MODULATION INSTABILITY IN TWO COMPONENT BOSE-EINSTEIN
CONDENSATE WITH RELATIVE COMPONENT MOTION
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The development of modulation instability in a spatially homogeneous two-component Bose-Einstein conden-
sate (BEC), in which the interacting components move through each other at a relative speed, is investigated. It is
shown that nonlinear dynamics, leading to modulation instability, is determined by both the values of the constant
interaction and the relative velocity between the components. The maximum oscillation increment is found and the

limits of the existence of modulation instability in the space of wave numbers are determined.
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INTRODUCTION

When considering the dynamics of systems described
by nonlinear equations, as a result of nonlinearity and
dispersion interaction processes, weak spatial perturba-
tions in a certain range of wave vectors grow exponential-
ly, creating a chain of localized waves [1, 2]. In a one-
component BEC with a negative coupling constant, mul-
tiple alternating long-lived domains, which indicated the
occurrence of modulation instability (MI) in the system,
were experimentally observed [3]. The two component
BECs differ significantly from the one component case,
where the MI occurs only with a negative interaction
between the particles of the condensate. The first MI in
two-component BECs was discussed in [4].

When describing the dynamics of BEC at low tem-
peratures, the application of the Gross — Pitaevskii equa-
tion [S] has proved effective. Such an approach was
used when considering MIs in two-component BECs by
many authors [6 - 9]. We applied this approach when
describing the dynamics in a two-component BEC with
allowance for dissipation [10]. In theoretical papers
[11 - 12], within the framework of the GP equation in
the case when the stability condition of the system is
fulfilled, the occurrence of a MI in a two component
BEC with relative component motion was considered.
This means that between the constant of intercomponent
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We write complex functions y, (r,t),y, (r,7) in the
form v, (r,t) = f,(r,t)exp[ip, (r,¢)], where £, and ¢,
are the modules and the phases of functions y, (r,7).
Then the density of the number of particles #, (r,t) and

the speed v,(r,t) of each component are expressed
through the module and phase
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In a spatially uniform state, the chemical potentials
of the components y,,u, are associated with equilibri-

um densities [5]
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interaction g, and the constants of intracomponent

interaction of particles g, and g, the relation

g, < g,g, is fulfilled [5]. In particular, it was shown

the emergence of a critical speed at which stability is
broken and a MI arises [11].

The purpose of this article is to clarify the influence
of the relative motion of components in a condensate on
the development of MI, when the absolute value of the
interaction of particles between the components of a
condensate can be either greater than the interaction of

particles inside the components |g,|>g, or less,
|g1| < g - In our case, in order to simplify the calcula-

tions, we put g, =g,. In both cases, we numerically

find the maximum increment and determine the MI
instability boundaries in the space of wave numbers.

1. HYDRODYNAMIC EQUATIONS
FOR TWO COMPONENT BEC WITH
RELATIVE MOTION OF COMPONENT

The Gross-Pitaevskii equations for Bose-Einstein
condensate  for  macroscopic  wave  functions

v, (r,1),w,(r,t) have the form [5]
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The index 0 at density and velocity (n,,,V,, ) means

that this value refers to its equilibrium value. Let us
single out in the equations (1) the real and imaginary
parts. Then we have

hey = 1 2m [) A = £ (V@)) -
_(gl-flz + glzfz2 + mvlzo 12— )=V, Vo
hep, = (0> 1 2m, 1,)(Afy = ,(V9,)) = 3)
_(ngzz + glzfl2 + mv;o 12— 11,) =1V, V @,
nf, = —(n* 12m,) fieA@, — v, Vf;
b, =—(1° 1 2m,) fr)A@, — v, Vf,.
We obtained a system of equations for four un-
known quantities £, f,, ¢,, ¢,, which depends on

nine parameters: on the masses of the two components
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of the condensate m, and m,, on three coupling con-
stants g,, g,, g, on two chemical potentials y; and
M, and on two speeds v, V,, . In accordance with (2),

the system of equations (3) can be rewritten in a com-
pact hydrodynamic form

n+V-(nv,)=0,

n,+V-(n,v,)=0, 4)
mv, ==V,

myV, ==V,

where  f, = gn, +g,n, — (7 /2m1)(A\/Z)/\/Z+m1V10V1

and i, =g,n, +g,n _(hz /2m2)(A\/Z)/ Ny, +M,V, Vv, —
are the chemical potentials for the first and second com-
ponents of the condensate, taking into account the quan-
tum pressure. In the resulting system of hydrodynamic
equations for a two-component BEC (4), the first two
equations are the continuity equations for each compo-
nent of the condensate, and the two remaining ones are
the Euler equations.

