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The process of excitation of Cherenkov electromagnetic radiation by a laser pulse in ion dielectric waveguide is
investigated. Nonlinear electric polarization in isotropic ion dielectric medium and, accordingly, polarization charg-
es and currents induced by a ponderomotive force of a laser pulse are determined. Frequency spectra of the excited
wakefields in the infrared and microwave frequency ranges are obtained. The spatiotemporal structure of the wake-
field in ion dielectric waveguide is obtained and studied. It is shown that the excited field consists of a potential po-
larization electric field, as well as a set of eigen electromagnetic waves of ion dielectric waveguide.
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INTRODUCTION

An electric charge moving in a dielectric medium
with superluminal speed radiates electromagnetic waves
called Cherenkov radiation [1, 2]. The electric field of a
moving charge polarizes the atoms (ions) of the dielec-
tric medium, which in turn coherently re-radiate elec-
tromagnetic waves.

A similar effect takes place when a high-power laser
pulse propagates in a dielectric [3, 4]. A necessary con-
dition for the appearance of a Cherenkov radiation of a
laser pulse is that the group velocity of the laser pulse
must exceed the phase velocity of the radiated electro-
magnetic wave. The effect of Cherenkov radiation of a
laser pulse in a dielectric medium is as follows. When a
laser pulse propagates in a dielectric a pulsed pondero-
motive force quadratic in the laser field propagating in
the medium with the group velocity of the laser pulse
will act on the bonded electrons of the atoms (ions) of a
medium. This force, in turn, will lead to the polarization
of the atoms (ions) of the dielectric. Induced polariza-
tion charges and currents will coherently radiate elec-
tromagnetic waves (Cherenkov radiation). The effect of
the Cherenkov radiation of a laser pulse is quite similar
to the Cherenkov radiation of an electron bunch moving
in a dielectric medium, with the difference that the pon-
deromotive force of the laser pulse plays the role of the
pulse electric field of the electron bunch.

The Cherenkov wakefield radiation in a dielectric
medium of a high-power ultrashort laser pulse can be
used to accelerate charged particles similarly to a laser-
plasma wakefield acceleration method [5].

In [6, 7], the effect of the Cherenkov radiation of a
laser pulse was studied using a simple model of a die-
lectric medium consisting of atoms of the same type. A
bright example of such a medium is diamond, whose
crystal lattice consists only of carbon atoms. The carbon
atoms in diamond are held by covalent forces, which are
of a quantum nature and arise as a result of the bonding
pairs of the valence electrons of neighboring atoms
(overlapping of the wave functions of the valence elec-
trons). Atoms retain their electrical neutrality. Only the
electron shells of atoms contribute to the electric polari-
zation of covalent dielectrics. Due to large mass the
nuclei of atoms do not participate in the polarization of
dielectrics. Namely, due to the electronic nature of po-
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larization, for covalent dielectrics, the values of dielec-
tric constant in the optical frequency range and in the
static limit are close.

A much wider class of dielectrics is formed by ion-
bonded dielectrics. No pure element of the periodic ta-
ble is related to dielectrics of this class. All ion dielec-
trics are chemical compounds. lon crystals are com-
posed of positive and negative ions. These ions form a
crystal lattice as a result of Coulomb attraction of oppo-
sitely charged ions.

The traditional example of ion dielectrics are crys-
tals of an alkali-halide group with the formula 4,5,

(for example, NaCl and KCl). In crystals of this group,
it is energetically advantageous for an atom of alkali
metal to transfer its valence electron to an adjacent hal-
ide atom and fill its outer shell. As a result, an ion bond
arises between the atoms of different elements. This
bond is due to the interaction of oppositely charged
ions. Below we restrict consideration to the simplest
case of diatomic crystals. These dielectrics also include
ion crystals with the formulas A4,B,, and A4,,B,. Note

also that in ion crystals a covalent bond share is always
present. For example, in ion crystals of the alkali halide
group, in the total binding energy, it is less than 5% [8-
10].

In determining the total electric polarization induced
by a laser pulse in an ion dielectric, it is necessary to
take into account both the total contribution of the po-
larizations of the electron shells of all the ions which
form the crystal and the total contribution of the positive
and negative ions of the crystal.

In this paper, a system of nonlinear equations of

macroscopic electrodynamics is formulated, which de-
scribes the process of excitation of Cherenkov radiation
by a laser pulse in an ion dielectric medium.
On the basis of these equations, the effect of the Che-
renkov radiation of a laser pulse in a dielectric wave-
guide (light guide) will be investigated. A complete
picture of the excitation of Cherenkov radiation by a
laser pulse propagating in an ion dielectric is presented.
The frequency spectrum of Cherenkow radiation is de-
termined. The spatiotemporal structure of the Cheren-
kov electromagnetic field has been obtained and stud-
ied.
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1. PROBLEM STATEMENT.
BASIC EQUATIONS

A laser pulse (wave packet) with electromagnetic
field components propagates in a homogeneous dielec-
tric medium

EL (7,0)= %EO 7, De"" +cc.,
H,(7,0) = Lmz[é (#0)e" J+ee., (1)
Y ik, o ’

v, =k7—-wt. k is wave vector, k,=w,/c, o, is
carrier frequency of a laser pulse, E,(7,f) is a laser

pulse envelope slowly varying in space and time.

