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The process of excitation of Cherenkov electromagnetic radiation by a laser pulse in ion dielectric waveguide is 
investigated. Nonlinear electric polarization in isotropic ion dielectric medium and, accordingly, polarization charg-
es and currents induced by a ponderomotive force of a laser pulse are determined. Frequency spectra of the excited 
wakefields in the infrared and microwave frequency ranges are obtained. The spatiotemporal structure of the wake-
field in ion dielectric waveguide is obtained and studied. It is shown that the excited field consists of a potential po-
larization electric field, as well as a set of eigen electromagnetic waves of ion dielectric waveguide.  

PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq 
 

INTRODUCTION 
An electric charge moving in a dielectric medium 

with superluminal speed radiates electromagnetic waves 
called Cherenkov radiation [1, 2]. The electric field of a 
moving charge polarizes the atoms (ions) of the dielec-
tric medium, which in turn coherently re-radiate elec-
tromagnetic waves. 

A similar effect takes place when a high-power laser 
pulse propagates in a dielectric [3, 4]. A necessary con-
dition for the appearance of a Cherenkov radiation of a 
laser pulse is that the group velocity of the laser pulse 
must exceed the phase velocity of the radiated electro-
magnetic wave. The effect of Cherenkov radiation of a 
laser pulse in a dielectric medium is as follows. When a 
laser pulse propagates in a dielectric a pulsed pondero-
motive force quadratic in the laser field propagating in 
the medium with the group velocity of the laser pulse 
will act on the bonded electrons of the atoms (ions) of a 
medium. This force, in turn, will lead to the polarization 
of the atoms (ions) of the dielectric. Induced polariza-
tion charges and currents will coherently radiate elec-
tromagnetic waves (Cherenkov radiation). The effect of 
the Cherenkov radiation of a laser pulse is quite similar 
to the Cherenkov radiation of an electron bunch moving 
in a dielectric medium, with the difference that the pon-
deromotive force of the laser pulse plays the role of the 
pulse electric field of the electron bunch. 

The Cherenkov wakefield radiation in a dielectric 
medium of a high-power ultrashort laser pulse can be 
used to accelerate charged particles similarly to a laser-
plasma wakefield acceleration method [5]. 

In [6, 7], the effect of the Cherenkov radiation of a 
laser pulse was studied using a simple model of a die-
lectric medium consisting of atoms of the same type. A 
bright example of such a medium is diamond, whose 
crystal lattice consists only of carbon atoms. The carbon 
atoms in diamond are held by covalent forces, which are 
of a quantum nature and arise as a result of the bonding 
pairs of the valence electrons of neighboring atoms 
(overlapping of the wave functions of the valence elec-
trons). Atoms retain their electrical neutrality. Only the 
electron shells of atoms contribute to the electric polari-
zation of covalent dielectrics. Due to large mass the 
nuclei of atoms do not participate in the polarization of 
dielectrics. Namely, due to the electronic nature of po-

larization, for covalent dielectrics, the values of dielec-
tric constant in the optical frequency range and in the 
static limit are close. 

A much wider class of dielectrics is formed by ion-
bonded dielectrics. No pure element of the periodic ta-
ble is related to dielectrics of this class. All ion dielec-
trics are chemical compounds. Ion crystals are com-
posed of positive and negative ions. These ions form a 
crystal lattice as a result of Coulomb attraction of oppo-
sitely charged ions. 

The traditional example of ion dielectrics are crys-
tals of an alkali-halide group with the formula I VIIA B  
(for example, NaCl and KCl). In crystals of this group, 
it is energetically advantageous for an atom of alkali 
metal to transfer its valence electron to an adjacent hal-
ide atom and fill its outer shell. As a result, an ion bond 
arises between the atoms of different elements. This 
bond is due to the interaction of oppositely charged 
ions. Below we restrict consideration to the simplest 
case of diatomic crystals. These dielectrics also include 
ion crystals with the formulas II VIA B  and III VA B . Note 
also that in ion crystals a covalent bond share is always 
present. For example, in ion crystals of the alkali halide 
group, in the total binding energy, it is less than 5% [8-
10]. 

In determining the total electric polarization induced 
by a laser pulse in an ion dielectric, it is necessary to 
take into account both the total contribution of the po-
larizations of the electron shells of all the ions which 
form the crystal and the total contribution of the positive 
and negative ions of the crystal. 

