
for an acoustically-driven drop

By employing the Clebsch potentials, the Bateman-type variational formulation for a drop levitating in an acoustic
field is proposed when both fluids, liquid drop and external ullage gas, are barotropic, inviscid, compressible and admit
rotational flows.
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Idea of the present paper comes from [1, 2] whose objects are two oscillating compressible ideal baro-
tropic fluids when an acoustic vibrator is located in one of them to both generate a high-frequency
acoustic field and govern the interface motions. Physically, these two papers deal with an acoustical
positioning of a large liquid mass (volume) in microgravity conditions and an acoustically-levitating
drop, respectively. Irrotational fluid flows are assumed that made it possible to show how to de-
rive the corresponding free-interface boundary value problem based on hydrodynamic variational
principles of Hamilton-Ostrogradskii’ and Bateman’s types. Specifically, the Hamilton-Ostrogradskii
principle requires a kinematic constraint but the Bateman’s ones derive the complete free-interface
boundary value problem. The latter fact makes the Bateman-type principles of especial interest as
being important for the multimodal modelling in the liquid sloshing dynamics and, through separa-
tion of fast and slow times directly in the action, for deriving a quasi-potential energy functional of
the so-called vibro-equilibria, which are time-averaged interfaces between the two fluids that differ
in the considered cases from capillary interface shapes governed by gravitation and surface tension.

Assuming rotational flows for acoustically-levitating drops can be important due vortices in
fluids and/or rotation of the liquid drop itself [3, 4]. This assumption requires a generalization of
the Bateman-type variational principles like it has recently been done in [5] for the liquid sloshing
problem. Such a generalization is proposed in the present paper.

Throughout the forthcoming text, two compressible barotropic fluids with, possibly, rotation-
al flows, external ullage gas Q, (t) and liquid drop Q, (), are considered in the inertial Oxyz co-
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ordinate frame as illustrated in Fig. 1. Here, 2(t) denotes the unknown a priori interface between
fluids defined implicitly by the equality Z(x, y, z,t) =0 and the prescribed surface S(¢) bounding
the ullage gas whose vibrational motions are described by the equality Y (z, y, z,t) =0, where Y is
the prescribed function. The outer normal vectors n are determined by —VZ/|VZ| on X(t) and
-VY/|VY |on S(t), respectively.

The two fluids are compressible with densities p, (x, y,z) and p, (x, y,z), so that the mass
conservation

[ pdo=M; i=12 (1)
Qi

can be treated as geometric constraints; U (x, y,z)=-g-r, r =(x, ¥, z) is responsible for the grav-
ity field.

The velocity fields in Q,(t) are (non-uniquely [3]) governed by the Clebsch potentials
0, (x, y,2,t), m;(x, y,2,t),and ¢, (x, y,2,t),i=1,2 as follows

v, =V, +mV¢;. (2)

Based on [6, p. 47], the following Bateman-type Lagrangian is introduced

2
1
L(p;s @51y, 01 Z) ==Y I p;[0,9; +m;0,9, +5|vi|2 +U +E; (p;)]dQ, (3)
ilei (t)

where E, (p;) is the inner energy of the barotropic fluids for which the pressure is postulated by

P =piEi(p)).- (4)
The Lagrangian (3) yields the action

t, 2
Wp;, ¢ m;, 0, Z) = J.Z [L(p;>@;m;, 0, 2) — ;M ]dt for t, <t,, (5)

ty i=1

where p, =p, (t) are the Lagrange multipliers caused by
the geometric constraints (1). The action (5) is a func-
tion of the fluid densities, the Clebsch potentials and the
instant free-interface shape. The zero first variation of
the action (5) by p;, ¢,,m;, ¢,, and Z should derive the
free-interface boundary value problem, which describes
behaviour of the two fluids due to prescribed vibrational
motions of S(t).

