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It is considered an acceleration of electrons in a one-dimensional interval, part of which is filled by ions initially
compensated by electrons. For the stages of forward motion and backward motion of a part of electrons, the problem
is reduced to a numerical solution of ordinary differential equations for some set of time-dependent quantities. The
ratio of attainable energy to the energy corresponding to the voltage is maximum and near to 1.87475 for relatively
small values of the width of the space without ions when applying a certain voltage, which, as the width is reduced,

has to be reduced as a width cube.
PACS: 41.85.Ar

INTRODUCTION

When large amount of electrons accelerates in diode
the part of them can obtain the energy greater then one
corresponding to the applied voltage. Such effect is
shown in the paper [1] for the diode with plasma cath-
ode. The question arises about the attainable value of
the ratio n of the maximum energy obtained by some

electrons to the product of elementary charge by volt-
age. This ratio may be called the coefficient of the ener-
gy increase. It is always greater than 1, because elec-
trons in diode increase the acceleration of the electrons
ahead of themselves and decrease the acceleration of the
electrons behind, in comparing with acceleration of sin-
gle electron under the given voltage. In absence of the
external circuit, the discharge of cathode and the
movement of electrons to anode are accompanied with
decrease of the potential difference between electrodes,
though the electric field strength near anode remains
constant up to going out of the first electrons to anode.
And vice versa, the keeping up of the potential differ-
ence through the external circuit leads to the field
strength increase in the leading point of electron flow.
In the model somewhat different from one considered in
[1], it may be formally obtained an infinite value of the
mentioned coefficient. Namely, let the plane anode is
immobilized and the infinitely thin plane cathode is ac-
celerated to anode under the force corresponding to the
electric field strength in the cathode-anode gap. To keep
the voltage U when the distance x between electrodes

is decreased and the capacity depends on x as 1/x, one
has to ensure the increase of electrode charges as 1/x,
and then the electric field strength, which is equal to
U/x , gives the acceleration force increase as 1/x* , and
the cathode kinetic energy increase as const+1/x. But

in the diode with the plasma cathode, the space filled by
electrons is expanded, and the ratio 7 is finite. In the

present work the search for the maximum attainable
value of 7 in the frames of the model considered in [1]

is carried out.

1. PROBLEM FORMULATION

The considered one-dimensional structure between
cathode and anode consists of a few layers. The near-
cathode interval is filled by the immobilized positive
ions with the uniform density (‘ion space’ below, hori-
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zontal lines in the Fig. 1), and the near-anode interval is
free from ions (‘vacuum space’). At the initial time in-
stant (see Fig. 1,a), at the motion start, the ion space is
also filled by the electrons (vertical lines), which have
the same density and zero velocity. It is convenient to
take the distance between cathode and anode and the
reciprocal plasma frequency determined by the men-
tioned uniform density for the units of distance and
time, respectively, and to use the relevant dimensionless
variables and quantities. Below, the letters x, b, and
¢ are used for coordinates, ¢ and 7 are used for time,
v is velocity, n is electron density, E is the electric
field strength (more precisely, the acceleration of the
elementary positive charge with electron mass in the
field with the corresponding strength), ¢ and U are

used for potential and voltage.
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Fig. 1. Ion and electron disposition, initial
and at some stages of electron motion

The electron motion at # > 0 obeys to the equations
0,x.(&,0)=0.(£.0), )]
o (8, 1)=-E(S.1). ()
Here 0 is derivative, its index indicates the variable,
with respect to which the derivative is taken, x,(¢,?)