In this paper, a system of nonlinear equations of 
macroscopic electrodynamics is formulated, which de-
scribes the process of excitation of Cherenkov radiation 
by a laser pulse in an ion dielectric medium. 
On the basis of these equations, the effect of the Che-
renkov radiation of a laser pulse in a dielectric wave-
guide (light guide) will be investigated. A complete 
picture of the excitation of Cherenkov radiation by a 
laser pulse propagating in an ion dielectric is presented. 
The frequency spectrum of Cherenkow radiation is de-
termined. The spatiotemporal structure of the Cheren-
kov electromagnetic field has been obtained and stud-
ied. 
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1. PROBLEM STATEMENT.  
BASIC EQUATIONS 

A laser pulse (wave packet) with electromagnetic 
field components propagates in a homogeneous dielec-
tric medium 
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is wave vector, 0 /Lk cω= , Lω  is 

carrier frequency of a laser pulse, 0 ( , )E r t


  is a laser 
pulse envelope slowly varying in space and time. 

Under the action of the ponderomotive force (RF-
pressure force) a polarization arises in the dielectric, 
slow on the carrier frequency scale, which in turn is the 
source of the electromagnetic field of the laser pulse 
(Cherenkov radiation). Maxwell's system of equations 
describing the electromagnetic field, which is excited by 
a polarization induced by a laser pulse, has the form 
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 is vector of electric polarization. 
In ion dielectrics there are two mechanisms of elec-

tric polarization. This is primarily an electronic polari-
zation mechanism inherent in all types of dielectrics. 
Electron polarization is due to the displacement of a 
shell of bound electrons relative to their nuclei under the 
action of an electric field. The second polarization 
mechanism is ionic; it is caused by the relative dis-
placement of oppositely charged ions. It should be noted 
that such a separation of the polarization mechanisms is 
not quite rigorous. A more adequate is the polarization 
model, in which the ions are not only displaced, but also 
deformed (the model of deformable ions [9]). Under the 
action of an electric field, the electron shell of each ion 
will be deformed and displaced relative to the nucleus, 
so that an internal dipole moment is forms in the ion, 
which will weaken the applied electric field. According-
ly, the force causing the displacement of the ions will 
decrease and, as a result, the ion polarization will de-
crease. Qualitatively, this weakening effect can be taken 
into account by renormalizing the ion charge or by in-
troducing the effective Scigetty charge [9]. For most ion 
dielectrics, the Scigetti charge is 0.7…0.9 of the ion 
charge. However, to simplify the analysis of the Che-
renkov effect of a laser pulse, we restrict ourselves to 
the model of hard (non-deformable) ions. 

First of all, we formulate equations describing the 
electron polarization of diatomic ionic crystals induced 
by a laser pulse. Induced electron polarization can be 
described in the framework of the following model [10]. 
An atom is represented as a point nucleus surrounded by 
an electron cloud. When the electron cloud is displaced 
as a whole relative to the nucleus, a dipole moment of 
the atom p Zer= −

   arises, where r is the radius-vector 
of the electron cloud center, Ze  is charge nucleus. Ac-
cordingly, a dipole returning force will act on the cloud 
[11] 
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which leads to harmonic dipole oscillations of an atom 
with its eigen frequency 

2

3
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0R  is the radius of the atom.  
In a condensed medium, each atom is in a local (act-

ing) electric field locE


, which can differ substantially 

from the macroscopic field E


 included in Maxwell's 
equations (2). The local electric field locE



 includes both 
the external field and the total electric field of the in-
duced dipoles surrounding a given atom (ion). In a crys-
tal medium with a cubic crystal lattice, the local electric 
field is described by the Lorentz formula [8 - 12] 
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Taking into account the local field effect, the expres-
sion for the ponderomotive force acting on the electrons 
of the crystal ion shell from the side of the laser pulse 
has the form [6, 7] 
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The indexes ( ± ) correspond to positive and negative 
ions, ( )deω ±  are frequencies (3) of the dipole oscillations 
of the electron shells of ions, Lε  is the dielectric con-
stant of the medium at the frequency of the laser pulse. 
The first term in (6) describes the gradient force of HF-
pressure. The second term appears only in the case of a 
crystal medium and is caused by the difference between 
the local electric field in a crystal and the electric field 
of a laser pulse in vacuum. In dielectric media where the 
active field coincides with the external field, for exam-
ple, in the gas dielectric or plasma this term is absent. 

Under the action of ponderomotive force in dielec-
tric electron polarization appears 
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e e eP P P+ −= +
  

, 

where ( )
eP ±


 are the partial electron polarizations of posi-
tive and negative ions. Partial electron polarizations are 
described by the following equations [6, 7] 
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are electron polarizabilities of individual positive and 
negative ions at laser pulse frequencies, 
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± =  is square of the effective plasma 

frequency, ( )q ±  is full charge of the electron shell of the 
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corresponding ion, 0N  is concentration of ions of each 
type. 