Remark 1. In contrast to the Bateman-type variational
formulation for irrotational flows [1], the acoustical vi-
brator cannot be determined via the Neuman boundary
condition on a fixed gas box surface with anppropriate in-
tegral in the Lagrangian (3). One should instead introduce  Fig. 1. Schematic sketch of a levitating drop
the moving surface S(t). and introduced notations
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Henceforth, we assume that the Clebsch potentials are smooth functions in Q, (t)\_Q,(t).
This implies in particular that these functions can be analytically continued through the smooth
interface ¥(t). Using the calculus of variables, specifically, the Reynolds transport and divergence
theorems [7, Appendix A], makes it possible to establish the following propositions.

Lemma 1. Under the smoothness assumption above, the zero first variation condition

8(piW =0  subjectto o0, |t1’ ) =0 (6)
is equivalent to the continuity equation
atpi +V- (pivi) =0 in Q,‘ (t), (7)
and the normal-velocity conditions
0,Z 0,Y
v, on=-— on X(t a)y, vn=——~—on S(t b). 8
; vZ] (t) (a) | VY] (t) (b) (8)

The proof is based on the following derivation line with substituting the second condition of (6):

2 b
[ | pil0,50,+v,-V(3¢,))dQdt =
izltlQi(t)

th 2
=IZ % _[ P;5¢,dQ— I 3¢;[0,p; +V - (p;¥;)1dQ+
Q

=1 ; () Q)

; 0,7 0,Y
+(=1)" | p; {t—+vi -n}&pidS}+ p {t—+v -n}&p dsdt.
4,7z Sl

Lemma 2. Under the smoothness assumption above, the zero first variation condition

5, W=0 )
is equivalent to the equations

d, ¢, =0,¢, +v,- Vo, =0, (10)

which implies that the Clebsch potentials §; remain constant values during motions of liquid parti-
cles (the vortex lines move with fluids and always contain the same particles).
The proof is based on the expression for this first variation

2 b
S| [ pidm[0,6;+v,-Ve;1dQdt =0.
izltlQi(t)
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Lemma 3. Under the smoothness assumption above and the zero variational condition (6) for
the action [equivalent to (7) and (8)], the zero first variation condition

8¢,W =0  subjectto S0, ‘ =0 (11)
i ity
is equivalent to

dm; =0,m;+v,-Vm, =0, (12)

which has the same hydrodynamic meaning like (10) but for the Clebsch potential m, .
The proof uses is the following derivation line

2 b
S [ pilmd,80, +v, -V (m59,)1dQdt =
=) Q; (t)
ty 2
JZ [ pimdodQ- [ 86,0, (mp,)+V -(mpw,)dQ+(- '[pl [ +, n]&bds s
ti=l Q,-(t) Q(t)
0¥
+S£)p1m1 L VY| +v, -n}S(I)ldet

together with the second condition of (11) and (8) to show that
0, (mp;)+V -(mp,v;) =m;[0,p; +V -(p,v))]+p; [O,m; +v,;-Vm,]=0

that, accounting for (7), deduces (12).
Lemma 4. Under the smoothness assumption above, the zero first variation condition

5, W =0 (13)

is equivalent to the equality
I, e ' .
0,9, +m,0,0, +E|v,.| +U+E, (p;)+p,E; (p))+1,; (1) =0 in Q(t), (14)
which can be treated as the Bernoulli equation (Lagrange-Cauchy integral) of the Euler equation

dtviz(’}tviJrvi-Vvi:—VU—i in Q) (15)
provided by (9), (11) and definition (4).

The proof of (14) becomes obvious after taking the variation of (5) by p,. To prove (15), one
should apply the gradient operation to equality (14) and definition (4). The second application
yields the derivation line

Vb _

i

[2E, (p;) +p;E; (p,)IVp; = VIE, (p;) +p;E; (p;)].
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Furthermore, the left-hand side of (15) can be re-written as follows

dv,=d (Vo, +mV¢,)=[V0,p, +mV0o,p, +0,mVe, ]+ {v,-V(Vo,+mV¢,)} =

v;VV@,+mv;-VVo,+V; (Vim;-v;)