and v,(d,t) are, respectively, coordinate and velocity at
the time ¢ of the electron, which has the coordinate ¢
at t=0, E,/(J,0)
x=x,({,t) at the time 7. The variables (¢{,¢) are La-

grange ones. Also, it is expedient to use the function
n,(&,t) for the electron density in the point x = x, (¢, )

is the strength in the point

at the time ¢ and the functions o(x,?), n(x,?), and
E(x,t), for the electron velocity and density, and the

field strength, at the time ¢ in the point x . The variable
x may be considered as Euler one. If x =x,({,t) then

f(x,t)= f.({,t), where f stands for v, n,or E. The
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functions v(x,t), n(x,t), and E(x,t) should be contin-

uous. The initial conditions for the equations (1) and (2)
are

x(£,00=¢, v.(£,0)=0. A3)
The potential counted off from the cathode potential,
o(x,0) =~ E(.0dx', @

at the anode has to be equal to the applied voltage value,
which is assumed constant,

p(Ly)y=U . )
2. INITIAL STAGE OF MOTION

At first, it should be considered the initial stage,
when all electrons are moving to anode, the inequality
¢" > ¢’ implies the inequality x,(",¢) > x,(¢",), and
the boundary coordinates of the electron space,
b (t)=x,0,t), by(t)=x.(b,t), obey to the inequalities
0<b(t)<b<b(t)<l1 (Fig. 1,b).

The strength derivative in the different spatial inter-
vals obeys to the equations

8. E(x,t)=1 (0<x<h(t)), (6)
0.E.(¢.1)=[1-n(&,0]D.(S,0) -

(h(1) <x.(5,0)<b), ™
0.E(¢,0)=-n.(5,0)D.(&,0).

(b<x.(5,0) <by(n)), ®
0. E(x,t)=0 (b(H)<x<l), ©9)

where D, (¢,1)=0,x.(S,1).
Let ¢,(r) be the initial coordinate of the electron,
which passes the boundary b at the time 7, and 7,(¢)

be the time, at which the electron with the initial coor-
dinate ¢ passes the boundary b, and so,

x(C(@0)=b, x(r()=b, r(l.()=7,
¢, (7.(8)) = ¢ . During the considered motion stage, the
condition x,(¢,t) € (b,(¢),b) implies the conditions
¢e(0,4,(t) and te(0,7,(5)), and the condition
x,({,t) € (b,b,(¢)) implies the conditions ¢ € (¢, (¢),D)
and 7,(¢) <t. For the electron density, the continuity
equation in Lagrange variables has the form

0,[n.(&,0D.(£,0]=0 (0<Z<b). (10)
As x,(4,0) =4 , the integration of (10) gives
n(&,0D.(¢,0)=1 (0<g<b),
and the equalities (7) and (8) take the form
0.E(S,0)=D.(£,0)-1 (0<Z <), (1D
0 E(C,0)=-1 (. () <G <Db). (12)

From (6), (9), (11), and (12) it follows that for the
given electron distribution, the field strength values in
the different points are connected with the equation

E(x,t)—E(O,t):min(x,b)—J.dé’, (13)
with the integral taken over such ¢, for which
x,({,t)<x.

In the interval x e (b,(¢),b), from (1), (2), and (3)
one gets
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0,D.(&,1)=0,v.(S,1), (14)
ata;Ue(é’,t):l—De(C;,t), (15)
D,(£,0)=1, 0,0,(£,0)=0. (16)

The equations (14) and (15), with the initial condi-
tions (16), have unique solution, for which

D.(¢,n=1, 0,0.(5,0)=0, 0, E(5,0)=0. (17)
So, for & e(0,4,(t)), the functions x,(J,t)-¢,
v.(¢,t), E.({,t) donotdepend on ¢ ; in particular,
x(£.0)-C=b-C.(O)=h(), (I8)
E(¢,0)=E(b,1), (19)
and from (4), for the interval x € (b,(¢),b) , one gets
@(b,1) = (b, (1),1) = =E(b,0)[b=b ()] . (20)
In the interval x € (b,b,(¢)) electrons moves in vac-
uum, integration of (12) gives the equality