The left-hand sides of equations (7) for electron po-
larizations include complete polarization of the ion die-
lectric. 

( ) ( )
e e iP P P P+ −= + +
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,                        (8) 

which also includes ion polarization iP


. Ion polarization 
occurs as a result of the relative displacement of posi-
tive and negative ions under the action of an electric 
field. If the ions are not deformed, then the dipole mo-
ment of the unit cell of a crystal containing two ions of 
opposite sign is 

( ) ( ), ,i i i i i ip q R R R R+ −= = −
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  

where ( )
iR ±


are the displacements of positive and nega-
tive ions from the equilibrium position, iq is ion charge. 
If the crystal deformation is smooth over the microscop-
ic scale of the crystal (unit cell size), then the displace-
ments of positive and negative ions obey to the equa-
tions [6] 
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which are reduced to one equation for the relative dis-
placement of ions 

2
2

2

4
3

i i
di i

d R q
R E P

Mdt
πω  + = + 

 

d

ddd 

,              (9) 

( )M ± are ion masses, K  is force parameter, is reduced 
mass, /di K Mω =  is the eigen frequency of ion di-
pole oscillations. Note that since the ponderomotive 
force acting on ions is inversely proportional to the 
mass of the ion, then it is small and we neglected it in 
equation (9). The equation for motion (9) implies the 
following equation for ion polarization 
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frequency. 
Thus, partial polarizations are described by a sys-

tem of coupled linear oscillators. 
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The external force exciting these oscillators is the 
ponderomotive force from the side of the laser pulse. 

The Maxwell equations (2), together with the equa-
tions for partial polarizations (10) and the relation (8) 
for the full polarization, are closed and describe the 
Cherenkov excitation of electromagnetic radiation of a 
laser pulse in an ion dielectric. 

We will solve this system of equations by the meth-
od of Fourier transform 
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  are Fourier-components of the cor-
responding quantities. For example 
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From the system of coupled equations for partial po-
larizations (10) we find the expression for the Fourier 
components of the full polarization vector 
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ωΠ
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is Fourier-component of the quadratic depend-
ence of the ponderomotive force (6) on the intensity of 
the electric field of a laser pulse. The value ( )ε ω  is the 
dielectric constant of a diatomic dielectric with an ion 
bond. Note that the expression for the dielectric constant 
(12) follows the Loretz-Lorentz relation [12] 
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is ion polarizability of a pair of oppositely charged ions 
in the unit cell. The relation (13) establishes a relation-
ship between the dielectric constant and the sum of the 
polarizations of all particles forming the crystal. 

Maxwell's system of equations for Fourier-
component of the electromagnetic field, taking into ac-
count the relation for the full polarization (11) can be 
represented as 

0 0
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0 /k cω= . The Fourier-components of the polarization 
currents and charges induced in the dielectric by the 
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ponderomotive force of a laser pulse are described by 
the expressions 

,pol polj i divω ω ω ωωµ ρ µ= Π = Π
dd

d

.         (15) 
The resulting working system of equations makes it 

possible to investigate Cherenkov radiation in a wide 
variety of physical situations: the model of an infinite 
dielectric medium, dielectric waveguides and cavities. 

2. CHERENKOV RADIATION OF A LASER 
PULSE IN A DIELECTRIC WAVEGUIDE 
We consider the dielectric waveguide, made in the 

form of a homogeneous dielectric cylinder, the lateral 
surface of which is covered with a perfectly conductive 
metal film. A circularly polarized laser pulse with elec-
tric field components propagates along the axis of the 
waveguide 
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The function ( )R r  describes the radial profile of the 

laser pulse intensity 
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( )R r b 0= = , b  is the waveguide radius, the function 
( )T τ  describes the longitudinal profile, 

/ ,gt z vt = − gv  is the group velocity, ( ) 1,maxT τ =  0I  
is the maximum intensity. 

