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INTRODUCTION 
It can be stated that the processes of simulation in 

different fields of physics are presently in the forefront 
of their claim. In this case the emphasis is on the nu-
merical simulation which really performs well. In the 
electromagnetic field theory they are obtained, in par-
ticular, owing to the finite set of the strongest method’s 
such as the moments method, averaging technique, ele-
mentary boundary, surface integral equations, boundary 
elements, Galerkin or Galerkin-Petrov method etc. [1]. 
But these results, nevertheless, are mainly concerned, on 
the one hand, only with the quantitative description of 
the considered processes and, on the other hand, they 
are simply little efficient in case of three-dimensional 
problems. But the analytical or semi-analytical methods, 
the integral equations methods being among them [2] 
making it possible to give a general picture of the phe-
nomenon as a whole regardless of the problem dimen-
sionality, less claimed at present continue to give the 
qualitative description. 

Magnetohydrodynamics (MHD) non-uniformities 
representing a good theoretical model for description of 
diffraction phenomena of the real structures occurred in 
practice are considered in this work on its basis. It is 
possible to single out two fundamentally different direc-
tions of investigations into the MHD wave scattering on 
non-uniformities of plasma and magnetic field densities 
and plasma flow density around these non-uniformities 
with respect to their possible applications. On the one 
hand, they are MHD phenomena taking place in the 
ionosphere of the Earth and planets, in the atmosphere 
of the Sun, in the interplanetary and interstellar plasma 
and the phenomena directly associated with investiga-
tion into collapsing masses magnetic field, superstars 
nature etc. [3]. It becomes evident just here that, in con-
sequence, the MHD non-uniformities appear when con-
tacting with non-equilibrium processes giving rise to the 
anomalies in ionization distribution. On the other hand, 
these are phenomena connected with different tech-
niques, in particular, with the laboratory plasma units. It 
is important both when investigating propagation of 
high-frequency plasma instabilities in great linear accel-
erators, and in the problems of resonance structures ap-
plication to electrons acceleration etc. [4]. 

As it is well known the MHD description of plasma 
is of particular interest for the phenomena where the 
electric field can reach great values. This can be associ-
ated both with the polarization phenomena, and the in-
duction processes induced by fast variable magnetic 
fields. Their interaction with plasma is more conven-
tionally described in terms of the magnetic hydrody-
namics where the magnetic field intensity is assumed to 
be the primary value and the electric current and electric 
intensity are considered to be the secondary ones. 

Due to the magnetic field fluctuation the complete 
MHD field can have a strong non-uniformity distribution, 
in particular, this is supported by the observations per-
formed on the space plasma. i.e., the regions of the rela-
tively weak intensity alternate with the regions character-
ized with strong field concentrations (non-uniformities) 
in the form of layers, bunches, ellipsoids etc. This is well 
simulated in the approximation of the ideal magnetic hy-
drodynamics. High-frequency oscillations in the consid-
ered non-uniformities can form resonator structures simi-
lar to dielectric resonators in electrodynamics and this 
phenomenon is of special interest as a great deal of en-
ergy can be stored up in the resonance structures. 

The need for “establishing a proper contact between 
the theory on the one hand, and an experiment or an 
observation on the other hand” (G. Alfven [5]) remains 
one of the most important and still the most difficult 
problems of investigation into the MHD outer space. 
Pointing out the experimental investigation limitations 
and great theoretical difficulties it can be assumed that 
further progress in this field will depend on the correctly 
constructed MHD models. These models must describe 
experimental investigations the most closely. Here again 
the importance of mathematical simulation for our ob-
ject of investigation should be stressed. At first it is 
meaningful to consider a simple model of the MHD 
non-uniformity allowing to obtain a rigorous analytical 
solution and only then to make the model more realistic 
adding to it successively newer effects. Thus, a simple 
MHD model and complicated numerical calculations 
will be able to complement each other when developing 
a realistic MHD model [6 - 21]. 

A sphere can be one of such simplest non-
uniformities, this model admits the detailed theoretical 
investigation and the possibility of the experimental 
checking under laboratory conditions. 
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1. GENERAL INTEGRAL STATEMENT  
OF THE MHD BOUNDARY-VALUE 

PROBLEM 
Let us consider the general case of the boundary-

value MHD problem when small perturbations in the 
plasma medium interpreted as a magneto hydrodynamic 
one is described by the state vector. The state vector 
   )t,(),t,(),t,(t, rrbrur  


– represents the totality 

of velocity )t,( ru , magnetic )t,( rb  field and density 
)t,( r  deviation from their no perturbed values 

21,iiii ,,, BU , assigning the MHD media (internal and 
external ones). 

