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A model developed in this paper describes the transport of nonequilibrium (produced by irradiation) point de-
fects across a coherent interface in a heterophase medium. In the framework of this model we derive a kinetic equa-
tion for the distribution function of spherical nanoparticles of the second phase in a solid solution, which accounts 
for the flow and diffusion of nanoparticles in the dimension space as well as their dissolution in atomic collision cas-
cades. We obtain an analytical form and study the stationary solution of this equation. The result obtained fits well to 
experimental data [A. Certain et al. Journal of Nuclear Mate 2013) 434, 311] on distribution of Y-Ti-O nano-
particles in the oxide dispersion strengthened ferritic steel 14YWT, irradiated with nickel ions up to 100 dpa at dif-
ferent temperatures. We conclude that in this case irradiation affects the distribution of fine oxide nanoparticles by 
creating nonequilibrium point defects rather than by cascade mixing. 

 

INTRODUCTION 

Phase transformations in solids under irradiation 
have been subject to intensive studies for a long time 
(see e.g. [1, 2] for reference). Besides, these studies are 
actual for R&D of novel structural materials for nuclear 
applications. During previous decades a lot of effort has 
been applied to investigation of the so-called Oxide 
Dispersion Strengthened (ODS) steels. These steels are 
considered prospective because they preserve satisfacto-
ry mechanical characteristics at temperatures up to 
700  and radiation damage doses up to 150 displace-
ments per atom (dpa) due to the presence of a dence 

(concentration ) dispersion of nanosized par-

ticles based on Y-Ti-O composition in the matrix. Now-
adays active studies of irradiation impact on the stability 
of this dispersion are underway. 

If irradiation is absent, the second phase dispersion 
in a supersaturated solid matrix is usually unstable: the 
cube of the mean particle size grows linearly with time 
due to the effect of Ostwald ripening [3]. The effect of 
cascade-producing irradiation is as follows: atomic col-
lision cascades, produced by high-energy neutrons or 
ions, give rise to mixing of solute and matrix atoms and 
trap the temporal evolution of nanoparticles to the cycle: 
nucleation  diffusion growth  cascade dissolution. 

The model of homogeneous semicoherent intephase 
boundary [4] has been previously proposed to explain 
the effect of nonequilibrium point defects (PD) on the 
kinetics of phase transformations in solids under cas-
cadeless (electron) irradiation. The recent papers [5 7] 
study the contribution of heterophase fluctuations to 
solubility and nucleation rate of second phases in solid 
solutions at non-radiation conditions. In this paper we 
develop the above models and apply them to study the 
stability of the second phase dispersion with coherent 
interface in an alloy under cascade-producing (ion or 
neutron) irradiation. 

1. A MODEL OF THE SOLUTE ATOM 
TRANSPORT IN A HETEROPHASE 
STRUCTURE WITH A COHERENT 

INTERFACE 

Consider an interphase boundary (Gibbs interface) 
between a stoichiometric particle (p), consisting of at-
oms of several types, labeled , and a solution of 

these atoms in a solid matrix (m). Let the interface be-
tween the particle and the matrix be coherent, i.e. the 
atomic planes be continuous across it. Since the bulk 
physical properties of such heterophase structure are 
discontinuous across the interface, the PD number densi-
ty (concentration) profiles are expected to be discontin-
uous as well. The PD can penetrate across the interface 
via a thermal activation mechanism. Therefore, the PD 
transfer across the interface can be considered as a re-
versible surface chemical reaction. 

1.1. TRANSFER OF POINT DEFECTS ACROSS 
THE INTERFACE 

An interstitial atom of the type j, located at one side 
of the interface, can transfer to the other side of the in-
terface and vice versa. This process can be represented 
in the form of a reversible chemical reaction: 

, (1) 

where  denotes an interstitial of the type j in the parti-

cle  or in the matrix . 