E(C.)=EDb.D+.()-¢, 2n
and from (2) and (12) it follows
0,0.0,(&,t)=1. (22)
The equations 0,0,v,(¢,t) =-0,E.(¢,t) and
0,D.(¢,1)=0,0.(S,1) (23)

are valid both at t<(0,7,({)), and at t>7,(J). At
t€(0,7,()) (when the relevant electron moves in the
ion space), for the corresponding solution, the equalities
(17) hold. Then the integration of (22) and (23) with

respectto ¢ at 1> 7,(4) gives
9.0, (¢ 1) =t-7.(S), (24)
D =1+[1-7(OF /2. (25
Using the substitution x'=x, (£, (7),¢) for (4) and
integrating by parts, with taking into account (21), (25),
and (18), for the interval x € (b,b,(¢)) one gets
@(by(1),1) = (b, 1) = b (1) B, (1) = B, (1) +
+b] (t)/Z—E(b,t)[b3 () -b], (26)

where

B, (1) :Ldr(t—r)b]f(r)/j (j=12).

Considering the interval xe(0,5,(t)), leaved by

27)

electrons, from (4), with use of (6) and (19), one comes
to the equalities E(x,?) = E(b,t)+x—b,(t) and
@(b,(1),t) =—E(b, )b, (t) + b} (t)/2 . (28)
In the interval x € (b;(¢),1), the field is uniform, and
from (4), with use of (9), (21), and (18) one gets
E(x,t) = E(b,(1),t) = E(b,t) = b,(1) , (29)
o(1,1) = p(bs(2),1) = [b, (1) = E(b,)][1-b;(1)] - (30)

From the equations (1) and (2) and the initial condi-
tions (3), taking into account (29), one comes to the

equation 0°[b,(t)—b,(1)]=b,(f) with the initial condi-

tions  lim,,,0,[b,(t)-b()]=0, b,(0)=b, and
b,(0) =0, from which it is followed the equality
by(t)=b({t)+b+B,(1). 3D

Using (20), (26), (28), (30), (5), and (31), one gets
EMb,t)y=(1-b)b(t)-B,t)-U. (32)
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The equation 0°h,(t) = —E(b,t), with the equalities
(32), (31), and (27), gives the possibility to obtain the
functions 5,(¢) and b,(¢) at the considered initial stage

of motion. They also may be obtained with use of (31)
and integration of the ordinary differential equations,

0,B,(t)=F,(t), 8,F,()=b/(t)/}, (33)
07, (1) =U + B, (1)~ (1-b)b (1), (34)
where ﬂ(r):jo’drb{(r)/j, j=12.

3. REVERSE MOTION

If the voltage is sufficiently small then at some time
instant ¢, the electrons in the ion space stop,
0,(4,t;,)=0 for ¢ e€(0,4,(t;)), and then they begin
the reverse movement. The part of electrons come back
to the ion space from the vacuum space, and they are
moving in the interval (b (¢),b) (see Fig. 1,c), where

by (¢) 1s coordinate of the electron, which has stopped

for a moment just at the boundary b,
by (1) =x,(¢.(tz).1). The stage considered now is re-
conditions

stricted in time by the

v, (£, (1),t) <0, where the designation ¢ () is extend-

t>t, and

ed on the electron passing the boundary x =5 in any
direction. Also, this stage is restricted in time by the
assumption that relative disposition of electrons in space
is not violated, so that the inequality D,({,t)>0 is
held, for any ¢ . Let 7., (&) be the time, when the elec-
tron with the initial coordinate £ passes the boundary
b, coming back to the ion space from vacuum, so that
x,(4,7, () =0b. The designation 7,(¢) is kept for the
time of going out from the ion space. At ¢ >t , during

the considered stage, the relationships
7,6, (1) <ty <7,(.(r)) =t take place. The equalities
(11) and (12) remain valid. Their integration for

¢ e(C.(t),C. (1)) gives
E(C.0)=E®b,0)+{ ()-¢ +x.(¢,0)-b, (35)
and for £ € (&, (¢),b) gives