Let us assume that some non-uniformity (geometri-
cally uniform domain) assigned by the parameters 

22222 SA V,V,,, BU , has the volume )t(V , depending 
on time in the general case. Let the considered non-
uniformity be placed in the unlimited MHD medium 
characterized by the parameters 11111 SA V,V,,, BU , re-
spectively, till its perturbation with the incident field 
which is assigned by the corresponding state vector 

   .)t,(),t,(),t,(t, rrbrur 0000  


 

Here 
i

i
Ai

BV
4

  is the Alfven and 
d

dpVSi   ( p – 

pressure) is the sound velocity of the internal  2i  and 
external  1i  media. 

Then the equation can be represented in the form of 

the convolution of 
^

G  and W  functional relative to the 

state vector  t,r

  [6]:  

       ,t,tt,
^

t,t, rWrrGrr 
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
 0           (1) 

i.e. the integral operation of the form:  
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^
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Here in terms of the diffraction theory  t,r0

  is 

the state vector of the incident (nonperturbed) field; 
 t,rW  is the discontinuous function written in the 

generalized functions’ class. This function describes 
equally the MHD medium inside and outside the non-
uniformity taking into account boundary and initial con-
ditions; 

 tt,
^

 rrG  is Green’s function of the MHD 
equations of the free space assigned by the parameters 

11111 SA V,V,,, BU , or the fundamental solution of the 
following system of differential equations: 
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In [6] the fundamental solution is obtained and com-
pletely described in the dyadic representation. This repre-
sentation follows naturally from the known fact that any 

tensor may be written as the sum of three dyads. Whereas 
Green function for the given class of problems is the ten-
sor function of two points’ position: the observation point 
 t,r  position and the source point  t, r  position. 

In the general case (1) represents the integral-
differential equation, its type is defined just by the prop-
erties of Green functions. It is easy to derive different 
special cases of the Green function representation from 
the fundamental solution of the general form. Each of 
these functions may turn out to be more preferential 
when solving a concrete problem in practice. The con-
sidered method of boundary problems solution is con-
venient for the problems of volume scattering and MHD 
flow. With this method a modern theoretical model for 
solving self-consistent MHD boundary problems has 
been developed [2]. Naturally the first step in this prob-
lem solution is the analysis of geometric non-
uniformities flow with MHD flux in the steady-state 
case. 

2. STEADY-STATE INTEGRAL EQUATIONS 
OF HYDROMAGNETICS 

In the stationary hydromagnetics the Green function 
assumes rather simple form but peculiar to the hydro-
magnetics in the absence of unperturbed medium move-
ment ( 01 U ) [2]: 

   ,
^

^

R
RG 

 .  (2) 

Here   ,
^

 is the matrix written in the basis 

321 eee ,,  connected with the chosen direction of the 
external magnetic field 1112 B/Bse  : 

 

. 
 

 

(3) 
rrR   is the radius-vector specified by the polar 

coordinates: :, , 20    0 .  
I.e., the stationary Green function has a special fea-

ture of the type 1 rr , and the problem anisotropy is 
emphasized by the basis 321 eee ,,  connected with the 
unperturbed magnetic field. 

In this case having applied convolution properties to 
the integral-differential equation (1) and taking into ac-
count the type of the Green function (2) we will obtain 
the integral equation relative to MHD speedu : 
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Similarly the equation for the magnetic field devia-
tion )(rb  is written. 

One of the integral equations’ (4) peculiarity is that 
they represent a mathematical description of the phe-
nomena with the retarded potentials which describe in-
teraction at the finite distances. In this instance this po-
tential is the velocity potential 

   
)V(

^
d),()( rrrGruru


, and the magnetic field 

potential  
^

( )

( ) ( , ) .b
V

d    r b r G r r r


 According to the 

structure these potentials are similar to the Hertz elec-
trodynamics potential. 

Whereas another peculiarity consists in that the con-
sidered method for boundary problems solution assumes 
essentially not merely reduction of the initial differential 
equations to the integral form (4) or, in the general case, 
to the integral-differential equation (1) (it is always pos-
sible to realize having built the corresponding Green 
function), but to the application of the additional state-
ment, namely, the extinction principle. It is precisely the 
latter that results in a clear simple algorithm of the 
boundary problem solution. And in accordance with this 
algorithm the relations (4) are properly integral equa-
tions only for the internal points of non-uniformity. For 
the external points they represent quadrature formulas 
making it possible to find the external field using the 
internal field found by this time. Hence, it follows that it 
is just the internal problem that represents the greatest 
severity in terms of mathematics. Let us dwell upon its 
analysis. 