In this way, the rate of transitions, represented by 
Eq. (1), in each direction, is proportional to the concen-

tration  of the interstitials  in the corresponding 

phase and the normal component of the flux of j-type at-
oms across the interface via the interstitial mechanism is 



 

as follows (hereinafter the normal unit vector is sup-
posed to be directed from the particle into the matrix): 

, (2) 

where  is a mean unit atomic volume. The kinetic co-

efficients in Eq. (2) are assumed to depend on tempera-
ture according to the Ar  

, where  is an activation en-

ergy of transfer across the interface of the j-type intersti-
tial in the corresponding phase;  

constant;  is temperature. 
An atom of the type j, located at a regular lattice site 

at one side of the interface, can transfer to a neighboring 
vacant site at the other side of the interface and vice ver-
sa. This process can be represented in the form of a re-
versible chemical reaction: 

, (3) 

where  is an atom of the type j at the matrix lattice 

site;  is a vacant lattice site in the j-th sublattice of 

the particle;  is an atom in the j-th sublattice of the 

particle;  is a vacant lattice site in the matrix.  
Therefore, the rate of transitions, represented by 

Eq. (3), in each direction, should be bilinear in the con-
centrations of the corresponding species and the normal 
component of the flux of j-type atoms across the inter-
face via the vacancy mechanism is as follows: 

. (4) 

Here  is a concentration of vacancies in the j-th sub-

lattice of the particle;  is a concentration of the at-

oms j at lattice sites of the matrix;  is a concentration 

of vacancies in the matrix, and  is a concentration of 

the atoms j at lattice sites of the particle. 

Similarly to Eq. (2), the kinetic coefficients  in 

Eq. (4) are assumed to depend on temperature according 
to the Ar , but with a different activation 

energy . 

An interstitial atom located at one side of the inter-
face can recombine with a vacancy located at the other 
side: 

. (5) 

These are irreversible reactions because an energy 
threshold for production of the Frenkel pairs is usually 
large. The normal component of the flux of j-type atoms 
across the interface via the recombination mechanism 
(5) is as follows: 

, (6) 

where  is a phenomenological recombination kinet-

ic coefficient in the corresponding phase. 

Therefore, the partial flux of j-type atoms across the 
interface is a sum of the contributions, given by Eqs. (2), 
(4), and (6): 

. (7) 

A total concentration of j-type atoms in the corre-
sponding phase is a sum of the concentrations of the at-
oms in both the interstitial and regular positions: 

. One can consider the following relations 

between the concentrations of solute atoms in different 
lattice positions: 

, (8) 

where  is a dimensionless constant, taking its value 

from the range . The lower and upper limiting 

values correspond to the cases when the solute atoms re-
side only in the regular and interstitial lattice positions, 

respectively. The value of  depends on both intera-

tomic potential and irradiation conditions.  
Now, taking into account Eqs. (2), (4), (6), and (8), 

one can represent Eq. (7) as follows: 
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 (9) 

The total atomic flux across the interface is 

. (10) 

As a next approximation, we require that a chemical 
composition (stoichiometry) of the particle is conserved: 

. (11) 

Then the partial flux of atoms j across the interface (9) is 
related to the total atomic flux (10) as follows: 

. (12) 

Therefore, employing Eq. (9), one can represent the 
total atomic flux across the interface as follows: 

 (13) 

The state of kinetic equilibrium at the interface is de-
termined by the condition that the total atomic flux 
across it turns to zero: 

. (14) 
Taking into account Eq. (13), one can find from 

Eq. (14) a relation between the kinetically equilibrium 
solute and PD concentrations at the interface: 

.(15) 

In the absence of external perturbations, which vio-
late the conservativity of the system (e.g. irradiation), 
the conditions of kinetic and thermodynamic equilibrium 
are equivalent and, therefore, the values entering 



 

 

Eq. (15) can be considered as thermodynamically equi-
librium ones. In this paper we consider thermodynami-
cally nonequilibrium situation caused by cascade-
producing irradiation. Nevertheless, the state of kinetic 
equilibrium (14) in this case is still possible. Therefore, 
all the values entering Eq. (15) are generally considered 
as kinetically rather than thermodynamically equilibrium 
ones. 