2. GETTING AND SOLUTION
OF A DISPERSION EQUATION

Let us set in (4) n,=n,,+0n, and v,=v, +JvV,,
where the densities #,, and velocities v,, correspond to

the ground state of the condensate, and on,, and Jv,

are small perturbations of the ground state, depending
on the time and spatial coordinate &n, =6n,(r,?),

v, =6v,(r,1) . Linearizing the system (4) we get
on +V-(n,0v,+v,,0n)=0,

Ony +V - (n,,0V, +V,,0n,) =0, 5)
mov, ==V,
my,ov, =-Voi,,

S, = g,0n, + g,,0n, — (W’ / 2m)ASn,  2n,y +m,v,,6V,,
Sit, = g,0m, + g,,6n, — (B> 1 2m,)ASn, | 2n,, +m,v,, 0V, .
We will seek the solution of the system (5) in the
form

on, v ~e D,
In this case, the system of equations for
Sn,, on,,5v,,6v, (& =(hk)’ /2m.) takes the form

—(w—kv,,)on +nkov, =0,

(ho)* +2(ho)’ {AK(V,y + Vo) + (hw)’ {hzk2 (vlz0 +4v,,vy + vjo) - (812 + 522 )} = 2(ho) {(hkv,, )(hkv, )AK (V) + Vy, ) —
—(hkvm)gzz - (hkvzo)glz} + (hkvlo)2 (th20)2 - (hkvlo)2 322 - (th20)2 512 + {512522 - 4”10”20g12251053} =0.

Here is the designation & =(2gn,+¢ ) . In
view of the cumbersome form of the roots of the fourth-
order equation obtained, with respect to physical clarity
of the solutions, let us make some simplifications. Let
us turn into the center of mass system, in which the total
momentum of the moving condensates is zero.

Let m=my=m, n,=n,=n and g =g,=¢g

2

(with &’ =& =&”, & =¢&) =&"), then the condition of

equality to zero of the total pulse will look like
v,, +V, =0, and the dispersion equation (7) takes the
form

(hw)* =2(hw)’ (> + kv, [ 4)+

+E =1k, 14 —4ngl (") =0,
where the designation for the relative velocity of the

(®)

component Vv, E|V10 —V20| =2|v10| is entered. The ob-

tained biquadratic equation is easily solved

(ho) =" + kv, /4i\/52h2k2v§ +4n’gl(£°) . (9)
Thus, in a two-component condensate with compo-

nents moving relative to each other with speed v, , there

are two oscillation branches ®" and @, that corre-
spond to different signs before the root in (9). In the
absence of relative motion of the components of the
condensate, the solutions of equation (8) have the form

(hay)’ =6* +2n|g,|e* =&°(¢° + 2ng £2n|g,,|) . (10)
In the absence of interaction, we obtain the known

spectrum obtained by Bogolyubov for a single-
component condensate [5].
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—(w— szo )5}’12 + 71201{5V2 =0, (6)
k(g, +&’ /2n,)on +kg,on, —m(w-kv, )ov, =0,
k(g, +é&) /2n,,)0n, +kg,,0n —m,(w—kv,,)ov, =0.
From the obtained system of equations (6) follows
the dispersion equation
(7

In the case of real frequencies, when at a certain ra-
tio between the parameters g, g,,v,, the condition
(how*)* >0 is fulfilled, the system will be stable and
there will be two oscillation branches with frequencies
" in it. Let us clarify the question when the stability of

a system with respect to small perturbations is broken
and a modulation instability arises [6].

3. CONDITIONS OF MI IN THE BEC WITH
RELATIVE MOVEMENT COMPONENT

The expressions (9) and (10) can be written in a di-
mensionless form. To do this, we introduce the notation
E* =(ha®)/(ng), v,=v,/c,
y=|gnl/ g E; = (hey) (ng), K> =1°k* / (2mng) ,
and ¢ =ng/m is the speed of sound in the condensate.