From the system of Maxwell equations (14) the 
wave equation for the longitudinal Fourier component 
of the Cherenkov electric field follows  

pol2 0
z 0 z zpol

k1E k ( )E 4 i j
( ) z c

ω
ω ω ω

∂ρ 
∆ + ε ω = p − ε ω ∂ 

. (17) 

Fourier-components of polarization charges and cur-
rents polωρ , zpolj ω  are defined by expressions (15). For a 
circularly polarized laser pulse (16), these expressions 
take the form 
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where /g gk vω= , ⊥∆ is the transverse part of Laplaci-
an, I ( )rω  is Fourier component of the intensity of the 
laser pulse field. We introduce a function 

( )z z gD ( )E 4 ik I r .ω ω= ε ω − π µ                   (20) 
For this function, instead of equation (17), taking in-

to account relations (18), (19), we obtain the equation 
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The function zDω  has a simple physical meaning 
and is a longitudinal Fourier-component of the longitu-
dinal electric induction z z zD E 4 P= + π , taking into 
account the polarization (11) caused by the action of the 
ponderomotive force of the laser pulse. 

The longitudinal component of electrical induction 
should be sought as a series of Bessel functions. 

( )gik z
z n 0 n

n 0

rD e C J
b

∞

ω
=

 = ω λ 
 

∑ ,                  (22) 

where nλ  are the roots of the Bessel function ( )0J x . 
Using the orthogonality of the Bessel functions 

( )0 nJ r / bλ , from the equation (21) we find the expan-
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Taking into account relations (22) - (24), we obtain 
the following expression of Fourier component of the 
longitudinal electric field 
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Accordingly, the longitudinal component of the ex-
cited electric field can be represented as a convolution 
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is Green function. For further analysis, we will present 
the Green function in the form 
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The Green function actually describes the structure 
of the wakefield in a dielectric medium excited by a 
laser pulse with a δ − shaped longitudinal intensity pro-
file. Moreover, the term 0( , )lG r τ τ−  takes into account 
the excitation of potential longitudinal oscillations of 
the ionic dielectric, and the term 0( , )trG r tt −  describes 
the excitation of transverse electromagnetic waves. 
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2.1. FREQUENCY DISPERSION OF DIELECTRIC 
PERMEABILITY 

The Green's function (28) and, accordingly, the 
wakefield (27) are largely determined by the value and 
frequency dispersion of the dielectric constant ( )ε ω  
determined by the formula (12). For the qualitative 
analysis of this dependence, the expression for the die-
lectric constant can be conveniently represented as 
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where ( ),Li Leω ω ±  are the roots of the cubic equation 
with respect to the square of the frequency 
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It is easy to show that all three roots are positive, i.e. 
the frequencies are real. At these frequencies, the dielec-
tric permeability is zero. The frequency Liω  is the fre-
quency of longitudinal optical phonons and belongs to 
the infrared frequency range. Frequencies ( )Leω ±  are the 
frequencies of longitudinal polarization electron oscilla-
tions and are in the optical or even ultraviolet frequency 
ranges. The specified frequencies are in the intervals 
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the frequencies of the longitudinal ion and electron os-
cillations are very different, the roots of the cubic equa-
tion (30) can be found approximately 

2 2 222 ,
9

opt
Li di pi

opt

ε
ω ω ω

ε
+

= +                   (32) 

( )22 2 2 2 2 2 2
( )

1 16
2 9Le ge ge ge ge pe peω ω ω ω ω ω ω± + − + − + −

 
= + ± + + 

 
. 

Here 
2 2 2

( ) ( ) ( )
2 ,
3ge de peω ω ω± ± ±= +  

2 2

2 2

21
3 , ,
11
3

opt
pe pe

opt opt
de de

opt

ω ω
e

ω ω
+ −

+ +

+ Λ
= Λ = +

− Λ
 

optε  is dielectric permeability of an ion crystal in the 
optical frequency range 

2 2 2 2max( , )de pi diω ω ω ω+ >> >> . 
The poles of the dielectric constant (30) are the roots 

of the cubic equation with respect to the square of the 
frequency 

( ) 3ωΛ = .  (33) 
This cubic equation has three positive roots too. 

These roots correspond to the frequencies ( ),Ti Teω ω ± . 
These frequencies are the absorption lines of the elec-
tromagnetic waves of an ion crystal. In the vicinity of 
these frequencies, the imaginary part of the dielectric 
constant and, accordingly, the energy losses of electro-
magnetic waves increase greatly. The frequency of ab-
sorption by the ion subsystem is the frequency of trans-
verse optical phonons. Note that the optical longitudinal 
and transverse ion oscillation branches are characterized 
by the fact that in the unit cell of the crystal oppositely 

charged ions are displaced towards each other. At the 
same time, the center of gravity of the unit cell remains 
motionless. As in the case of longitudinal optical pho-
nons, the frequencies of transverse optical phonons lie 
in the infrared range. Electron resonance absorption 
frequencies are in the optical ranges. For the indicated 
frequencies from the cubic equation (33) we find the 
following approximate expressions 