E(S.0)=Eb,0+¢.()-¢ . (36)
Using (36) and integrating by parts, one gets
@(by(1),1) = (b, 1) = E(b,0)[b—by ()] +
I+ =T OF [2}[b-¢.(0F [2+
Hb = ¢ (D1By, (1) = By, (1). (37

Here T,(?) is the time of going out from the ion
space of the electron, which comes back to it at the time
t, Li=7(5.0), Ti(t)=ty, T(H)e(01t) for
1>ty By () =[t =Ty OIF,; () +B,(T (1) (j=12),
with Fy (1) = F, (T, (?)) , and for the time derivatives one
has the equalities

atBRj(t) = FRj(t)J'_[t - T (t)]atFRj(t) >
0,F, (1) = B (T ()3,T, (1) .
Using (35) and integrating by parts, one gets

(3%
(39
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P(b.1) = lby (0.0) =[b~b (O /2+
HE ()= C. (O —EDDb=b D]+ S (1),
where S, (?) = J.dg“ [b—x,(S,1)], with integral over
€S, (ty). S, (). The integration of the equations (1)
and (2) with E (£ ,t) from (35) gives
X (&) =b=0,(¢, 74 ()sin(t ~ 74 (&) +
+J drsin(t—1)[{ -4, (1) - E(b,7)], (40)
where integral is taken over 7 € (7, ({),?) . Substituting

¢ =¢.(r) into the definition of S, (¢#) and integrating

by parts, one gets
Sy (1) =H_ (¢)sin(t —t, ) — H (¢t)cos(t -t ) , where

H.(t) = j drsin(t -1, )H(7), (41)
H ()= Jdl’ cos(r -t )H(7), (42)

H@O) = {1+ =T, 0OF 2} [0 (& 0.0F +
+Eb, D[S ()~ . (6] +[. (0 - .6 /2,

with integrals in (41), (42) taken over 7 €(#,,?). From
(41) and (42), it follows

0,H (t)=sin(t—t, )H(t), (43)
0,H (t)=cos(t—ty ) H (). 44)
Consideration  of the intervals 0,5,(1)),

(b, (t),by (), and (b,(¢),1) is similar to consideration

of the relevant intervals at the initial stage of motion
and, with use of (18), (35), and (36), gives the equalities

(b (1),1) = =E(b (1), )b, (1) + b (1)/2,
@by (1),) = (b, (1),1) = —E(by (1), 1) by (1) = B, ()],

P(1,0) = p(bs (1),1) = =E(b; (1), H[1 = b, (1)],  (45)
by (1) = . () + D, (D), (40)

E(b (1),1) = E(b,(1),1) = E(0,0) + 5, (1) ,

E(b(0),0)= E(b,))+ & () +b (1) -b, (47)

E,(1),t)=E.(b,t)=E(b,t)+¢.(t)-b=E(0,t). (48)
Substitution of the sum of potential differences over
the different intervals into (5) gives the equality

E(b,t) =[b—b () [2+ B} (1) /2~ b, ()b, (£) +
Hb—by (DI[E () = C ()] = Br, (1) + S (1) +
Hb =G (OB, () + 1+ by () = by ()] +
+H{1+[t =T, (OF [2}[b-¢. (0] [2-U. (49)
The determination of the functions 5,(¢#) and b,(¢)

may be reduced to the solving of the ordinary differen-
tial equations for a few quantities (in addition to b,(¢)

and b,(¢)), which are used in the strength calculations
(with aid of (47), (48), and (49)) for the equations
0’b,(t) =—E(b,(¢),t) and 0’b,(t)=—E(b,(t),t). Some
of them (with the references to the equalities for their
derivatives, above and below) are the following: B, (?)