1.2. DIFFUSION OF SOLUTE IN THE MATRIX 

The steady-state solute concentration profile in the 
matrix is subject to the next diffusion equation: 

, (16) 

where  is a solute diffusion coefficient in the matrix. 

The normal component of the solute flux across the 
interface is given by Eq. (9). In the first order in a devia-
tion of the solute concentration at the interface from its 
kinetic equilibrium value (15), for a spherical particle of 

radius , Eq. (9) becomes  

, (17) 

where 
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is a characteristic length in the model. 
One can consider the second boundary condition as 

follows: 

, (19) 

where  is an average solute concentration in the ma-

trix. 
The diffusion equation (16) with the boundary condi-

tions, given by Eqs. (17), (19), has the next solution: 

. (20) 

With the above results in mind, one can derive the 
particle velocity in the dimension space as follows: 

. (21) 

From Eq. (20) one can see that 

 (22) 

and this expression can be used instead of Eq. (17) as 
the first boundary condition for the diffusion equation 

(16). This means that, for big particles , the 

model considered here asymptotically gives the same re-
sult as the diffusion problem with a given (kinetically 
equilibrium) solute concentration at the interface, given 
by the Gibbs-Thomson relation (see e.g. [8]): 

, (23) 

where  is a kinetically equilibrium solubility limit 

of solute in the matrix,  
 (24) 

and  is a specific nanoparticle-matrix interface energy. 

2. SIZE DISTRIBUTION  
OF NANOPARTICLES 

In the absence of irradiation the temporal evolution 
of the size distribution function of nanoparticles is sub-
ject to the Becker- [9]. 

High-energy heavy particles with energies of about 
several megaelektronvolt in a solid create primary recoil 
atoms with energies of up to tens kiloelektronvolt which, 
in their turn, initiate atomic displacement cascades (see 
e.g. [10]). After the cascade relaxation, some of the in-
volved atoms appear at different from the initial ones 
spatial positions. This effect is known as cascade mixing 
(see e.g. [2]). As a result, a minor fraction of atoms is 
displaced on distances exceeding the period of crystal-
line lattice. The effect of atomic collision cascades on 
heterophase nanoparticles was recently studied for the 
case of copper clusters in iron by the means of molecu-
lar dynamics method [11]. The results obtained demon-
strate that, if the primary recoil atom is within or on the 
surface of the nanoparticle, a certain average number of 
atoms leave the nanoparticle and move to the matrix. 
This process is called cascade dissolution. 

In this way, the kinetic equation for the nanoparticle 
distribution function  with respect to the number of 

atoms n, taking into account the effect of irradiation that 
creates atomic displacement cascades with a volume rate 

, is the Becker-

cascade term in its right-hand side: 
 

, (25) 

 

where  and  are the rates of emission and 

adsorption of atoms at the nanoparticle interface respec-
tively, and  is a probability that the atomic 

collision cascade kicks k atoms out of the nanoparticle 
consisting of initially  atoms. This probability is 

subject to the next normalization condition: 

. (26) 

Assuming that , in Eq. (25) one can 

change from the discrete variable n to the continuous 
one z and expand its right-hand side into the Taylor se-
ries up to the second order to obtain the second order 
differential equation: 



 

 

, (27) 

where  and . 

Taking into account that , from Eqs. (12) and (17), one can derive (see also [5, 6]): 

,                     (28) 

.                           (29) 

Variable z is related to the nanoparticle radius  as follows: 

,                                                                                      (30) 

which allows to change in Eq. (27) to the size distribution function : 

, (31) 

where  and  is assumed for simplicity. 

Using Eq. (23) one can express the velocity and the diffusion coefficient in the dimension space in Eq. (31) as 
follows: 

,                                                           (32) 

,                                                                      (33) 

where the critical radius (which turns the rhs of Eq. (32) to zero) is 

.                                                                                  (34) 

Below it is convenient to change to dimensionless variables  and . 

