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In this paper we present modification of coupled integral equations method (CIEM) for calculating the characte-
ristics of the accelerating structures. In earlier developed CIEM schemes the coupled integral equations are derived
for the unknown electrical fields at interfaces that divide the adjacent volumes. In addition to the standard division
of the structured waveguide by interfaces between the adjacent cells, we propose to introduce new interfaces in
places where electric field has the simplest transverse structure. Moreover, the system of coupled integral equations
is formulated for longitudinal electrical fields in contrast to the standard approach where the transverse electrical
fields are unknowns. The final vector equations contain expansion coefficients of the longitudinal electric field at
these additional interfaces. This modification makes it possible to deal with a physical quantity that plays an impor-
tant role in the acceleration of particles (a longitudinal electric field), and to obtain approximate equations for the

case of a slow change in the waveguide parameters.
PACS: 02.10.Yn; 29.20.—c; 84.40.Az

INTRODUCTION

The main characteristic of the slow-wave accelerat-
ing structures is the distribution of the electric field in
both steady state and transient modes. This imposes
certain restrictions on the methods of calculating their
characteristics, manufacturing and tuning. The slow-
wave accelerating structures mainly belong to the class
of structured waveguides' — waveguides that consist of
similar, but not always identical, cells (disk-loaded wa-
veguides (DLW), chains of coupled resonators, etc.).

One of the effective approaches for calculating the
characteristics of structured waveguides is the coupled
integral equations method (CIEM) [1 - 5].

Based on a system of coupled integral equations, an
approximate method [6] is constructed for calculating
the characteristics of structured waveguides with slowly
varying dimensions [7]. It is the analog of classical Ei-
konal and WKB methods with taking into account not
only propagating waves, but also evanescent ones. The
advantage of this approach is the simple physical (but
not simple mathematical) interpretation of obtained eq-
uations and their solutions. This approximate method
was used to study the characteristics of the simplest case
of structured waveguide — a DLW with very thin diaph-
ragms [6, 7].

Analysis of the standard method of coupled integral
equations for studying the characteristics of DLWs with
real geometry showed that some modifications of the
standard approach can be useful.

In this paper we present such modification of
coupled integral equations method for calculating the
characteristics of the accelerating structures. In earlier
developed CIEM schemes the coupled integral equa-
tions are derived for the unknown electrical fields at
interfaces that divide the adjacent volumes. Usually

" Accelerating structures on the base of waveguides
with dielectric can be smooth
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these interfaces include geometrical singularities, such
as sharp edges. In this case it is needed to use special
basis functions.

In addition to the standard division of the structured
waveguide by interfaces between the adjacent cells, we
propose to introduce new interfaces in places where
electric field has the simplest transverse structure.
Moreover, the system of coupled integral equations is
formulated for longitudinal electrical fields in contrast
to the standard approach where the transverse electrical
fields are unknowns. The final vector equations contain
expansion coefficients of the longitudinal electric field
at these additional interfaces. This modification makes it
possible to deal with a physical quantity (longitudinal
electric field), which plays an important role in tuning
accelerator structures and particle acceleration, and to
obtain approximate equations for the case of a slow
change in the waveguide parameters

1. ACCELERATING STRUCTURE MODEL.
BASIC EQUATIONS

Consider a segment of DLW (circular corrugated
waveguide), the geometry of which is shown in Figure.
The right and left ends of segment are connected to
semi-infinite circular waveguides. All segment volumes
are filled with dielectric (& =¢'+ig", " >0). We
divide the DLW into subregions each of which is a cir-
cular waveguide. Unlike earlier works [1 - 3], we divide
each volume with large cross-section into two equal
subvolumes (in general, they can be different). Volumes
with large cross section will be numbered by the index
k (1£k<Ng,), subvolumes — by &k and &,
( k, =k, =k ). A small cross-sectional volume placed

to the left of a large cross-sectional volume with an in-
dex k, will be numbered by the indexk’

(1<K < (N +1)).
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We will consider only axially symmetric fields with
E_,E,H, components (TM). Time dependence is
exp(—iwt) . Since we are interested in considering acce-

lerating structures, we must remember that it will be
necessary to take into account the beam loading. There-
fore, we will use initial expansions that are slightly dif-
ferent from the standard CIEM approach and give the
possibility to include current into consideration. In each
cylindrical volume (with index ¢ ) we expand the elec-

tromagnetic field electromagnetic field in terms of the
complete orthogonal set of transverse functions
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The system of equations (2) is basic for the study
electromagnetic fields in accelerating sections.