(38), £y (1) (39), H. (1) (43), H (1) (44), £.(1) (50),

T (1) (51), v, (E.(0),1) (52), (. (1), T (¢)) (53). Use
of the equality (25), which is valid at
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te(r,(5),74($)), and taking of the time derivative of
the equality x,(J,(¢),t)=b at t > 1, gives

-1
04, =—{1+[t-T, (O 2} v.(L.().0), (50)
0,6,(t) >0, at the considered stage. Differentiation of
the equality £ (7.({))=¢ with use of (50) gives

0,7.(&)=—v.({,7. (EN]', and for ¢ > ¢, one gets
0,Ti (1) = v (£, T (1N '0,6.(1) - (51
Taking into account the equality (24), which is valid

at te(7,(4),74($)), for ¢ > ¢, one gets

0,0, (C.(0),0) =[t =T (10, (- E(b,1), (52)

0,0, (6. (1), T (1) = =E(b, T, ())0,T (1) .~ (53)

The quantity b,(#) is given by (46). As
I, () €(0,t;), the quantities v, (S, (¢),T;(¢)) and

E(b,T,(t)) are related to the initial stage of motion,

which has been described above. The characteristics of
that stage may be obtained with integration of the equa-
tions (33), (34) all over again (in opposite time direc-
tion, as 0,7, (t) <0, for ¢>t,), along with the integra-

tion of the equations for the mentioned few quantities
related to the considered reverse motion stage.

The equations for the field strength determination
written in this section are valid only if the relative dis-
position of electrons in space is not violated, so that the
inequality D,(4,t) >0 is held. The conditions, which

give the time of the inequality violation, may be got

from (40). For {{ e (. (%), (1)), t > 1 }, using (24)
and (25), one comes to the equalities

0,0,(¢ 7 (£)) =
=T (§) =7 (§) = E(b, 7 ()0, 7 (&)
O£, 7 (£))0, 7 (§) =
=0,%(8, 7 (€)= D7 (€)=
=-1-[r4.(O)-7.(O /2,
and with taking them into account, from (40) one gets

D.(&.0) =1+ A4, (¢)cos[t — 7, (£) =D ()], (54
where @ (&) =arctan {2/[r, () = 7.(O)]}
A4,()=2cos®@,({)/sin’ D, (), so that 4,()>0,
®,(£)e(0,7/2), 0,4.(5)>0, 0,@.()<0. As it
follows from (54), if 4,({)<1 then D,({,t)>0, for
any t.Butif 4,(S,(r)) >1, for some 7 > ¢, then there
is such ¢, for which the inequality D,({.(7),)<0

takes place, that is, the order of electrons disposition is
violated, near the electron with the initial coordinate

¢.(r), which comes back to the ion space at the time

7 . The violation of the electron relative disposition is
connected with their decreased density when they come
back to the ion space, and with the consequent excess of
positive charge in the interval (b, (¢),b), which causes

some acceleration of electrons towards one another.
4. MOTION WITH INTERMEDIATE GAP

If b<1/2 and the applied voltage is sufficiently
large then the initial stage of the process, which has
ISSN 1562-6016. BAHT. 2019. Ne6(124)

been considered above, is followed by going out of all
electrons from the ion space with gap appearing be-
tween the ion and electron spaces (see Fig. 1,d). Let ¢

be the time of transition to this stage, so that
x,(0,¢,)=b, {.(t;)=0. At t>t, all electrons are
situated in the interval (b,(¢),b,(t)) with b,(t)>b . The
field strength boundary values obey to the equalities
Eb,(2),t)+b=E(b,t) = E(b,(2),1).