=V0,9; +mNO0,p, +v,-VV@, +myv,VV, + V¢, [dm,] (16)
and, applying the gradient operation to the first three quantities in (14) gives

V(@t(pi +mdyd,+- |2j —[VO,; +mVo,0; + 0,0,V m;]+ v,V Vo, +

+my; - VV, +Vm, (Vo, -v,) =V0,0, + mNV0,d, +v,VVo, + mv, -VV§, + Vm,[dd,]. (17)

The right-hand sides in (16) and (17) are identical provided by (10), (12) following from the
zero-variation conditions (9) and (11).
Lemma 5. Under the smoothness assumption above, the zero first variation condition

5,W=0 (18)
is equivalent to the interface condition

P2,y + 0,y 4w+ U+ B (p) 1y ()=

=, 10,0, +m,0,0, +%|v2|2 LU+E (p,) 1, (8)] on I(t), (19)
which is the same as the traditional dynamic interface condition

Py =p, on X(t) (20)

provided by (6), (9), (11) and definition (5).
Proof. Equality (19) obviously follows from the zero-variation condition (18) by Z:

b2

_J.Z j )pi [0,¢; +m;0,¢; +%

1 i=1Q; (¢

(-1)'8Z
|VZ]

In order to deduce (20), one should note that definition (5) and Bernoulli equation for barotropic
compressible fluids (14) derive

2 +U+E; (p;)+u; ()]

dQ =0.

Vi

1
p;[0,¢; +m;0,0, +5|,,i|2 +U+E, (p,)+1,; ()] =-p,

provided, according to conditions of the Lemma 4, by (6), (9), (11).
Summarizing the Lemmas 1-5 shows that the Bateman-type variational formulation derives
a free-interface boundary value problem on a drop oscillating in an acoustic field excited by pre-
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scribed vibrations of the box surface S(t) as shown in Fig. 1 by consequently applying the neces-
sary condition (6), (9), (11), (13), and (16) to the action (5). The main result can be formulated as
the following theorem.

Theorem 6. Under the smoothness assumption above, the zero first variation of the action (5),

BW =8, W +3,, W +8, W+8 W +5,W =0 subject to 8, |, =0 and 8¢,| =0,

1y
is equivalent to the free-interface boundary value problem on acoustically-driven liquid drop Q, (t) in ul-
lage gas Q, (t) for a prescribed vibration of the gas box on S(t). The differential boundary value problem
consists of the continuity equations (7) in fluid domains, the kinematic boundary condition (8a) on the
interface and the ‘vibrating box surface’ condition (8b), the Bernoulli equations (14) (alternatively, the
Euler equations (15)) in fluid domains, the dynamic interface condition (20) on the interface as well as
the vortex line conditions (10) and (12) provided by the definitions of pressure (5) and velocity fields (2).

Conclusions and discussion. By using the Clebsch potentials, the Bateman-type variational
formulation from [1, 2] can be generalised for barotropic fluids to the case of rotational fluid flows.
The free-interface boundary value problem derived from the Bateman-type variational formula-
tion not necessary has a unique solution. One should then consider viscous fluid flows.

The author acknowledges the financial support of the National Research Foundation of Ukraine
(Project number 2020.02/0089).
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BAPIALIIMHNIM ®OPMAJII3M TUITY BEUTMEHA IJI51 AKYCTUYHO KEPOBAHOI KPATI/II

Bukopucrosyroun notennianyu Kreba, mpononyerbces Bapianiiiae GpopMynoBaHHA TUITYy beliTMeHa 11 Kparui,
110 JIEBITY€ B aKyCTUYHOMY IO/, KOV OOMABI PiAMHY, Kpamis PifMHM Ta 30BHIIIHIN ra3 € 6apOTpONHUMI,
HeB A3KMM, CTVC/IVBYMIU Ta JJOITYCKAIOTh BUXOPOBi PyXIL.

Kniouosi cnosa: siapiayiiinuii npunyun betimmena, nomenuyianu Knebwa, akycmuuna negimauis.
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