In the semi-infinite waveguides the electromagnetic
field can be expanded in terms of the TM eigenmodes
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Chain of pieces of cylindrical waveguides that is connected with semi-infinite cylindrical waveguides

On the introduced interfaces we represent the elec-
tric fields as series of basis functions

E" (r.d,)= Z Mol (r /by,

(r,0)= Zc“‘z) O (r by, ),
ZQ"‘) O (rin,). (1)

The boundary conditions for electrlc fields at the
junctions are written as
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Using the completeness and orthogonality of Bessel
A A
functions J, (Tmrj and J, (fr], it is easy to find

from (8),(9) coefficients of the left series. It should be
noted that that the boundary conditions (9) contain also
the longitudinal electric fields.

In the standard CIEM approach, the second group of
boundary conditions contains, as a rule, the continuity
of the tangential components of the magnetic field.

H(k [—rj— H““ ( L ], 0<r<b,,
2 2 b Y 10)
SN[ B 0 ) 0cren,
m k m k'+1

Multiplying the right and left sides of this relations
by a testing function y (r / bk) and integrating with

respectto » from 0 to b,, we get such equations

ZH(k ) Ru/(/f K zH(kl)
ZH("” (d,/2)R ZH"‘ (

In our case, it is necessary to add additional condi-
tions for the continuity of the tangential components of
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the electric field at the interfaces in the middle of vo-
lumes of large cross section
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We will consider the case when the dimensions of
two semi-infinite waveguides are chosen such that only
the dominant mode TM,, propagates, and the higher-

order modes are all evanescent We will suppose that
there is an incident wave that travels from z = —oo with

amplitude G =1 (G" =0, 5>2).

Using the standard CIEM technique, we obtain such
system of vector equations
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where C" and C® are the expansion coefficients of
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the electric field tangential components at the left and
right interfaces between the DLW and the semi-infinite
waveguides. Z, (with different superscripts) are “cur-

rent” integrals that equal zero if current is absent. T,

(with different superscripts) are such matrices
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Amplltudes of the eigen waves in the semi-infinite
waveguides are determined by the expansion coeffi-

cients C* and C'®
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For the numerical solution of system (13), it is ne-
cessary to limit the number of basis and testing func-

", 0w, We suppose  that
o (r)=0,p,(r)=0, s>N,,  ¢?(r)=0,5s>N_.
Then we will have such sizes of defined matrices:
T/(l,k’) T!(Z,k') ) T(l,k',k)

A,x1b,, )xdx .

tions will

are N, xN, matrices,

N_xN, matrices, T{ )area N_xN, matrices, 77 are

m,s

N, xN_ matrices.

2. INFINITIVE UNIFORM DISK LOADED
WAVEGUIDE

To demonstrate the difference between the standard
and the proposed approaches, consider an infinite ho-
mogeneous disk-loaded waveguide without current
(b.=a,d,=t,b,=b,d, =d).

If we omit the presence of boundaries for the uni-
form segment, we obtain from (13) the equations that
describe such waveguide. These difference equations in
the matrix form are written as

(Tf(2) + T(Z) )C(/ﬂ) — T'(I)C("zfl) _T(I)Q(k)
(T’(z) LT )Cum = 7Ok 4 7O o®
T?’c(kz) _Trc(kl) + TZQ(k) =0

(16)

where 7 (with different superscripts) are complex ma-
trices, C* e C"*, 0" e C* — complex vectors.

Excluding C*’ and Q% from (16), we get the
standard matrix difference equation [4,5]

TC®) = TH W L FO k=D (17)

We supposed that all matrices are invertible. The
e C""¢ is defined by the
number of basis functlons goj”(r/bk,) inthe E, expan-
sion (6).