Consideration  of the intervals (b,(1),1),
(b,(1),b,(t)), (b,b,(?)), and (0,b) gives (45) and the
equalities

@(by(1),0) = (b (1), 1) = E(b,0)[b (1) = by ()] +
+(t —Ig )[bE (tG) - Fz (tc )] + bBl (t(; ) - Bz (tc ) +
H2+(t—1,)*1b* /4 :
@(b (1),1) = (b,t) = —E(b,1)[ b () - b],
p(b,t) =—E(b,H)b+b*[2 .
Their substitution into (5) gives the equality
E,t)= bz[l+(t—tG)2/4]+b[1—b3(t)]—U+
+(t_tG)[bF1 (tG)_Fz(tG )]+bBl (tc)_Bz(lc) >
use of which on the integration of the equations
0’b,(t)=—E(b,t) and 0’b,(t)=—E(b,t)+b gives the
functions b,(¢) and b,(t) .

If h<1/2 and the applied voltage is not too large
then the gap may disappear, with coming back to the ion
space by the part of electrons. Let #, be the time of the
first electron arriving at the boundary b in the opposite
direction, so that 1, >¢,, x.(0,t5)=b, {.(t;)=0,
0,(0,¢,) <0. To describe the electron motion at ¢ > ¢,
one may take the equalities obtained above for such
reverse motion, which arises without the intermediate
gap appearing, put b, (#) = b,(¢) , and replace £, with 7,
or t, in the relevant places (in particular, there should

be 7,(¢,(ty)) =t , instead of 7.(£.(¢,)) =1, ).

The both considered types of the reverse motion
stages are restricted in time by violation of the condi-
tions v, (S, (¢),t)<0 or D,({,t)>0 (at any ¢ ). The

calculations for the electron motion after the violation
were carried out with use of one-dimensional mesh
along the initial electron coordinate and with use of the
equation (13) for the field strength determination.

5. RESULTS

The calculations for electron motion during the time
up to the time ¢, of the first electron arriving at anode
(so that b,(¢,) =1) were carried out.

In the Fig. 2 the dependences of the ratio 7 of the

attained energy and one corresponding to voltage on the
voltage U for the different values of the relative width

b of the ion space are shown. It is also used the quanti-
ty U=U/6>, where §=1-b. The dashed curve is

related to the limit, when b —> 1, but the value of U is
kept constant, and U is accordingly decreases.

103



To get the equations for this limit case, it should be
taken into account that if the relatively small charge is
moving in the ionized medium then the corresponding
field perturbation is dispersed during the time reciprocal
to the plasma frequency and at the distance equal to the
product of the mentioned time and the charge velocity.
That is, the voltage decrease and the consequent de-
crease of the velocity of the electrons, which come back
to the ion space, leads to vanishing of the perturbation
of the potential difference over the ion space caused by
these electrons, and so, the field strength in the vacuum
space (and the electron motion there) become independ-
ent on the details of the electron motion in the ion space.

From the equations (31), (33), and (34), taking
r=15", b(2)=[b()-bl/5, By(2)=B,(1)/5,
B/(r)=B,(1)/5, and b,(z)=b,(t)/5*, after the limit
transition b — 1 one gets the equality El(r) = 1;3 (r) and
the equations 0°h;(z)=h,(z), 8’B,(r)=b(z)/2, and
851;(?) =U+ l_?z (1) —I;l(r) , integration of which gives
the mentioned dashed curve. The calculations give the
value of 7 near to 1.87475 for U near to 0.165.
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Fig. 2. Dependence of the coefficient of energy increase
n on the voltage U for different values of relative

width b of ion space (0.3, 0.4, 0.5, 0.7, 0.9, 0.97, 0.99,
in ascending order for n maximums; the dashed curve

is related to the limit b —>1)

The Fig. 3, in the different scales, gives the ranges of
the voltage U wvalues, for the given value of the relative
width b of the ion space, which correspond to presence
or absence of the considered above electron motion
stages during the time ¢ € (0,#,) . The points O, D, and F

on the plane (b,U) have the coordinates (0,0), (1,0),
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and (1/2,00), the points A, B, C, and E are near to the
points (0.01841, 0.01353), (0.01854, 0.01352),
(0.06732, 0.03117), and (0.2329, 0.08567), respectively.