2 2 2 23
,

3 2
optst

Ti di di
opt st

ε
ω ω ω

ε
+−Λ

= ≡
−Λ +

             (34) 

2

2 ,pi
st opt

di

ω
ω

Λ = + Λ  
21
3
11
3

st

st

st

ε
+ Λ

=
− Λ

, 

( )22 2 2 2 2 2 2
( )

1 4
2 9Te he he he he pe peω ω ω ω ω ω ω± + − + − + −

 
= + ± + + 

 
, 

where 

                           2 2 2
( ) ( ) ( )

1 .
3he de peω ω ω± ± ±= −  

From the obvious requirement 1stε >  from equality 
(35) it follows that for ion crystal dielectrics the condi-
tion on the parameter value 3 1st> Λ >  is always satis-
fied. Note also that the expression for the frequency of 
transverse optical phonons (34) implies that when it 
tends to zero 3stΛ → , and the static dielectric constant 
increases indefinitely stε → ∞  (the phenomenon of 
"polarization catastrophe" [12]). 

In the frequency range 
Liω ω<<                             (35) 

the dielectric permeability of the ion crystal frequency 
independent and has  constant value stεε = , where  

2 2 2

2 2 2
Li Le Le

st
Ti Te T

ω ω ω
e

ω ω ω
− +

−

=                             (36) 

is the static dielectric constant. On the other hand in the 
optical frequency range 

2 2 2
Te Liω ω ω− >> >>                        (37) 

dielectric permeability is also constant optεε =  
2 2

2 2
Le Le

opt
Te T

ω ω
e

ω ω
− +

−

= .                               (38) 

And for all ion dielectrics always st optεε > . We note 
that from the expressions (36) and (38) imply the well-
known Liddane-Sachs-Teller relation [12] 

2

2
Li st

optTi

ω ε
εω

= , 

relating the ratio of the frequency of longitudinal and 
transverse optical phonons with the values of the static 
and optical dielectric constants. From inequality 

st optεε >  important conclusion follows. Since Cheren-
kov radiation appears for a laser pulse when the condi-
tion 

2

2 1g
st

v
c
ε >  

is satisfied and the group velocity of the laser pulse in 
the optical range is equal 1/g optv ε= , then in the ion 
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crystal the condition for the appearance of Cherenkov 
radiation in the microwave and terahertz ranges is al-
ways fulfilled. 

The expression for the dielectric constant of the ion 
dielectric (12) can be given the usual and comfortable 
look 

2 2 2

2 2 2 2 2 2( ) 1 pi pe pe

Ti Te Te

e ω
ω ω ω ω ω ω

+ −

− +

Ω Ω Ω
− − − −

− − −
. 

Here, the plasma frequencies are defined as follows 
2 2( 2)

9
opt

pi pi

ε
ω

+
Ω = , 

2
2 2 2 2

2 2 ( 1)Te
pe Te opt Le Te

Te Te

ω
ω e ω ω

ω ω
+

+ −
+ −

 Ω = − − + −
, 

2
2 2 2 2

2 2 ( 1)Te
pe Te opt Le Te

Te Te

ω
ω e ω ω

ω ω
−

− +
+ −

 Ω = − − + −
, 

2 2 2 2 2 2,Le Le Le Te Te Teω ω ω ω ω ω+ − + −= + = + . 
Fig. 1 shows the qualitative dependence of the die-

lectric constant on frequency, described by formula 
(30). 

 
Fig. 1. Dependence of the dielectric constant  

on frequency 

2.2. DISPERSION PROPERTIES OF ION 
DIELECTRIC WAVEGUIDE 

Let us now briefly discuss the question of the propa-
gation of electromagnetic waves in an ion dielectric 
waveguide. Dispersion equations for potential longitu-
dinal oscillations and electromagnetic waves have the 
form  

( ) 0ε ω = ,                                   (39) 
22

2
2 2( ) 0n

zk
c b

λω ε ω − − = ,                   (40) 

zk  is longitudinal wave number. The dielectric constant 
is described by the formula (30).  

Fig. 2 shows the qualitative dependences of the fre-
quency on the longitudinal wave number zk . In total, 
there are three branches of longitudinal oscillations  

( ),Li Leω ω ω ±=  
and four branches (1) - (4) of electromagnetic waves. 
The low-frequency branch corresponds to the longitudi-
nal optical phonons, and the other two branches are po-
larization electron oscillations. As for the electromag-
netic branches, the lowest frequency (ion) branch1 is in 
the infrared and microwave ranges. 