Under the action of the ponderomotive force (RF-
pressure force) a polarization arises in the dielectric,
slow on the carrier frequency scale, which in turn is the
source of the electromagnetic field of the laser pulse
(Cherenkov radiation). Maxwell's system of equations
describing the electromagnetic field, which is excited by
a polarization induced by a laser pulse, has the form

rotE:_la_H’ t]——] :la_E+4_ﬂ-a_P,
c ot cot ¢ ot
divE = —4xdivP, divH =0, Q)

P is vector of electric polarization.

In ion dielectrics there are two mechanisms of elec-
tric polarization. This is primarily an electronic polari-
zation mechanism inherent in all types of dielectrics.
Electron polarization is due to the displacement of a
shell of bound electrons relative to their nuclei under the
action of an electric field. The second polarization
mechanism is ionic; it is caused by the relative dis-
placement of oppositely charged ions. It should be noted
that such a separation of the polarization mechanisms is
not quite rigorous. A more adequate is the polarization
model, in which the ions are not only displaced, but also
deformed (the model of deformable ions [9]). Under the
action of an electric field, the electron shell of each ion
will be deformed and displaced relative to the nucleus,
so that an internal dipole moment is forms in the ion,
which will weaken the applied electric field. According-
ly, the force causing the displacement of the ions will
decrease and, as a result, the ion polarization will de-
crease. Qualitatively, this weakening effect can be taken
into account by renormalizing the ion charge or by in-
troducing the effective Scigetty charge [9]. For most ion
dielectrics, the Scigetti charge is 0.7...0.9 of the ion
charge. However, to simplify the analysis of the Che-
renkov effect of a laser pulse, we restrict ourselves to
the model of hard (non-deformable) ions.

First of all, we formulate equations describing the
electron polarization of diatomic ionic crystals induced
by a laser pulse. Induced electron polarization can be
described in the framework of the following model [10].
An atom is represented as a point nucleus surrounded by
an electron cloud. When the electron cloud is displaced
as a whole relative to the nucleus, a dipole moment of
the atom p =-Zer arises, where 7 is the radius-vector

of the electron cloud center, Ze is charge nucleus. Ac-
cordingly, a dipole returning force will act on the cloud

[11]
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- (z)
Fhf=——3—7,
RO
which leads to harmonic dipole oscillations of an atom
with its eigen frequency
zZe’
. 3)

< ng ’
R, is the radius of the atom.
In a condensed medium, each atom is in a local (act-

ing) electric field E, , which can differ substantially

loc
from the macroscopic field E included in Maxwell's
equations (2). The local electric field E]OC includes both
the external field and the total electric field of the in-
duced dipoles surrounding a given atom (ion). In a crys-

tal medium with a cubic crystal lattice, the local electric
field is described by the Lorentz formula [8 - 12]

—E+-1P, ()

Taking into account the local field effect, the expres-
sion for the ponderomotive force acting on the electrons
of the crystal ion shell from the side of the laser pulse
has the form [6, 7]

po_eat2 1 4
= wie(i)—win’ ()
f=vE,| +8L3_1[(E;v)1?:0 HEV)E] . ©

The indexes () correspond to positive and negative
ions, @, ., are frequencies (3) of the dipole oscillations

of the electron shells of ions, ¢, is the dielectric con-

stant of the medium at the frequency of the laser pulse.
The first term in (6) describes the gradient force of HF-
pressure. The second term appears only in the case of a
crystal medium and is caused by the difference between
the local electric field in a crystal and the electric field
of a laser pulse in vacuum. In dielectric media where the
active field coincides with the external field, for exam-
ple, in the gas dielectric or plasma this term is absent.

Under the action of ponderomotive force in dielec-
tric electron polarization appears

P =P 4 PO
where é(i) are the partial electron polarizations of posi-

tive and negative ions. Partial electron polarizations are
described by the following equations [6, 7]

o’ p® S 5 5
—+ wjﬁ(i)])e(i) _lw;e(i)P = La);zm(r)E_
ot 3 4r (7
_ eNO & +2 a(i)ﬁ
4m 3 17
where
al = [

2 2
m g, — O
are electron polarizabilities of individual positive and
negative ions at laser pulse frequencies,
)
L 4req N,

o) = is square of the effective plasma

m
frequency, ¢ is full charge of the electron shell of the
ISSN 1562-6016. BAHT. 2019. Ne4(122)



corresponding ion, N, is concentration of ions of each

type.

The left-hand sides of equations (7) for electron po-
larizations include complete polarization of the ion die-
lectric.