The highest of the curves, connecting the points A
and E, which is designated {AE}" below, and the curve
ED give the voltage values for the beginning of the re-
verse motion just at the time ¢,, after the intermediate
gap appearing ({AE}") or in the process without its ap-
pearing (ED). The next (in descending order) of the
curves, connecting the points A and E, which is desig-
nated {AE}" below, corresponds to the intermediate gap
disappearing (after the preceding appearing) just at the
time £, .

U

0,014

0,013
0,018

0,06-

0,019 b 0,020

0,04

0,02
A

B
00040 . . . .
000 002 004 006 008 j010
0.20-

F
U
0,151
0,101
E
0,05
C

D

0,00 : . . . .
00 02 04 06 08 H10

Fig. 3. The areas on the (b,U) plane, related
to presence of the different motion stages (in text)

The curve EF gives the voltage values, at which the
initial stage of motion continues up to the time ¢, end-

ing by the gap appearing. The curve CE corresponds to
stopping of the electron space boundary b,(¢) just at the

ion space boundary b (before the following reverse
motion beginning), so that {5 (#)=5b, 0,5,(t)=0} at
t=t, €(0,t;). The curves BC and CD correspond to
the violation of electron order just at the time ¢,, after
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the preceding gap appearing and disappearing (BC) or
in the process without gap appearing (CD). The curve
OA corresponds to the gap appearing, and later, at some
t€(0,t,), the gap disappearing for a moment, so that

{b(t)=b, 0,b(t)=0} at this ¢; for the point A such
disappearing occurs at the time ¢,. For the voltage val-
ues at the curve AB, the second change of the motion
direction at the boundary b (after the gap appearing and
disappearing) occurs at the time ¢,.

The area on the plane (b,U) between the curves
{AE}" and {AE}" corresponds to the case when the
reverse motion begins after the intermediate gap appear-
ing and, at least, up to the time ¢, the gap does not dis-
appear. The area bounded by the curves AB, BC, CE,
and {AE}  corresponds to the case when the reverse
motion begins after the gap appearing, later, at some
te(0,t,), the gap disappears, but, at least, up to the

time ¢, there are neither the second change of the mo-

tion direction at the boundary &, no the violation of
electron order. The area bounded by the curves CE, CD,
and DE corresponds to the case when the reverse mo-
tion happens without gap appearing and the electron
order does not violate. The area below the curves OA,
AB, BC, and CD corresponds to the case when at some
t €(0,t) the process comes either to the second change

of the motion direction at the boundary b, or to the
electron order violation. The area above the curves OA,
{AE}", and EF corresponds to the motion of all elec-
trons without change of direction and with the gap ap-
pearing at some ¢ €(0,#,) . The area on the right of the
curves DE and EF corresponds to continuing of the ini-
tial stage of motion, at least, up to the time ¢,.

Some change of the model gives the limit value 2
for the ratio 77. Namely, let electrons become immobi-

lized when stop in the ion space (for example, through

intensive recombination). Then, in the case of 1-b <<1
with application of a very small voltage U, the field
strength in the ion space after the electron stopping is
near to —U (as the acceleration-deceleration process is
approximately symmetric, due to the dependence of the
strength on the 5,(¢) value near to linear one), and so,

the potential difference over the vacuum space is near to
2U . And the part of the electrons having gone out of
the ion space are accelerated by the field strength near
to 2U6° giving the 7 value near to 2. In the model

considered above, electrons do not become immobilized
when stopping in the ion space. Their movement to
cathode leads to decrease of the field strength in the
point b,(¢), and to decrease of the attainable 7 value.