3. SPHERICAL MHD NON-UNIFORMITY 
Thus, let us consider the simplest model of the non-

uniformity, namely, a sphere with a radius а. This mod-
el really admits the detailed theoretical investigation (a 
rigorous analytical solution is built for it) and gives the 
possibility to compare theoretical results with the obser-
vations performed under laboratory conditions. Let us 
investigate the integral characteristics of the internal 
field, namely, the potential of velocity: 

   
 
 




V

^

u d
R

,)( rrur 


,   (5) 

where  ,  are polar angles of the radius-vector 
rrR  , and R is the distance between the element 

whose volume is rd  to the observation point r . 
Having assumed to start with that )(ru  is constant 

and the observation point is inside the sphere with the 
volume of (V), let us introduce the spherical coordinate 
system with the center in the observation point. Then 
the integral (5) is easily reduced to the form: 

     
  0

r uI(r I r
R

€), , d d ,    


    


 (6) 

where d  is an element of the sphere area   , R is a 
radius-vector of the points on the surface limiting the 
volume (V). In this case the Cartesian coordinates of the 
sphere surface points may be expressed using the direc-
tion cosines  ,,  of angles of the radius-vector R  

with its main axes in the following way: 
.Rz,Ry,Rx    

Having performed integration over the whole sur-
face    of the unit radius, we shall obtain as a result: 
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From (7) it is seen that the potential of velocity 
 u r


 analogously true for the potential of the mag-

netic field  b r


 is the second power polynomial of 
the Cartesian coordinates. It immediately follows that if 
the unperturbed field is uniform then the internal field 
of the MHD sphere is also uniform. That is to say, if the 
unperturbed field of velocities is of the form: 

 ozyox u,u,u 00 u ,  (8) 
then the internal field should also be sought for in the 
form of the constant vector: 

 zyx u,u,uu .  (9) 
We emphasize once again that the considered prop-

erty of the field uniformity is well known in electrody-
namics. But the essential dissimilarity of the MHD po-
tentials from the Newton potential for the problems of 
electrodynamics is that these potentials are written in 
the form of a matrix. The matrix is set in the basis 

321 eee ,,  connected with the direction of the unper-
turbed magnetic field 1s . This involves a strong de-
pendence on the direction in relation to the magnetic 
field not only of the internal field but also as a result, of 
the external one. Having written the vector differential 
operations in (4) let us reduce the internal problem of 
finding the field of velocities in the sphere with radius a 
to the linear algebraic equations system: 

 
(10) 

here the following designations are introduced to reduce 

the notation: 
2
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1 
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Let us perform the numerical analysis of the system 
(10) solution, which gives the complete picture of the 
MHD sphere internal field development. In this case 
just the resonant structures are of evident interest. Let us 
analyze, in particular, how the sphere dimensions and 
other medium characteristics act on the resonance or the 
MHD instability rise. 
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As mentioned above, plasma is non-uniform, as a 
rule. And plasma parameters’ fluctuation is one of the 
reasons for the non-uniformities rise. Let us consider the 
MHD sphere as a multiparameter system. We will con-
sider the internal MHD flux velocity as a function of the 
following parameters   2120 ,iiSiAi a,,,B,V,V  suuu , 

where  zyx u,u,uu . Each of the above-listed parame-
ters describes a particular type of non-uniformity. 

Topographical picture of the internal MHD velocity 
variation in two- and one-parametric cases appears as 
follows.  

Fig. 1 shows one-parametric hodograph of the vari-
able vector  uu   of the real parameter 2

1AV  with 
the fixed values of the remaining parameters; it gives a 
pictorial view of variations of the absolute value u  de-
picted by the variable vector itself and of this variation 
velocity with the tangent direction to the hodograph 
curve.  

 а 

 b 
a  







 3/3,3/3,3/32s ; b   0,2/2,2/22 s  

Fig. 1. Topographic curve of the velocity component 
variation depending on the parameter 2

1AV   

Fig. 2 shows two-parametric hodograph of the vari-
able vector   ,uu   of two real parameters 2

1AV  

and constVSS S
VV  2

1

2
2

2
1 , the latter is considered rela-

tive to the level 2
1SV . In the given case we have the sur-

face representing the continuous set of the variable ra-
dius-vector   ,uu   endpoints. 