P=P"+P7+P, ®)

which also includes ion polarization 161 . lon polarization

occurs as a result of the relative displacement of posi-
tive and negative ions under the action of an electric
field. If the ions are not deformed, then the dipole mo-
ment of the unit cell of a crystal containing two ions of
opposite sign is

D = qikﬂ iéi

— p® _ pe)
=R“ -R",

where f(’fi) are the displacements of positive and nega-

tive ions from the equilibrium position, g, is ion charge.

If the crystal deformation is smooth over the microscop-
ic scale of the crystal (unit cell size), then the displace-
ments of positive and negative ions obey to the equa-
tions [6]

R(+) - - ~

pmo @R +K(R"-R7)=q, (E+4—”PJ
dr’ 3
E( ) _

m 4 S+ K(RO-RV)=—q, £E+4?”P)

which are reduced to one equation for the relative dis-
placement of ions
d’R »’ ~ 4r -
R = E+—P 9
dt2 Ca M( 3 J @)
M are ion masses, K is force parameter, is reduced
=~/ K /M is the eigen frequency of ion di-

pole oscillations. Note that since the ponderomotive
force acting on ions is inversely proportional to the
mass of the ion, then it is small and we neglected it in
equation (9). The equation for motion (9) implies the
following equation for ion polarization

mass, @,

PP -1 - 1, -
“+w. P——wo . P=—ww_E,
6t2 di” i 3 pi 472_ pi
47g;N, . .
where a)f,,. =79 N0 g the square of the ion plasma
frequency.

Thus, partial polarizations are described by a sys-
tem of coupled linear oscillators.

o’ P
2 j“P(H % 2@+(P(+)+P()+P)
t
:La)ze+E _ eNO 8], +2 a/fr)ﬁ’
4z " dm 3
2p) N 1 ﬂ ﬂ ﬂ
S+, B —w, (B +F0 +B)=
1 ’ eN, ¢, +2 (10)
= —a);eiE'__OL_al(") 1 S
4z dm 3
azﬁ[ 2 B 1 2 —(+) _’(—) D 1 2 I
— +a)di13—§a)pi(Pe + P +13)——”a)pl.E.

The external force exciting these oscillators is the
ponderomotive force from the side of the laser pulse.
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The Maxwell equations (2), together with the equa-
tions for partial polarizations (10) and the relation (8)
for the full polarization, are closed and describe the
Cherenkov excitation of electromagnetic radiation of a
laser pulse in an ion dielectric.

We will solve this system of equations by the meth-
od of Fourier transform

EG.0)= [ E, (e ™dw, PF.0= [ P (ne™do,
where Ew (r), f’w (7) are Fourier-components of the cor-
responding quantities. For example

E (F)= % j E(r,0)e” dt.

From the system of coupled equations for partial po-
larizations (10) we find the expression for the Fourier
components of the full polarization vector

P = £(@) - 1E i, (11
4
where
2
1+ 2 A(w)
&(w) = f , (12)
1-—Alow
3 ()
o > >
A@)=—P e e
0 -0 @, —0' o, —o
(+) (=)
(@) = — s+ —

2 2
a)de+_a) Wy — @

I:Iw is Fourier-component of the quadratic depend-
ence of the ponderomotive force (6) on the intensity of
the electric field of a laser pulse. The value &(w) is the
dielectric constant of a diatomic dielectric with an ion

bond. Note that the expression for the dielectric constant
(12) follows the Loretz-Lorentz relation [12]

@1 :4—”N0( Oralva),  (13)
e(wy+2 3
where
(+)( ) (i) 1
@ -a
are electron polarizabilities of ions,
2
M . — @

is ion polarizability of a pair of oppositely charged ions
in the unit cell. The relation (13) establishes a relation-
ship between the dielectric constant and the sum of the
polarizations of all particles forming the crystal.

Maxwell's system of equations for Fourier-
component of the electromagnetic field, taking into ac-
count the relation for the full polarization (11) can be
represented as

4z - _
rotH , = —ik,e(®)E, +— -]wpul’ rotk, =ik,H

e(w)divE, = 47rpmp0,, divH , =0, (14)
k, = w/c. The Fourier-components of the polarization
currents and charges induced in the dielectric by the
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ponderomotive force of a laser pulse are described by

the expressions
flmlm = ioull = ,udivlzlw . (15)

The resulting working system of equations makes it
possible to investigate Cherenkov radiation in a wide
variety of physical situations: the model of an infinite
dielectric medium, dielectric waveguides and cavities.