The difference equation (17) is not symmetric

( T % TH) as it includes only vectors that describe the
fields on the left side of the volumes with large cross
section. These fields have a different “interaction” with
right and left neighbors. The absence of symmetry

size of matrices T T

ISSN 1562-6016. BAHT. 2022. Ne3(139)



makes it more difficult® to apply a transformation [8, 9],
which gives simple method of finding Floquet coeffi-
cients and possibility to use the WKB approach [6, 7].

Eliminating C*’ and C"*’ we can transform (16)
into a symmetric difference equation (—co <k <)

0" =0+ 0", (18)

where

-1 -1

i {(Trm +T2) =7 (7 +T‘2’)_1 T’“)} y
Fe
PRy 1)
X{TZ +21" {(T"Z) +72) -0 (1 17’ T"”}il 7*“}.

The size of matrix 7 € C**" is defined by the
number of basis functions ¢* (r/5,) in the E, expan-
sion (7). The E, expansion (6) contains N, basis func-

tions ¢!”

(r/b, ). Such approach gives possibility to
improve the accuracy of E, representation (to increase
N, ) without increasing the size of matrix T (N). It

should also be noted that matrix 7' is not Hermitian.
Using the transformation [6, §]

Q(k) — Q(k’l) +Q(k,2)’

0% = MO 4 YDk, (20)
where
(TM(” - M2 —1) =0, 1)
we get (i=1,2)
QW) = (O QnD 22)

It can be shown that in our case’ the matrix 7 is
non-defective, and can be decomposed as

T=U60U", (23)
where U is the matrix of eigen vectors U, and
0O =diag(6,,0,

Then the solutions of quadratic matrix equations
2l)yare (i=1,2)

MO =UAYU", (24)
where A" =diag(4",2",..) and 1 are the solu-
tions of the characteristic equations

A =047 +1=0,

,...), 8, — eigen values.

A0 =6 12+(6,/2) 1, (25)

A7 =6,12-\(6,/2)" -1
The matrices M'” have the same eigen vectors,
therefore they are commutative. As 1”1 =1, the
matrices M satisfy the condition MM @ =1 . We
will suppose that ‘Re(/lf” )‘ <1 (‘Re(z’t‘fz)) >1).

2 . . .
Matrix equations, whose solutions are necessary to construct the
WKB equations, become more complicated.

3 The infinitive uniform disk-loaded waveguide has 2N differ-
ent independent solutions (waves).
ISSN 1562-6016. BAHT. 2022. Ne3(139)

Representing the vector O as the sum of two new

vectors 0% and O"? we did not assume that they are
individually solutions to the difference equation (18).
Let us show that when M are chosen as solutions to
Egs. (20), the vectors 0" and Q" are independent
solutions to the equation (18).

If we know the radial distribution of longitudinal
components of electric fields in two consecutive sec-

tions of the waveguide (Q,0") then we can find

vectors 0"V, 0%

0 = (M<2> MO )’1 (M<2>Q<0> —o" ),
(26)
Q(0>2) — _(M(Z) _M(l) )71 (M(I)Q(O) _Q(l) )

To find the solutions of equations (22) with condi-
tions (26) and the conditions at the infinity for all values
of & we have to consider the equations (22) for £ >0
and k <0 separately.

Then the solutions of the difference matrix equations
(22) with taking into account the conditions at the in-
finity are

0% = MMFQOD | k>0,
Q(k,Z) :M(Z)kQ(O,Z)’ k<l.

Vectors O'” and O we can represent as a sum of

27)

eigen vectors (1 =0,1)

0" =>4, .

s

(28)

The matrix 7 is not Hermitian and the vectors U,
are not orthogonal. In this case

A" =3 (U") 0. (29)
Substitution (29) Sinto (26) gives
o0 :(Mm _Mm)’1 Z(ﬂmA(m —A‘”)U, _
(240 - 4)
= Z 210 _ 0 v,
oo (30)

00 = _(Mm _ MO )’1 Z(;LmA@ —A?”)U _

(/1(014(0) —Af”)
= _Z;U .
Y T
Then the solution of the equation (18) takes the form
AP (A0 A — 40

- FamT A)Us,k<1.