For the new distribution function  Eq. (31) takes the form 

, (35) 

 

where 
, (36) 

, (37) 

, (38) 

, , and the inverse number of atoms 

in a critical cluster is 

. (39) 

We aim to find a solution of the stationary 
 variant of Eq. (35): 

, (40) 

where 

,
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(42) 

and the prime sign means the derivative over . 

Provided that , in the WKB approximation 
(see e.g. [12]), the asymptotic form of the physically rel-
evant fundamental solution of Eq. (40) is 



 

 

, (43) 

where  is a normalization coefficient. 

For further applications it is convenient to change back to the absolute size distribution function. Then Eq. (43) 
takes the form 

, (44) 

where  is a normalization coefficient, 

, (45) 

, (46) 

. (47) 

When irradiation is absent  and the solute 

concentration is undersaturated , Eq. (44) 

reduces to the equilibrium distribution function of sub-
critical nanoparticles (heterophase fluctuations) (see also 
[5, 6]). 

3. DISCUSSION AND FITTING OF THE 
MODEL RESULTS TO SOME 

EXPERIMENTAL DATA 

In this Section we illustrate the model results by fit-
ting them to some experimental data of the atom-probe 
tomography for the ODS steel 14YWT irradiated with 
5 MeV Ni ions at different temperatures [13, 14]. 

Analysis of these experimental data demonstrates 
that, under intensive cascade-producing irradiation with 
5 MeV Ni ions, the oxide nanoparticles in the 14YWT 
ODS steel are characterized by the stationary size distri-
bution. Therefore, in this case one can use the stationary 
distribution function (44) derived in Section 3 for fitting. 
For this purpose it is necessary to estimate numerically 
the distribution parameter  (47). 

Consider the grows rate of the average nanoparticle 

size  at the coarsening stage, given by the Lifshits-

Slyozov formula [3]: 

. (48) 

Eq. (48) can be transformed as follows: 

, (49) 

where  is an average number of atoms in the nanopar-
ticle. Eq. (49) may be considered as an average growth 
rate due to diffusion process. From the other hand, 
atomic collision cascades kick atoms from the nanopar-
ticle with an average rate 

. (50) 

Since, as it was mentioned before, the experimental-
ly obtained distribution function under irradiation 
demonstrates stationary behavior, the average number of 
atoms in the nanoparticle must conserve. Therefore, the 
sum of rhs of Eqs. (49) and (50) is zero and from (47) 
one finds 

. (51) 

In Figure, a f we plot the function (44) at finite and 
zero values of the parameter  together with the exper-
imental data [13], obtained by the atom-probe tomogra-
phy, on the size distribution of oxide nanoparticles in 
14YWT ODS steel irradiated with 5 MeV Ni ions to 
100 dpa at different temperatures. 

The next values of the material parameters are used 

in calculations. We take  for the specific 

nanoparticle-matrix interface energy. The mass density 

of Y2Ti2O7 nanoparticles is  ac-

cording to [15]. Therefore, the mean atomic volume in 

this oxide is , almost equal to that of 

bcc iron. This fact explains the high coherency of the 
nanoparticle-matrix interface. The average number of 
atoms, ejected from the nanoparticle by the atomic colli-

sion cascade, and its average square are taken  and 

 respectively, according to results of molecular 
dynamics simulations [11]. The values of parameters l 
and  at different temperatures are given in Table. To 
find the limit of applicability of the discrete-continuous 
transformation, one should consider that the radius of 
the sphere of the unit atomic volume  is 

. A nanoparticle with  con-

tains about 44 atoms. We take the lower limit radius 

, corresponding to  atoms 

in the nanoparticle. The value of the critical radius  

was considered infinitely large, corresponding to under-
saturated or saturated solute concentrations.  