2. CHERENKOYV RADIATION OF A LASER
PULSE IN A DIELECTRIC WAVEGUIDE

We consider the dielectric waveguide, made in the
form of a homogeneous dielectric cylinder, the lateral
surface of which is covered with a perfectly conductive
metal film. A circularly polarized laser pulse with elec-
tric field components propagates along the axis of the

waveguide
i .
EOX = EOW(I.7T) 4 EOy = 1E:Ox 2

12

v=[R(r)T(x)]".
The function R(r) describes the radial profile of the
R(0)=1,

R(r=b)=0, b is the waveguide radius, the function
I'(z)

T:t—z/vg

(o8] p polw

(16)

- |2
laser  pulse  intensity I, :|E0| ,

describes the longitudinal profile,

, V, 1s the group velocity, maxT'(7) =1, I,
is the maximum intensity.
From the system of Maxwell equations (14) the

wave equation for the longitudinal Fourier component
of the Cherenkov electric field follows

0 k
Lm_i_oj-m .(17)
e(w) 0Oz c

Fourier-components of polarization charges and cur-
rents P, > Jpon are defined by expressions (15). For a

AE, +kie(®)E,, = 41{

circularly polarized laser pulse (16), these expressions
take the form

-1
ppolm = “|:(AJ_ _kz )Im (r)+ SL

| m(r)} "7 (18)

=—ok,ul, (r)eikgZ , (19)

A is the transverse part of Laplaci-

Jopoto
where k, =w/v,,
an, I (r) is Fourier component of the intensity of the
laser pulse field. We introduce a function

D,, =&(®)E, —4mik, pl, (r). (20)
For this function, instead of equation (17), taking in-

to account relations (18), (19), we obtain the equation
L1k

¢"’A 1, (r). 21)

has a simple physical meaning

AD,_, +k(2)a((n)DmZ =

The function D,
and is a longitudinal Fourier-component of the longitu-
dinal electric induction D, =E, +4nP,, taking into
account the polarization (11) caused by the action of the
ponderomotive force of the laser pulse.

The longitudinal component of electrical induction
should be sought as a series of Bessel functions.
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(22)

D, =e 3, (o ( b}

where A, are the roots of the Bessel function J(x).
Using the orthogonality of the Bessel functions
Jo(A,r/b), from the equation (21) we find the expan-

sion coefficients

C, (@) = 4k, uZt— Ly (o) (23)

A (60)

Here
A p, b’ t r
5n:b2 Nn’N”:?J]z(ﬂ'n)’p":.(l).R(r)JO /’an rdr,

1 K iot
T(w):ELT(z’)e dr

}\‘2
A, (0) =kie(o) —kz - b;

24

Taking into account relations (22) - (24), we obtain
the following expression of Fourier component of the
longitudinal electric field

E, (r)= 4,T(@)G(r,w)e". (25)
Here
G(r,w) = ia)g(w—)-’_zr(a})d)w(r) -
3¢(w) 26)
(s, —1)[8(a))+2] r
18 ()ggkA() V }

& —-1& 0, r
L6 Zk—zJo (zn Zj,kj =k +A7 /b,

n=1 "y,

O, (r)=R(r)+

Accordingly, the longitudinal component of the ex-
cited electric field can be represented as a convolution

EZ(}",Z') = Aoi T T(TO)G(rar_TO)dTO >

where

27

G(r,t—17,) = L I G(r,w)e " dw (28)
2r

is Green function. For further analysis, we will present
the Green function in the form

G(r,r—1,)=G(r,t—1)+G, (r,t—7,), (29)
G,(r,f—ro):iTa)g(w)+2r(w)d) (e do,

% 3 &0

( jS (r—-1,),

g(a))+2 k IN'w) o g g

3 kA (a))

The Green function actually describes the structure
of the wakefield in a dielectric medium excited by a
laser pulse with a & — shaped longitudinal intensity pro-
file. Moreover, the term G, (7,7 —7,) takes into account

G, (r,t—1,)=

Sn(r—ro):iTw

—0

the excitation of potential longitudinal oscillations of
the ionic dielectric, and the term G, (r,7—1,) describes

the excitation of transverse electromagnetic waves.
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2.1. FREQUENCY DISPERSION OF DIELECTRIC
PERMEABILITY

The Green's function (28) and, accordingly, the
wakefield (27) are largely determined by the value and
frequency dispersion of the dielectric constant &(w)
determined by the formula (12). For the qualitative
analysis of this dependence, the expression for the die-
lectric constant can be conveniently represented as
(0" -~ w,)(@ — 0, ) -a],)
(@ ~ 2~ N~k

Le+

&(0) = . (30)

where o,,,0

Le+) are the roots of the cubic equation

with respect to the square of the frequency

A(a)):—%. 31)

It is easy to show that all three roots are positive, i.e.
the frequencies are real. At these frequencies, the dielec-
tric permeability is zero. The frequency @, is the fre-

quency of longitudinal optical phonons and belongs to

the infrared frequency range. Frequencies w,,,, are the

frequencies of longitudinal polarization electron oscilla-
tions and are in the optical or even ultraviolet frequency
ranges. The specified frequencies are in the intervals

a)d - > a)Li > a)di’ a)de+ > a)Le— > a)de—’ a)de— < a)Le+ N

e
For definiteness, we assumed that @w,,, > w,,_. Since

the frequencies of the longitudinal ion and electron os-
cillations are very different, the roots of the cubic equa-
tion (30) can be found approximately

w;, =) +——"—a, (32)

1 2 16
2 _ 2 2 2 2 2 2
a)Le(i) - E a)ge+ + a)gef x (a)ge+ + a)gef ) + 3 a)pe+a)pe7 N