A (A0 - ")
ﬂS(Z) _/IS(I)

(2)k 1 4(0) ©]

/15 (/li’s As _As )
2) ©]
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A (2040 4)
D R

U, k=01, (31)

Q(/f) — 2

U, k>1.

For the case when Q0 =U, and Q" =2"U, we
have 4" =6 ,, A" =25, and

s,m 2 s
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e [0 k<0 -
AU k=0 .
For the case Q" = 22U,
’ AU k<],
Qb) (k) — ‘m m (33)
0, k>1.

Therefore, the vector sequences A”“U_ can be con-

sidered as forward (i=1) or backward (i=2) eigen
solutions of the equation (18).

It was shown [6], that the vector equation (22) can
be transformed into a difference equations for any com-

ponent of the vector O“” . For a homogeneous wave-

guide these equations have the same form. Therefore, if
we choose basis function that fulfill a condi-

s

A
tion p*’ (O) =1 (for example, J, (?r} ), we can write

a difference equation of the 2N, -order that connects the

values of the electric field £ = Z(Qik’” +Q§k’2)) at

s

different points of the axis » =0, z, =k(d +t)+d /2

L1 1,2 _Tl,N:
- | -T L
det| 2 EVM =0, (34)
-1, N1 -T, N,,2 LNZ

where the operator det is defined on the base of rules of
common determinants

(35)

L=6¢"+6 -T,, &' (6" =p*) and
o (6’1)“‘) = b(k’”) are shift operators. It was shown [6]

that equation (34) does not have spurious solutions as it
was for the equation based on a coupled cavities model
[10].

3. MODIFIED VECTOR EQUATIONS

The system of vector equations (13) can be trans-
formed to a system with only unknowns Q"

T(Q])Q(l) +T(Q2)Q(2) — ZQ(I),

k=2,.,N,, -1,

T(k)Q(k) — T+(k)Q(k+l) +T*(k)Q(/\'*1) + ZQ(k),
T(QNREZ_l)Q(NR[:z’U +T(QNREZ)Q(NREZ) — ZQ(NREZ),

(36)

where the sizes of all 7' matrices are N, xN..
There are additional equations relating Q",0"",

C*,C™ | from which we can calculate the reflection

and transmission coefficients (see (15)). Based on sys-
tem (36), a computer code has been developed. The
results of studying the characteristics of inhomogeneous
DLWs will be presented in subsequent papers.

System (36) is similar to that analyzed in [6] and,
therefore, can be the basis for deriving the WKB equa-
tions.

60

CONCLUSIONS

The presented approach to the description of inho-
mogeneous disk-loaded waveguides can be a useful tool
in studying the properties of slow wave system. Pro-
posed modification of the coupled integral equations
method makes it possible to deal directly with a longi-
tudinal electric field and to obtain approximate equa-
tions for the case of a slow change in the waveguide
parameters.
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MOIU®IKALISI METOAY 3B'SI3AHUX IHTETPAJIbHUX PIBHAHD
JJISI PO3PAXYHKY XAPAKTEPUCTUK TIPUCKOPIOBAJIBHOI CTPYKTYPH