CONCLUSIONS

In absence of the external circuit the movement of
electrons to anode leads to decrease of the potential dif-
ference between electrodes. The keeping up of the po-
tential difference through the external circuit leads to
the field strength increase in the leading point of elec-
tron flow, and so, to the increase of the final energy of
some electrons (at their going out to anode), in compar-
ing with one corresponding to the given potential differ-
ence. For the diode with the near cathode layer of the
immobilized ions compensated by electrons at the start,
the maximum value of the coefficient of the mentioned
energy increase is near to 1.87475.

REFERENCES

1. A.V. Pashchenko, I. A. Pashchenko. Non-linear self-
acceleration of electrons emitted by plasma cathode
/I Problems of Atomic Science and Technology. Se-
ries “Nuclear Physics Investigations”. 2016, Ne 5,
p. 114-117.

Article received 30.09.2019

SHEPTHUA JIEKTPOHOB, JOCTHKUMASA B TUOJE C IIJIASMEHHBIM KATO/JIOM
TP JAHHOM HAIIPSA)KEHUUA

B. Ocmpoywko, A. Ilawenxo, U. Ilawenko

PaccmoTpeHO yckopeHHe 3JIeKTPOHOB B OJHOMEPHOM IPOMEXKYTKE, 4acTb KOTOPOTO 3alONHAIOT HOHBI, B
HavyalbHbI MOMEHT KOMIIEHCHPOBAHHBIE JIEKTpOHaMH. JIJIsl cTaanii IpsIMOTO ¥ OOPaTHOTO JBHMIKEHUS YacTH dJICK-
TPOHOB 3a/1a4a CBEJICHA K YUCICHHOMY PEIICHUIO OOBIKHOBEHHBIX TU((EPEHIINATBHBIX YPAaBHEHUH UII HEKOTOPOH
COBOKYITHOCTH BEJIMYMH, 3aBUCAIINX OT BpeMeHH. OTHOIIEHNE AOCTHKUMOM SHEPIUU K YHEPTHH, COOTBETCTBYIO-
el HanpspKEHUI0, MaKCUMAITbHO, M O13Ko K 1,87475 1 OTHOCHTENFHO MaNIbIX 3HAYEHUH MIUPUHEI IIPOCTPAaHCTBA
06e3 MOHOB W NpPU NPUMEHEHHH OIPEICICHHOTO HANpPsDKEHUS, KOTOPOe MPH yYMEHBIICHHWH 3TOWH IIMPHHBI HAJIO
YMEHbBIIATh KaK KyO IMINPUHEIL.

EHEPT'I5I EJIEKTPOHIB, NTOCHKHA B II0/1 3 IJIASMOBUM KATOAOM
ITPU JTAHIU HAIIPY3I

B. Ocmpoywko, A. Ilawenko, 1. Ilawenko

Po3risiHyTO NPUCKOPEHHS €IEKTPOHIB B OJHOBUMIPHOMY IIPOMIKKY, YACTHHY SIKOTO 3allOBHIOIOTH 10HH, Y HOYa-
TKOBHH MOMEHT KOMIICHCOBaHi eleKTpoHaMu. JIyist cTajiif mpsiMoro ta 3BOPOTHOTO PYXy YaCTHHHM €JIEKTPOHIB 3aja-
4y 3BEJCHO JI0 YUCJIOBOIO PO3B'sI3aHHS 3BHYaWHUX NU(EpeHIIHHUX PIBHIHB I EBHOI CYKYITHOCTI BEJIMYHH, 3a-
JISKHUX BiJl yacy. BigHOIIEHHS TOCSKHOI €Heprii 1o eHeprii, oo BiANMOBiAHA HAIPY3i, MAKCUMAaIIbHE, Ta OJIU3BKE 10
1,87475 mns BiTHOCHO MaJWX 3HAYEHB IIUPUHHU IIPOCTOPY O€3 10HIB Ta MPH 3aCTOCYBAaHHI MIEBHOI HATIPYTH, Ky MPHU
3MEHIICHHI Ti€l IMUPUHU Tpeda 3MEHITYBATH K KyO ITHPUHH.
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