2 2
Doy = ey T 3 Prec
2
1+=A 2 2
e = 3" Bper | Dpe-
opt ’ opt — 2 2
1- l A a)de+ wde+
3 opt

&,, 1s dielectric permeability of an ion crystal in the

optical frequency range

., >>w° >> max(a);[,
The poles of the dielectric constant (30) are the roots
of the cubic equation with respect to the square of the

frequency

@) -

ANw)=3. (33)
This cubic equation has three positive roots too.
These roots correspond to the frequencies @y, @y, ., -

These frequencies are the absorption lines of the elec-
tromagnetic waves of an ion crystal. In the vicinity of
these frequencies, the imaginary part of the dielectric
constant and, accordingly, the energy losses of electro-
magnetic waves increase greatly. The frequency of ab-
sorption by the ion subsystem is the frequency of trans-
verse optical phonons. Note that the optical longitudinal
and transverse ion oscillation branches are characterized
by the fact that in the unit cell of the crystal oppositely
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charged ions are displaced towards each other. At the
same time, the center of gravity of the unit cell remains
motionless. As in the case of longitudinal optical pho-
nons, the frequencies of transverse optical phonons lie
in the infrared range. Electron resonance absorption
frequencies are in the optical ranges. For the indicated
frequencies from the cubic equation (33) we find the
following approximate expressions

3-A g, +2
a)z_ — a)2~ st — C()ZA opt , 34
Ti di 3 _ Aupt di «9” + 2 ( )
> 1+ 2 A,
A, =—2+A -_3
st 2 opt? gﬂ = >
wy; 1
1--A,
3

a):e(i) = a)je(i) _%a);e(i)'

From the obvious requirement &, >1 from equality
(35) it follows that for ion crystal dielectrics the condi-
tion on the parameter value 3> A, >1 is always satis-
fied. Note also that the expression for the frequency of
transverse optical phonons (34) implies that when it
tends to zero A, — 3, and the static dielectric constant
increases indefinitely &, — oo (the phenomenon of

"polarization catastrophe" [12]).
In the frequency range

W << oy, (35)
the dielectric permeability of the ion crystal frequency
independent and has constant value ¢ =&, , where

, = 2 B Ol (36)

o, @y, @
is the static dielectric constant. On the other hand in the
optical frequency range

0, >> @ >> o), (37)
dielectric permeability is also constant & =¢,,
2 2
a)Le— a)Le+
Ep =55 (38)
a)Tef a)T
And for all ion dielectrics always ¢, > ¢,, . We note

that from the expressions (36) and (38) imply the well-
known Liddane-Sachs-Teller relation [12]

2
a)Li — g.\'t

O &y

relating the ratio of the frequency of longitudinal and
transverse optical phonons with the values of the static
and optical dielectric constants. From inequality

&, > ¢&,, important conclusion follows. Since Cheren-

kov radiation appears for a laser pulse when the condi-
tion

is satisfied and the group velocity of the laser pulse in

the optical range is equal v, =1/,/¢,, , then in the ion

AR
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crystal the condition for the appearance of Cherenkov
radiation in the microwave and terahertz ranges is al-
ways fulfilled.

The expression for the dielectric constant of the ion
dielectric (12) can be given the usual and comfortable
look

2 2 2
E(a))—l— Qp[ _ Qpe+ Qpe—

2 2 2 2 2 2
O - O @, O =0,

Here, the plasma frequencies are defined as follows

Qz _ (gupl + 2) 2
pi 9 @y 5
2
.
2 e+ 2 2 2
pe+ 0)2 2 |:a)Te7 (gopt - 1) - sz + a)Te] s
Te+ Te—
a)2
2 e 2 2 2
Qpef - COZ 2 [a)T€+ (gopl - 1) - a)Le + wTe:| H
Te+ Te—

a)Ze = wL25+ + a)l%ef’ a)Tz"e = a)lz"e+ + wZZ"ef *
Fig. 1 shows the qualitative dependence of the die-
lectric constant on frequency, described by formula

(30).
{ \
|

]

Ew) j

] /

Gl 4, /Q{e_ Q%E*
[
Fig. 1. Dependence of the dielectric constant

on frequency

2.2. DISPERSION PROPERTIES OF ION
DIELECTRIC WAVEGUIDE

»wMm
+

. Sea

Let us now briefly discuss the question of the propa-
gation of electromagnetic waves in an ion dielectric
waveguide. Dispersion equations for potential longitu-
dinal oscillations and electromagnetic waves have the
form

e(w)=0, 39)
o’ 2 nz
= e(w)—k; e =0, (40)

k. is longitudinal wave number. The dielectric constant
is described by the formula (30).

Fig. 2 shows the qualitative dependences of the fre-
quency on the longitudinal wave number £, . In total,
there are three branches of longitudinal oscillations

D=0, 1y
and four branches (1) - (4) of electromagnetic waves.
The low-frequency branch corresponds to the longitudi-
nal optical phonons, and the other two branches are po-
larization electron oscillations. As for the electromag-
netic branches, the lowest frequency (ion) branchl is in
the infrared and microwave ranges.

o > o (k) >0, ,

44

o, =Ac/bye, is low frequency ion cutoff frequen-
cy.