As a result, we obtain an expression for the dependence
of the dimensionless oscillation energy E on the di-

mensionless wave vector k£ and the dimensionless ve-
locity v,

~2 ~2
(E*)? = k2 (R +2+%Ri24/%’?(k2 +2)+7%). (1)

And for the occasion ¥, =0
(E; ) =k (K +2(1xp)). (12
Modulation instability in the system arises when ex-
pressions (11) and (12) for (E*)* and (E,)’ are nega-
tive
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~2 ~2
P2 +2+%Ri24 /%R(/EZ +2)+72 <0,  (13)

k2 +2(1 ) <0. (14)

From the expression (11) and (12) it can be seen that
this is possible only for (E7)* and (E, )’ (the second
oscillation branch with frequencies @~ and «j , respec-
tively), since the expressions for (E7)’ and (E;)" are
always positive. A negative value (E”) indicates that
the frequency @~ is a purely imaginary quantity, and it
can be represented as @ =iG . Here G (the absolute
value @), is an oscillation increment. Let us introduce

the value G = (hG)/(ng), corresponding to the dimen-

sionless increment of oscillations in the event of MI. We
have from (11)

E™ =(hw )/ (ng) =i(hG)/ (ng) = iG,

~2 ~2
G =i, /%R(l? +2) 472 — (K2 +2+V7R)).

In the absence of relative motion the components of
the condensate MI exist in the region of wave vectors
0<k’<2(y—1)(14). It follows that the modulation

instability in this case exists only for y >1, i.e. when

(15)

the absolute value of the interparticle interaction be-
tween the components of the condensate is greater than
the intracomponent interaction of particles | g12| >g.

The boundary value of the wave vector for the existence
of MI according to (14)
k2=2(y-1).
Or in dimensional units [8]
4mng |8
ky = h—z(u -1).

When 7, =0, the mode of oscillation, at which the
increment of the MI will be maximum, is determined by
the condition [6]

AE;) 10k*=0. (16)

According to (12) we have (E; ) = k*(k* +2(1- 7).
Then the maximum wave vector k

max 2

a maximum oscillation increment G___, is
kX =y—1.

max

for which there is

Or in dimensional units [8]

2mng |g12|
k= /— -1
max hz ( g )

Substituting k> = (k)

max

in expression (15) we find

the maximum increment G

max

Gmax = \/(lg)fnax (2(7/ - 1) - (E)iax) = (k~)r2nax *
And, accordingly, the increment G is equal (see

(6

G..= h(k)fmX /2m=(ng/h)(y-1).
We now take into account the motion of the compo-
nents of the condensate relative to each other. Accord-
ing to (11)
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~2 ~2
(E ) = k(R +2+V2R—21/%R(/€2 +2)+7%).

This expression becomes negative when
~ 72
k*+2 L2y,

) v

Thus, MI when v, # 0 exists for wave vectors
~2

~2
—2(}/+1)+V7R<l;2< 2(y—1)+%1*.

(17)

This inequality determines the zone of MI for differ-
ent values of speed v, and parameter y . Expression
(17) is true for cases y >0 when, i.e. when intercom-

ponent interaction can be both more and less interaction
between particles inside the condensate component.
This is a significant difference from [8, 11], where only
the case y <1 was considered. The boundary values of

72 72
the wave vectors kj, and kj, are equal
~2 ~2

B= 20 =D+ k=20 + )+ L
From (17) it follows that in the case when y <1, for

velocities 7, < 4(1—y) MI is absent for all values K.

Thus, in a two-component BEC with relative motion of
components, there is a critical speed equal to [11]

)., = 41-7).
The quantity G from (15) is a function of two vari-
ables: &% and ¥2. We find numerically the maximum

value of this function (maximum oscillation increment)
for various values of the parameters y . The results are

shown in the table. (For comparison, the table shows the
corresponding increment values for the case v, =0).

Dependence of the maximum increment G
on the parameter y

4 G, (vg #0) G, (vy=0)
0.3 0.025 0
0.707 0.333 0
1 0.75 0
2 3.385 1
3 6.75 2

The Table shows that the increment values G, in
the first case (v, #0) are larger than in the absence of

relative movement of the condensate components. Thus,
the relative movement of the components of the conden-
sate leads to a more rapid development of MI.

Consider the long-wave approximation. Suppose
that the relations between the interaction parameters
g, g, and relative velocity v, are such that the condi-

tion (hw")* >0 is satisfied, i.e. frequencies are real.
When A>>¢& (where & ="7/./2mng is the coherence

length in BEC), we have k* <<1. Let's pass to dimen-
sional variables. According to (9) oscillation spectrum

(@) = %(82 SR A+ SR +AnPgh(2))

in the long-wave region will be
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o* =k\/02 +vi [ dxcvi +(ng, I m) .