M.1. Aiizaubkuii

TIpencraBneHo Moaudikaiito METOAy 3B'SI3aHUX IHTETPATBLHUX PIBHAHD IUTSI PO3PAXyHKY XapaKTePUCTHK TMPHC-
KOPIOBaJIBHHUX CTPYKTYp. Y paHilie po3poOieHNX cXeMax 3B’si3aHi iHTeTpaibHI PIBHAHHS (POPMYITIOIOTHCS TS HEBi-
JIOMHX €JIEKTPUIHUX TI0JIiB Ha IMMOBEPXHAX PO3ALTY, IO MiJATH CyMiXKHI 00’ emMu. Ha 1omaTok 10 CTaHIapTHOTO TOIi-
Jy CTPYKTYPOBaHOT'O XBHJICBOJIY Ha MEX1 pO3/lTy MK CYCiZIHIMA KOMipKaMH IIPOIIOHYEMO BBECTH HOBI iHTepdeiicu
B MiCLISIX, /i€ SJISKTPUYHE I10JI€ MA€ HAMIIPOCTIIly MonepedHy CTpyKTypy. Kpim Toro, cucrema 3B's13aHHX iHTETpalib-
HHX PIBHSIHb C(OPMYJIbOBaHA JUISl TIO30BXKHIX €JIEKTPUYHUX IOJIiB Ha BiJIMiHY Bl CTaHIAPTHOTO MiJIXO1y, 1€ HO-
HepeyHi eaeKTpruyHi nots HeBinoMi. KiHIeBi BEKTOpHI piBHSIHHS MICTATh KOe(ilieHTH PO3KIaJaHHs I10310BXHbBOTO
CJISKTPUYHOTO T10JIS1 Ha [IMX JI0JIaTKOBUX IOBEPXHsX po3airy. Ll Moandikamis nqae 3mMory Martu cripaBy 3 Gi3sHIHOIO
BEJIMUMHOIO, sIKa BIJIrpae Ba)KIMBY POJIb y NMPHUCKOPEHHI YaCTHHOK (IO3OBXKHE €JIEKTPUYHE II0JIE), Ta OTPUMATH
HaOJIMKEeH1 PIBHSHHS IS BUITAIKY TIOBUIBHOT 3MiHU TTapaMeTpiB XBHIIEBOIY.

MOIUPUKALNS METOJA CBA3AHHBIX MHTETPAJIBHBIX YPABHEHUM
JJISI PACUETA XAPAKTEPUCTHUK YCKOPSAIOIIEU CTPYKTYPbBI

H.U. Aiizaykuii

[IpencraBnena Moan(UKaIUsI METOAa CBA3aHHBIX HHTETPAIBHBIX YPAaBHEHUH A pacdeTa XapaKTepUCTHK YCKO-
PSIONIMX CTPYKTYp. B pa3paboTaHHBIX paHee cXemax CBSI3aHHBIC MHTETIPANIbHBIC YpaBHEHUS (QOPMYITUPYIOTCS IS
HEM3BECTHBIX JICKTPUYECKHUX I0JIeH Ha TpaHMIax pasjienia, paslelsIonux coceanue oObeMbl. B nononnenne k
CTaHJAPTHOMY DPAa3[EeJIEHUI0 CTPYKTYPUPOBAHHOIO BOJIHOBOJA I'paHMLIAMU pa3fesia MeXAy COCEJHUMHU sueliKkaMu
IpeJJIaraeTcsl BBECTH HOBBIE TPAHUIIBI pa3jieNia B MecTaxX, Ie JIEKTpUYecKoe Mojie UMeeT NMPOoCTeiliyto nonepey-
HYIO CTPYKTYpy. Kpome Toro, cucrema CBA3aHHBIX WHTCTPAIBHBIX ypaBHCHHU (opMyInupyeTcs IUisl MPOIOJIbHBIX
3IEKTPUYECKUX MOJEH B OTIMYNE OT CTAHAAPTHOTO MMOIX0Ma, KOTa IOTIePEYHBIE dJIEKTPUIESCKHE TIOISI HEN3BECTHEI.
OxoHYaTeNbHbIC BEKTOPHBIC ypPaBHEHHS COAEpKAT KOI(D(UIIMEHTHI pa3ioKeHUs MPOIOJIBHOTO 3JICKTPHUECKOTO
TIOJISL Ha THUX JOMOJHHUTENBHBIX TPaHHUIaX pas3zena. JTa MOAN(HUKAIS MO3BOISIET ONEPHUPOBATh C (PU3UIECKOH Be-
JMYUHOHN, UTPAIONIEH BaXKHYIO POJIb B YCKOPEHHUH YaCTHI] (TIPOJOIBHBIM YJIEKTPUIECKAM II0JIEM), U TIOTyYUTh TpH-
OmKEeHHBIE YpaBHEHUS [UIA CITydasi MEeIJICHHOTO U3MEHEHHUS TapaMeTPOB BOTHOBO/IA.
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