In the frequency range @, >> @ >> w,_, the disper-
sion curve has a linear plot @ =k_c/ /¢, .
i ,
4
Wie
Ye, / T
/ 5
We o
Wi : =
Qe ] -
f“ 2
w,; / ]
@ —/ -
@, / —
7
ey | - ] o
=
ks

Fig. 2. Dispersion curves of ion dielectric
for longitudinal oscillations and electromagnetic waves
on the plane (w,k_)

The frequencies of the electromagnetic branch 2 are
within @, >o,(k)>e, ~o,, o, ishigh frequen-
cy ion cutoff frequency The low-frequency section of
this branch corresponds to the infrared frequency range
and the high-frequency region corresponds to the optical
one. This branch also has a linear dispersion region

w=k.c/,/e,, . The tilt angle of this line exceeds the

tilt angle of the straight section of branch 1. And finally,
branches 3 and 4 are purely electron branches and locate
in the optical and ultraviolet frequency ranges. The
phase velocity of electromagnetic waves belonging to
the fourth branch exceeds the speed of light and in the
limiting case approaches it.

2.3. CALCULATION OF GREEN'S FUNCTION

The Green function (29) contains two terms that de-
scribe the excitation of longitudinal potential oscilla-
tions and electromagnetic waves. The potential Green's
function G,(r,z—7,) has only simple poles, which are

the zeros of the dielectric constant &£(w)=0. The fre-

quency spectrum of longitudinal oscillations contains
the frequency of longitudinal optical phonons ,, and

the frequencies @,, ., of electron polarization oscilla-

tions. Below we restrict ourselves to the study of wake
fields in the infrared and lower frequency ranges. This is
due to the fact that for effective wake field excitation by
a laser pulse necessary to achieve coherency of excita-
tion. For this, it is necessary that the longitudinal and
transverse dimensions of the laser pulse be smaller (sub-
stantially less) than the length of the radiated wave. For
the optical and especially the ultraviolet frequency
ranges, this requirement is very problematic. And if this
requirement is not satisfied, the amplitude of the wake
waves will be negligible.
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Calculating the residues in the integral G,(r,7—1,)
at the poles w=+w,, —i0, we find the following ex-
pression for the potential Green function

Ar 5 &y~

G = Twu

where (7 —7,) is the Heaviside function,

@, (rHr—-r7,)cosw,, (1 —1,),(41)

st~ opt

O,(r) = R(r)+ S k _[G (r,1,)R(ry)rydry,

G (rur) = 1 {Io (kr)A,(kr), r<r,

Iy(kb) (L, (kr)A (kr), r>1,

8y (ki) = Iy (kK ()~ 1, (YK (k)
a(*) (Z( )
ki =y, /Vg, FO = w:26+ + wggﬁ

Term in the total Green's function (29) G, (r,7—17,)
describes the Cherenkov excitation of the eigen elec-
tromagnetic waves of the dielectric waveguide. Inte-
grands of Fourier integrals S, (r —7,) contain only sim-
ple poles, which are the roots of the equation

A (w)=0. (42)

As we are interested in the infrared (microwave)

frequency range equation (42) three pairs of roots. Two
of them are located on the real axis

(43)

1/4
+ O 44
w=21o, _10’ Wy = A O, O, 2 2 4 ( )
gapta)Te - a)Le
_Ac
n b 2

and one pair @ = +iw,, on the imaginary axis. Calculat-

ing the residues in these poles we find the expression for
the Green function

G, =-—e,' -1, )Z a)mo-n‘]‘) ( " j cosw, (t—7,)—

e \,Zwe,lo:lf( ngj[s(r—wcosww(r 7)-

n=l1

—%sign(r —z,)e %l }, (45)
where
P, (g, ~ (g, +2) (e, —D(&,, +2)
Gn: ’est:—’ opl:—'
Nn g.vt gopr

The first term in the expression for the electromag-
netic Green's function (45) describes the electric field in

the microwave (terahertz) frequency range a)fl. >> a)fl

(ion branch 1) and is a set of eigen electromagnetic
waves with frequencies @,, . The second term in expres-

sion (45) describes a purely electron electromagnetic
field and belongs to branch 2 in the infrared frequency
range w;, >> @ >>w;,. The longitudinal structure of
this field is more complicated. Each radial harmonic
contains a wake monochromatic wave, as well as a bi-
polar antisymmetric solitary pulse. Moreover, the height

of this pulse is exactly two times smaller than the ampli-
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tude of the wake wave. The characteristic width of the
polarization pulse is equal to the reverse frequency of
the wake wave A7 =1/w,, . We also note an important

point. Since the amplitudes of the waves entering the
Green function are proportional to the square of their
frequencies, the electron electromagnetic waves will
have a larger amplitude compared to the ion waves.