From this it follows that the dependence of the oscil-
lation frequency on the wave vector in the long-wave
limit has a qualitatively the same form as in the single-
component Bose condensate moving with speed v,

w=kvytkc.

CONCLUSIONS

In the absence of relative motion of the components
in the BEC, modulation instability exists only when
g, >g (y>1),ie. when the interaction forces between

the atoms inside the components are less than the inter-
component interaction forces. When the system has
movement of components relative to each other
(v #0), the situation changes. In this case, the condi-

tion y >1 is no longer decisive for the occurrence of ML

The occurrence of MI in a moving two-component BEC
is now determined by the ratio between the magnitudes of
the constant interactions between particles and the rela-
tive velocity between the components of the condensate.
Moreover, the value y can be either greater or less than

1. Note that the development of MI is not affected by the
sign of the interaction between the components.

It is shown that in the linear approximation with re-
spect to density and velocity perturbations in the BEC,
the presence of relative motion of the condensate com-
ponents changes the boundary values of the wave vec-
tors at which the MI exists, expanding the range of the
MI existence. The presence of relative motion increases
the maximum increment of the instability of the MI. It is
also shown that for stable oscillations in the long-
wavelength limit, the oscillation frequency linearly
depends on the wave vector, as in the case of one-
component condensate.
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MOJYJAIMUOHHAS HEYCTOMYHABOCTD B JIBYXKOMIIOHEHTHOM
BO3E-DMHIITEMHOBCKOM KOHJAEHCATE INPU OTHOCHUTEJBLHOM JIBUKEHUN
KOMIIOHEHT

AJI Heawun, E./l. Mapunenxo

Hccnenyercs pa3BUTHE MOAYISIMOHHONH HEYCTOMYMBOCTH B IIPOCTPAHCTBEHHO-OJHOPOIHOM IBYXKOMITOHEHT-
HOM Oo3e-siiHmTelHOBCcKOM KoHneHcaTe (BOK), B koTOpoM B3amMojeiicTBYIOIINE KOMIIOHEHTBI JBIXKYTCS APYT
OTHOCHUTEINIBHO JIpPYra CO CKOPOCTBIO Vi. Iloka3zaHo, uTO HeNMHENHas AUHAMUKA, MPUBOAAIIAS K MOAYJIALUOHHOM
HEYCTOMYMBOCTH, ONIPEENAETCS KaK BeIUIMHAMU IOCTOSHHBIX B3aUMOAENUCTBUS, TaK U OTHOCUTEJIEHOW CKOPOCTBIO
MeXIy KoMIoHeHTaMu. HaiineH MakcMMalibHBIH WHKPEMEHT KOJIeOaHUH M OIpe/esieHbl TPaHHIbl CYIIeCTBOBAHUS
MOJYJISILUOHHON HEYCTOIMUMUBOCTHU B IPOCTPAHCTBE BOJHOBBIX UUCEIL

) MOJYJISIIIAHA HECTIAKICTh Y JBOKOMIOHEHTHOMY
BO3E-EMHIITEAHIBCLKOMY KOHJEHCATI IPY BZIHOCHOMY PYXOBI KOMIIOHEHT

AL Isawmun, 0./1. Mapinenko

JlocHiuKyeTbCss pO3BUTOK MOJIYJSIIIIHOT HECTIMKOCTI B MPOCTOPOBO-OTHOPITHOMY TBOKOMIIOHEHTHOMY 003e-
eitamreriHiBchkoMy KoHneHcati (BEK), B skoMy B3aeMO[Iit04i KOMIIOHEHTH PyXarOThCS OAWH BiIHOCHO OJHOTO 3i
MBUIKICTIO V. [TokazaHo, 10 HeNiHINHA TUHAMiKa, sSKa BEIe 0 MOAYJAIINHOI HECTIHKOCTI, BU3HAYAETHCS SIK Be-
JUYUHAMA IOCTIMHUX B3a€EMOJIM, Tak 1 BIIHOCHOI IIBUIKICTIO MiXK KOMIIOHEHTaMH. 3HAHJAEHO MaKCHUMabHUI
IHKpPEMEHT KOJIMBAaHb 1 BU3HAUYEHO MEXIi ICHYBaHHS MOJYJIALIHHOT HECTIHKOCTI B IPOCTOPI XBUIILOBHUX YHCEIL.
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