Distribution function parameters 

 600 450 300 100 75 
850  

(annealing) 

 0.035 0.045 0.05 0.1 3 0.045 

 0.354 0.587 1.054 1.619 40.836 0 
 

From Figure, a c one can see that, at chosen values 
of the model parameters, the calculated stationary distri-
bution functions with zero (squares) and non zero 



 

(curves)  are only slightly different in the 1...2 nm 
range at 600, 450, and 300 C. In Figure, d the distribu-
tions at 100 C with zero and non zero  are visually 
indifferent. In Figure, f  bars show the experimental dis-
tribution formed after annealing for 5 hours at 850 C in 
the preliminary irradiated to 100 dpa at -75 C sample. 
In the same Figure, f  squares show the plot of stationary 
distribution without irradiation, in a good agreement 
with experimental data. 

After irradiation to 100 dpa at -75 C, the atom 
probe tomography does not detect any oxide nanoparti-
cles. The authors of [13] conclude that they are com-

pletely dissolved under irradiation. In Figure, e  the dis-
tributions calculated with zero and non zero  demon-
strate that at these conditions the oxide nanoparticles 

become very small, with average size , 

corresponding to the average number  atoms in 

the nanoparticle. This value is very close to the minimal 
number of solute atoms in a cluster , used as a 

parameter in the cluster search algorithm employed [13]. 
In this way, the negative experimental result at these 
conditions can be explained.  

 

 

Normalized to its maximum size distribution function of oxide nanoparticles at temperatures:  
a  600 ; b  450 ; c  300 ; d  100 ; e   -75 ; f  850 . Bars correspond to atom probe  

tomography data on 5 MeV Ni ion irradiated to 100 dpa ODS steel 14YWT [13]. Squares and curves are given  
by Eq. (44) with zero and non zero values of the cascade parameter  respectively. 

The values of the model parameters are given in Table and in the main text 
 
As it was mentioned before, at chosen values of the 

model parameters, the cascade term has only a small 
numerical effect on the calculated distribution function. 
Nevertheless, it does not mean that irradiation does not 
affect the distribution function at all. As follows from 
Eq. (18), irradiation, which produces nonequilibrium 
point defects and changes the solute diffusion coefficient 
in the matrix, affects the value of the distribution param-
eter l. Really, from Table one can see that the value 

 is found both at 850 C without irradiation 

and at 450 C under irradiation (see also Figure, b and 
f). Therefore, it is tempting to assume that changes in 
the nanoparticle distribution observed after irradiation 
result from the effect of nonequilibrium point defects ra-
ther than from cascade mixing. This assumption is sup-
ported by the previous experimental [16] and theoretical 
[4] findings. This assumption could be checked by per-
forming cascadeless (electron) irradiation experiments at 
the same temperatures and dose rates. 

 

CONCLUSIONS 

Using the previously proposed model of point defect 
transport in a heterophase medium [4 6], we obtain ex-
pressions for absorption and emission rates of solute at-
oms at the coherent interface as functions of steady state 
concentrations of nonequilibrium point defects at the 
opposite interface sides, providing the possibility to 
study the kinetics of diffusion transformations in solids 
under irradiation.  

For the size distribution function of heterophase na-
noparticles under irradiation we obtain a kinetic equa-
tion with the cascade term and find its stationary solu-
tion in analytical form. 

With the proper choice of the parameter values, the 
model allows a good fit to experimental data [13] on the 
size distribution function of oxide nanoparticles after 
5 MeV Ni ion irradiation to 100 dpa at 600, 450, 300, 
and 100 C and after post-irradiation annealing at 
850 C. 

 
 

a b c 

d e f 



 

We conclude that irradiation affects the distribution 
of fine oxide nanoparticles by creating nonequilibrium 
point defects rather than by cascade mixing. The exper-
imental check of this assumption is desirable. 

ACKNOWLEDGEMENT 

The author thanks to Prof. Oleksandr Bakai for dis-
cussion of the present result. This work was funded by 
the National Academy of Science of Ukraine, Grant 
# X-2-13-10/2019. 