1( ) ,Ti z cikω ω ω −> >  

/ci n stc bω λ ε− =  is low frequency ion cutoff frequen-
cy.  

In the frequency range Ti ciω ω ω −>> >> , the disper-

sion curve has a linear plot /z stk cω ε= . 

 
Fig. 2. Dispersion curves of ion dielectric  

for longitudinal oscillations and electromagnetic waves 
on the plane ( , zkω ) 

The frequencies of the electromagnetic branch 2 are 
within 2 ( )Te z сi Likω ω ω ω− +> > ≈ , сiω +  is high frequen-
cy ion cutoff frequency The low-frequency section of 
this branch corresponds to the infrared frequency range 
and the high-frequency region corresponds to the optical 
one. This branch also has a linear dispersion region 

/z орtk cω ε= . The tilt angle of this line exceeds the 
tilt angle of the straight section of branch 1. And finally, 
branches 3 and 4 are purely electron branches and locate 
in the optical and ultraviolet frequency ranges. The 
phase velocity of electromagnetic waves belonging to 
the fourth branch exceeds the speed of light and in the 
limiting case approaches it. 

2.3. CALCULATION OF GREEN'S FUNCTION 

The Green function (29) contains two terms that de-
scribe the excitation of longitudinal potential oscilla-
tions and electromagnetic waves. The potential Green's 
function 0( , )lG r τ τ−  has only simple poles, which are 
the zeros of the dielectric constant ( ) 0ε ω = . The fre-
quency spectrum of longitudinal oscillations contains 
the frequency of longitudinal optical phonons Liω  and 
the frequencies ( )Leω



 of electron polarization oscilla-
tions. Below we restrict ourselves to the study of wake 
fields in the infrared and lower frequency ranges. This is 
due to the fact that for effective wake field excitation by 
a laser pulse necessary to achieve coherency of excita-
tion. For this, it is necessary that the longitudinal and 
transverse dimensions of the laser pulse be smaller (sub-
stantially less) than the length of the radiated wave. For 
the optical and especially the ultraviolet frequency 
ranges, this requirement is very problematic. And if this 
requirement is not satisfied, the amplitude of the wake 
waves will be negligible. 



ISSN 1562-6016. ВАНТ. 2019. №4(122) 45 

Calculating the residues in the integral 0( , )lG r τ τ−  
at the poles 0Li iω ω= ± − , we find the following ex-
pression for the potential Green function  

2
0 0 0

4 ( ) ( ) cos ( ),
3

st opt
l Li i Li

st opt

G r
εε p ω ϑ tt  ω tt
εε
−

= G Φ − − (41) 

where 0( )ϑ τ τ−  is the Heaviside function, 

2
0 0 0 0

0

1
( ) ( ) ( , ) ( ) ,

6

b
L

i i rr R r k G r r R r r drε −
Φ = + ∫  

0 0 0 0
0

0 0 0 00

( ) ( ), ,1( , )
( ) ( ), ,( )

i i
r

i ii

I k r k r r r
G r r

I k r k r r rI k b
∆ <

=  ∆ >
 

0 0 0 0 0( ) ( ) ( ) ( ) ( )i i i i ik r I k r K k b I k b K k r∆ = − , 

/ ,i Li gk vω=   
( ) ( )

0 2 2 .L L

de de

α α
ω ω

+ −

+ −

Γ = +  

Term in the total Green's function (29) 0( , )trG r tt −  
describes the Cherenkov excitation of the eigen elec-
tromagnetic waves of the dielectric waveguide. Inte-
grands of Fourier integrals 0( )nS τ τ−  contain only sim-
ple poles, which are the roots of the equation 

( ) 0n ω∆ = .                           (42) 
As we are interested in the infrared (microwave) 

frequency range equation (42) three pairs of roots. Two 
of them are located on the real axis 

2

10,
1

n g
in in

g st

v
i

b
λ

ω ω ω
b ε

= ± − =
−

,       (43) 

1/4
2

2 20, n
en en Te Te

opt Te Le

i
ω

ω ω ω ω ω
e ω ω+ −

 
= ± − =   − 

, (44) 

n
n

c
b
λ

ω = , 

and one pair eniω ω= ±  on the imaginary axis. Calculat-
ing the residues in these poles we find the expression for 
the Green function 
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,n
n

nN
ρ

σ =
( 1)( 2)L st

st
st

e
e e

e
− +

= ,
( 1)( 2)L opt

opt
opt

e
e e

e
− +

= . 