2.4. THE EXCITATION OF WAKE FIELD
BY LASER PULSE

The wakefield excited by a laser pulse is described
by convolution (27), in which the Green function is the
key element. We first consider the excitation of longitu-
dinal optical phonons. Using the potential polarization
part of the Green function (41), we obtain the following
expression for the wake field of longitudinal optical
phonons

E (r,t1)=E, 0,1 Z(w,7), (46)

where

Z(wT) ——j

L

( jcos o(t—1,)dt,,
tL

2w (8 +2)(6‘ —-& )ea)z. v t1
ELI. _ =t opt st opt 2Ll _8t KL ag ,

9 £,8 v, T
2
e
_ 2 _ 2 2 2 _
x, =L ,Nw;, r,=e /mc", a, —[ ] 1.
L

t, is characteristic duration of a laser pulse.

stCopt e o
meo,

The function Z(wr) describes the distribution of the
wakefield on frequency @ in the longitudinal direction
at each moment of time. We will consider a laser pulse
with a symmetric longitudinal profile 7(z,) =T(-t,).
The wake function Z(w7) is conveniently represented
as

Z(w7) =T(Q)I(7)cos wr — X(T),
where Q = wt,

(47

,T =1/t
T(Q) = zT T () cos(Qs)ds.

The first term in (47) describes the wake wave prop-
agating behind the laser pulse. The amplitude of the
wake wave is equal to the Fourier amplitude function

T(z,/t,), which describes the longitudinal profile of

the laser pulse. The second term in (47) describes a bi-
polar antisymmetric pulse of a polarization field local-
ized in the region of a laser pulse. The field of this pulse
decreases and tends to zero with increasing distance
from the laser pulse.

Behind a laser pulse, the wakefield (46) of longitudi-
nal optical phonons has the form of a monochromatic
wave

E (r,t)= EL,.CDi(r)f(QU)cos w, 7, Q,=w,,.

Let us give expressions for the Fourier amplitude
T (Q,,) for two model longitudinal profiles of a laser
pulse: a Gaussian and a power ones

T(z,/t)=e ", T(Q)=\me™",  (48)
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L
l+z) /1t

Longitudinal optical phonons are most efficiently ra-
diated when the coherence condition ,;f, <1 is satis-

i

T(z,/t,)= T(Q)=re®.

fied. If the condition w,,f, >>1 is satisfied, then the lon-

gitudinal optical phonons are radiated incoherently and
the amplitude of the wake wave is exponentially small.
Let us now consider the excitation of electromagnet-
ic waves by a laser pulse. Taking advantage of the elec-
tromagnetic Green's function, we obtain the wake elec-
tromagnetic field as a superposition of radial harmonics

0 2
Etz (r! T) = _Eti Zw_izo-njo [ﬂ’n ij Z(a)inT) -
, b

n=1

© 2
~E,Y %, ), (ﬂn fj[zwanr)—lY(wmr)},

n=1 0 b 2
where

Y(a)enr) = I T(TO /tL )Ylgl’l(z' - TO )e_weu‘r_rﬂ‘dz-o ,

—0

2
T Eopt +2 Vgl‘L ew, ,
Eu.zﬁeﬂ 3 K — 4 COO:C/b,
rcl Vg

2
VA Eopt+2K vgtL ew, ,
3 3 2 -
rcl Vg

Eti = % eupt

Behind the laser pulse 7/t, >>1, o

T >>1, the
pulse fields are negligible and only the set of eigen

waves of the dielectric waveguide remains
0 2
Etz (V, T) = _E/i z a)i; O-nJO (ﬂ’n le(Qm ) COS(C()MT)
el @) b
o 2

[9)
n
—E, Z 2
n=l1

@,

(49)
c,J, [/1,1 %j f"(Qen )cos(w,, 7).

Let us consider, for example, a laser pulse that has a
Gaussian profile both in the longitudinal direction (48)
and in the transverse one

R(ry /1) = exp(—qu /VLZ)

moreover, the radius of the laser pulse is small com-
pared with the radius of the dielectric waveguide
r, <<b. In this case, for the expansion coefficients in

the series (49) we have
2 Inti
o = o ! e W
"D I

Accordingly, for the wake electromagnetic field in-
stead of (49) we obtain

= 2 ot
E (r.)==zY.0,J, (ﬂn %){Eﬁ a)—’;’e + cos(m, )+
n=l1 CUO

@, i }
+E,—%e * cos(w,r)|. (50)
wO

Amplitudes of wake electromagnetic waves are pro-
portional to the square of their frequencies. Therefore, a
short laser pulse will predominantly excite electron
electromagnetic waves, since their frequencies greatly
exceed the frequencies of ion electromagnetic waves
o,, >> o, . But the number of these waves is limited by

inequality ,t, <1. If the laser pulse is long at the
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scale of the minimum period of electron electromagnet-
ic waves @, t, >1, but short compared with the periods

of ion electromagnetic waves o,

.1, <<1, then low-
frequency ion electromagnetic waves will be most ef-
fectively excited. Under these conditions, only low-