In the context of our concrete model it is not diffi-
cult to consider development of the module of velocity 

field 222
zyx uuuu   depending on the given above 

parameter   (abscissa axis), i.e. to trace the action of 
different non-uniformity types on the internal MHD 
velocity module.  

Plots of Fig. 3 demonstrate extremums. They can be 
interpreted as a sort of resonances and antiresonances. 
As it is common knowledge the presence of no less than 
two independently varying parameters in the system 
may cause the rise in the geometric resonance.  

 

 а 

 b 
a   3333332 /,/,/s ; b   022222 ,/,/s  . 
Fig. 2. Topographic surface of the velocity compo-

nent variation depending on the parameters 2
1AV , 

constVSS S
VV  2

1

2
2

2
1  

As this takes place, the latter become less expressed 
with the increase in the sphere radius (see Fig. 3,а). 

Let us consider the field quadratic characteristics 
(Fig. 4). 

a b 
Curve A1 –  0,2/2,2/22 s ,  

curve A2 – 






 3/3,3/3,3/32s ,  

curve A3 –  0,1,02 s  
Fig. 3. Dependence of the velocity module  

on the parameter 2
1AV  

 

The radius of the sphere in Fig. 4,а is by an order of 
magnitude greater than the radius of the sphere in 
Fig. 4,b. 

The considered dependence causes new interesting 
effects. On the one hand, in particular, the square of 
velocity can give an idea of the MHD field power char-
acteristics and on the other hand, it can give the possi-
bility to trace the plasma formations instability.  

In this case the increase in velocity is of certain in-
terest. Here, the dependence on the spherical formation 
radius is also clearly traced. 
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 а 

 b 
Fig. 4. Dependence of velocity square 2u  on the  
parameters 2

1AV  (X-axis) and 2
1sV (Y-axis)  

CONCLUSIONS 
Having summarized, we can say that though the 

considered smooth variations of the internal field pa-
rameters of the spherical profile non-uniformity are 
hardly realizable in the real situation but, nevertheless, 
the performed simulation is important as it is the first 
rigorously analytical step in studying the MHD sphere 
in the MHD field. 

The possibility of the resonance structures emer-
gence in the non-uniformities of such a type was shown 
in [18], where the MHD sphere was in the uniform 
nonmagnetic liquid of the set density and adiabatic 
compressibility. The solution was obtained in the form 
of decomposition in terms of vector spherical harmon-
ics; this gave the possibility to reveal the conditions of 
rise of the magnetic field geometric resonance and ve-
locity field. The further development of the considered 
model is the MHD waves scattering on the small sphere. 
To perform this small parameter,  ,/a  is a wave-
length, is introduced direction. Having presented the 
fields and Green function as this parameter decomposi-
tion we reduce the problem to a sequence of the integral 
equations of (4) type, their constant term is defined by 
the corresponding decomposition of the incident field 
and the integral summands depending on the previous 
approximations solutions. The considered model solu-
tion is taken as a zero approximation. 
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ИССЛЕДОВАНИЕ КРАЕВОЙ ЗАДАЧИ РЕЗОНАНСНОЙ  
МГД-НЕОДНОРОДНОСТИ С ПОМОЩЬЮ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ 

Ю.Н. Александров, И.Ш. Невлюдов, Е.А. Чалая, И.Б. Боцман, В.В. Невлюдова 
Проведено численное моделирование скорости  внутреннего поля для МГД-неоднородности на основе 

строго аналитического решения краевой задачи магнитогидродинамики. В основе аналитического решения 
лежит метод интегральных уравнений линейной магнитогидродинамики. Проведен анализ полученных 
результатов. 

ДОСЛІДЖЕННЯ КРАЙОВОЇ ЗАДАЧІ РЕЗОНАНСНОЇ  
МГД-НЕОДНОРІДНОСТІ З ВИКОРИСТАННЯМ ІНТЕГРАЛЬНИХ РІВНЯНЬ 

Ю.М. Олександров, І.Ш. Невлюдов, О.О. Чала, І.Б. Боцман, В.В. Невлюдова 
Проведено чисельне моделювання швидкості внутрішнього поля для МГД-неоднорідності на основі точ-

но аналітичного рішення крайової задачі магнітогідродинаміки. В основі аналітичного рішення лежить ме-
тод інтегральних рівнянь лінійної магнітогідродинаміки. Проведено аналіз отриманих результатів. 