The first term in the expression for the electromag-
netic Green's function (45) describes the electric field in 
the microwave (terahertz) frequency range 2 2

Li inω ω>>  
(ion branch 1) and is a set of eigen electromagnetic 
waves with frequencies inω . The second term in expres-
sion (45) describes a purely electron electromagnetic 
field and belongs to branch 2 in the infrared frequency 
range 2 2 2

Te en Liω ω ω− >> >> . The longitudinal structure of 
this field is more complicated. Each radial harmonic 
contains a wake monochromatic wave, as well as a bi-
polar antisymmetric solitary pulse. Moreover, the height 
of this pulse is exactly two times smaller than the ampli-

tude of the wake wave. The characteristic width of the 
polarization pulse is equal to the reverse frequency of 
the wake wave 1/ enτ ω∆ = . We also note an important 
point. Since the amplitudes of the waves entering the 
Green function are proportional to the square of their 
frequencies, the electron electromagnetic waves will 
have a larger amplitude compared to the ion waves. 

2.4. THE EXCITATION OF WAKE FIELD  
BY LASER PULSE 

The wakefield excited by a laser pulse is described 
by convolution (27), in which the Green function is the 
key element. We first consider the excitation of longitu-
dinal optical phonons. Using the potential polarization 
part of the Green function (41), we obtain the following 
expression for the wake field of longitudinal optical 
phonons  

( , ) ( ) ( )iz Li i LiE r E r Zτ ω τ= Φ ,              (46) 
where 

0
0 0

1( ) cos ( )
L L

Z T d
t t

t t
ωt ω ttt 

−∞

 
= − 

 
∫ , 

2
2
02

( 2)( )2 ,
9

opt st opt g lLi
Li L

st opt clg

v te
E a

rv
e e e ωp κ

e e
+ −

=  

Lt  is characteristic duration of a laser pulse.  

2
0L st LNκ ω= Γ , 2 2/ ,clr e mc=  

2
2
0 0

L

ea I
mcω

 
=  
 

. 

The function ( )Z ωτ describes the distribution of the 
wakefield on frequencyω  in the longitudinal direction 
at each moment of time. We will consider a laser pulse 
with a symmetric longitudinal profile 0 0( ) ( )T Tτ τ= − . 
The wake function ( )Z ωτ  is conveniently represented 
as 

( ) ( ) ( ) cos ( ),Z T Xωτ ϑ τ ωτ τ= Ω −


          (47) 
where , /L Lt tω tt Ω = =  

0

( ) 2 ( ) cos( ) .T T s s ds
∞

Ω = Ω∫


                    

The first term in (47) describes the wake wave prop-
agating behind the laser pulse. The amplitude of the 
wake wave is equal to the Fourier amplitude function 
( )0 / LT tt , which describes the longitudinal profile of 

the laser pulse. The second term in (47) describes a bi-
polar antisymmetric pulse of a polarization field local-
ized in the region of a laser pulse. The field of this pulse 
decreases and tends to zero with increasing distance 
from the laser pulse. 

Behind a laser pulse, the wakefield (46) of longitudi-
nal optical phonons has the form of a monochromatic 
wave 

( , ) ( ) ( ) cos ,iz Li i Li LiE r E r Tτ ω τ= Φ Ω


   Li Li LtωΩ = . 
Let us give expressions for the Fourier amplitude 

( )LiT Ω


 for two model longitudinal profiles of a laser 
pulse: a Gaussian and a power ones 

2 2 2
0 / / 4

0
ˆ( / ) , ( ) ,Lt

LT t e T ett π− −Ω= Ω =        (48) 
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0 2 2
0

1 ˆ( / ) , ( )
1 /L

L

T t T e
t

t π
t

−Ω= Ω =
+

. 

Longitudinal optical phonons are most efficiently ra-
diated when the coherence condition 1Li Ltω ≤  is satis-
fied. If the condition 1Li Ltω >>  is satisfied, then the lon-
gitudinal optical phonons are radiated incoherently and 
the amplitude of the wake wave is exponentially small. 