frequency waves are emitted coherently by a laser pulse.
CONCLUSIONS

In this work, the process of excitation of wake Ce-
renkov radiation by a laser pulse in an ion dielectric
waveguide is investigated. For definiteness, a diatomic
ion crystal medium is considered. The nonlinear electric
polarization of the ion dielectric medium, induced by
the ponderomotive force with the side of the laser pulse,
is determined. The total electric polarization in the ion
dielectric includes the electron polarization of the elec-
tron shells of ions of opposite charges, as well as the ion
polarization proper, due to the displacement of ions in
the electric field. A system of three strongly coupled
linear oscillator equations is obtained, which describes
the excitation of partial electric polarizations of an ion
dielectric by a ponderomotive force from the side of a
laser pulse. The solution of these equations is obtained
and the complete polarization in a diatomic ion dielec-
tric medium is determined. Accordingly, expressions are
obtained for polarization charges and currents, which, in
turn, are the source of Cerenkov wake waves. The fre-
quency spectrum and the space-time structure of the
Cherenkov wake field, excited by a laser pulse in an ion
dielectric waveguide, is determined. It is shown that in
the infrared (microwave) frequency range, the excited
wake electric field consists of a potential field of longi-
tudinal optical phonons and a set of eigen wake elec-
tromagnetic waves of a dielectric waveguide. The die-
lectric constant in the infrared (microwave) frequency
range in ion dielectrics always exceeds the dielectric
constant in the optical range. Therefore, the condition of
the Cherenkov radiation of a laser pulse in ion dielec-
trics is always satisfied.
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YEPEHKOBCKOE U3JTYYEHHUE JIASEPHOT'O UMITYJIBbCA B MOHHOM JIUDJIEKTPUKE
B.A. Banakupes, H.H. Onuwenko

Hccnenoan mporecc Bo30Yy»KIEHHST YEPEHKOBCKOTO 3JIEKTPOMArHUTHOTO M3JIyYEHUs! JIAa3ePHBIM HUMITYJIbCOM B
HMOHHOM JH3JIEKTPUYECKOM BOJIHOBoJE. OnpenenieHa HeNMHEWHas dJIEKTpHUYecKas MOJIsIpU3alisd B MOHHON JUAJIEK-
TPUYECKOH Cpefe M, COOTBETCTBCHHO, MOJIAPU3ALIMOHHbBIE 3apsAlbl M TOKH, MHIYLHPOBAaHHBIE MOHAESPOMOTOPHOU
CHJIOHN CO CTOPOHBI JIa3epHOT0 uMIyibca. IlorydeHa u ucciae10BaHa MPOCTPaHCTBEHHO-BPEMEHHAsI CTPYKTYpa KHUJIb-
BaTEPHOTO TOJII B NOHHOM JH3JIEKTPUYECKOM BOHOBOJE. [loka3zaHo, 4To BO30YXkaeMO€ II0JIE COCTOUT M3 MOTEH-
IUAJIBHOTO TOJIIPU3AIMOHHOTO HJIEKTPHIECKOTO TIOJIS IPOJOJIBHBIX ONTHYECKUX (POHOHOB M HaOOpa COOCTBEHHBIX
JIEKTPOMAarHUTHBIX BOJIH HOHHOTO AMAIEKTPHYECKOTO BOJHOBOA.

YEPEHKOBCBHKE BUITPOMIHIOBAHHSI JIABEPHOT O IMITYJIBCY B IOHHOMY AIEJEKTPUKY
B.A. Banaxipes, .M. Oniwenxo

Jocunimkeno npouec 30yPKEHHS! YepeHKOBCHKOTO €JIEKTPOMArHITHOTO BHIIPOMIHIOBAHHS JIA3€PHUM IMITYJIbCOM
B IOHHOMY JIIeJIEKTPUYHOMY XBHJIEBOJIi. Bu3HaueHa HesiHIHA eleKTpUYHA NOJISIPHU3allisl B IOHHOMY JIIeJIeKTPHYHO-
MY CEepe/IOBHIIII Ta, BiAMOBIIHO, MOJSIPU3ALINHI 3apsAM 1 CTPYMH, 1HIYKOBaHI MOHIEPOMOTOPHOIO CHIIOI 3 OOKY
na3epHOro iMmyabcy. OTpuMaHa Ta TOCHiIKeHa MPOCTOPOBO-4acoBa CTPYKTYpa KiIbBATEPHOTO MOJIS B AiCICKTPU-
HoMy xBuiieBo/i. [TokazaHo, 110 30y KyBaHe MMoJie CKIIaAa€EThCs 3 MOTEHIIANBHOTO TOJISIPU3AIiHOTO eJIeKTPUYHOTO
TTOJIS TO3IOBXKHIX ONTHYHUX (DOHOHIB Ta HAOOPY BIACHHUX €JIEKTPOMATHITHUX XBHJIb I0HHOTO JIEJIEKTPUIHOTO XBH-
JEBOLY.
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