REFERENCES 

1.  Gary S. Was. Fundamentals of Radiation Mate-
rials Science. Metals and Alloys. Springer-Verlag Ber-
lin-Heidelberg, 2007, 839 p. 

2.  Todd R. Allen, Roger E. Stoller, Shinsuke Yama-
naka (Editors). Comprehensive Nuclear Materials. 
Elsevier Science, 2012, 3560 p. 

3.  I.M. Lifshitz, V.V. Slyozov. The kinetics of pre-
cipitation from supersaturated solid solutions // Journal 
of Physics and Chemistry of Solids. 1961, v. 19, p. 35-
50. 

4.  A. Borisenko. A model of homogeneous semico-
herent interphase boundary for heterophase substitution 
alloys under irradiation // Journal of Nuclear Materials. 
2011, v. 410, p. 69-75. 

5.  O. Borysenko. A new kinetic model for precipita-
tion from solid solutions // Condensed Matter Physics. 
2015, v. 18, N 2, p. 23603: 1-8. 

6.  Alexander Borisenko. Classical nucleation theory 
for solute precipitation amended with diffusion and re-
action processes near the interface // Phys. Rev. E. 2016, 
v. 93, p. 052807: 1-7. 

7.  Alexander Borisenko. Nominal vs. actual super-
saturation of solutions // Journal of Crystal Growth. 
2018, v. 486, p. 122 125. 

8.  D. Kashchiev. Nucleation: Basic Theory with 
Applications. Butterworth Heinemann, Oxford, 2000, 
530 p. 

9.  Kinetische Behand-
// Ann. 

Phys. (Leipzig). 1935, v. 416, p. 719-752. 
10.  J.F. Ziegler, J.P. Biersack, and M.D. Ziegler. 

SRIM  the Stopping and Range of Ions in Matter. 
SRIM Co., Chester, 2008, 398 p.  

11.  A. Certain, Voigt H.-J. Lee, T.R. Allen, 
B.D. Wirth. Investigation of cascade-induced re-solution 
from nanometer sized coherent precipitates in dilute Fe
Cu alloys // Journal of Nuclear Materials. 2013, v. 432, 
p. 281-286.  

12.  Carl M. Bender, Steven A. Orszag. Advanced 
Mathematical Methods for Scientists and Engineers: 
Asymptotic Methods and Perturbation Theory. Springer-
Verlag New York-Berlin-Heidelberg, 1999, 593 p. 
     13.  A. Certain, S. Kuchibhatla, V. Shutthanandan, 
D.T. Hoelzer, T.R. Allen. Radiation stability of 
nanoclusters in nano-structured oxide dispersion 
strengthened (ODS) steels // Journal of Nuclear Materi-
als. 2013, v. 434, p. 311-321. 

14.  J. He, F. Wan, K. Sridharan, T. R. Allen, 
A. Certain, V. Shutthanandan, Y.Q. Wu. Stability of 
nanoclusters in 14YWT oxide dispersion strengthened 
steel under heavy ion-irradiation by atom probe tomog-
raphy // Journal of Nuclear Materials. 2014, v. 455, 
p. 41-45. 

15.  Jia-Yu Ding et al. Effects of additives on dielec-
tric properties of Y2Ti2O7 ceramics //Journal of Inor-
ganic Materials. 2011, v. 26, p. 327-331. 

16.  I. Monnet, P. Dubuisson, Y. Serruys, 
M.O. 
investigation of the stability under irradiation of oxide 
dispersion strengthened ferritic steels // Journal of Nu-
clear Materials. 2004, v. 335, p. 311-321. 

 
 

Article received 08.08.2019 
 

 

-  
 

A.A.  

 [A. Certain et al. Journal of Nuclear 
2013) 434, 311] Y-Ti-O- -

  14YWT   

 

 



 

   
 -    

 

. .  

 
 .  

  
 

 [A. Certain 2013) 434, 311] 
Y-Ti-O- -    14YWT

  . 
 

. 

 