Let us now consider the excitation of electromagnet-
ic waves by a laser pulse. Taking advantage of the elec-
tromagnetic Green's function, we obtain the wake elec-
tromagnetic field as a superposition of radial harmonics 
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Behind the laser pulse / 1,Ltt >> , 1ni eω τ >> , the 
pulse fields are negligible and only the set of eigen 
waves of the dielectric waveguide remains 
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(49) 

Let us consider, for example, a laser pulse that has a 
Gaussian profile both in the longitudinal direction (48) 
and in the transverse one 

2 2
0 0( / ) exp( / )L LR r r r r= −  

moreover, the radius of the laser pulse is small com-
pared with the radius of the dielectric waveguide 

Lr b<< . In this case, for the expansion coefficients in 
the series (49) we have 
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Accordingly, for the wake electromagnetic field in-
stead of (49) we obtain 
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Amplitudes of wake electromagnetic waves are pro-
portional to the square of their frequencies. Therefore, a 
short laser pulse will predominantly excite electron 
electromagnetic waves, since their frequencies greatly 
exceed the frequencies of ion electromagnetic waves 

en inω ω>> . But the number of these waves is limited by 
inequality 1en Ltω ≤ . If the laser pulse is long at the 

scale of the minimum period of electron electromagnet-
ic waves 1 1e Ltω > , but short compared with the periods 
of ion electromagnetic waves 1in Ltω << , then low-
frequency ion electromagnetic waves will be most ef-
fectively excited. Under these conditions, only low-
frequency waves are emitted coherently by a laser pulse. 

CONCLUSIONS 

In this work, the process of excitation of wake Ce-
renkov radiation by a laser pulse in an ion dielectric 
waveguide is investigated. For definiteness, a diatomic 
ion crystal medium is considered. The nonlinear electric 
polarization of the ion dielectric medium, induced by 
the ponderomotive force with the side of the laser pulse, 
is determined. The total electric polarization in the ion 
dielectric includes the electron polarization of the elec-
tron shells of ions of opposite charges, as well as the ion 
polarization proper, due to the displacement of ions in 
the electric field. A system of three strongly coupled 
linear oscillator equations is obtained, which describes 
the excitation of partial electric polarizations of an ion 
dielectric by a ponderomotive force from the side of a 
laser pulse. The solution of these equations is obtained 
and the complete polarization in a diatomic ion dielec-
tric medium is determined. Accordingly, expressions are 
obtained for polarization charges and currents, which, in 
turn, are the source of Cerenkov wake waves. The fre-
quency spectrum and the space-time structure of the 
Cherenkov wake field, excited by a laser pulse in an ion 
dielectric waveguide, is determined. It is shown that in 
the infrared (microwave) frequency range, the excited 
wake electric field consists of a potential field of longi-
tudinal optical phonons and a set of eigen wake elec-
tromagnetic waves of a dielectric waveguide. The die-
lectric constant in the infrared (microwave) frequency 
range in ion dielectrics always exceeds the dielectric 
constant in the optical range. Therefore, the condition of 
the Cherenkov radiation of a laser pulse in ion dielec-
trics is always satisfied. 
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ЧЕРЕНКОВСКОЕ ИЗЛУЧЕНИЕ ЛАЗЕРНОГО ИМПУЛЬСА В ИОННОМ ДИЭЛЕКТРИКЕ 
В.А. Балакирев, И.Н. Онищенко 

Исследован процесс возбуждения черенковского электромагнитного излучения лазерным импульсом в 
ионном диэлектрическом волноводе. Определена нелинейная электрическая поляризация в ионной диэлек-
трической среде и, соответственно, поляризационные заряды и токи, индуцированные пондеромоторной 
силой со стороны лазерного импульса. Получена и исследована пространственно-временная структура киль-
ватерного поля в ионном диэлектрическом волноводе. Показано, что возбуждаемое поле состоит из потен-
циального поляризационного электрического поля продольных оптических фононов и набора собственных 
электромагнитных волн ионного диэлектрического волновода. 

ЧЕРЕНКОВСЬКЕ ВИПРОМІНЮВАННЯ ЛАЗЕРНОГО ІМПУЛЬСУ В ІОННОМУ ДІЕЛЕКТРИКУ 
В.А. Балакiрєв, I.М. Онiщенко 

Досліджено процес збудження черенковського електромагнітного випромінювання лазерним імпульсом 
в іонному діелектричному хвилеводі. Визначена нелiнiйна електрична поляризація в іонному діелектрично-
му середовищі та, відповідно, поляризацiйнi заряди i струми, iндукованi пондеромоторною силою з боку 
лазерного імпульсу. Отримана та досліджена просторово-часова структура кільватерного поля в діелектрич-
ному хвилеводі. Показано, що збуджуване поле складається з потенціального поляризаційного електричного 
поля поздовжніх оптичних фононів та набору власних електромагнiтних хвиль іонного діелектричного хви-
леводу. 
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