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INTRODUCTION

Inhomogeneous Travelling-Wave Accelerating Sec-
tions (ITWAS) have been (and are) the workhorse of
accelerating technology for more than half a century.
Several thousand different sections were manufactured
and used in linacs. Only one linac (SLAC) included 960
sections [1]. ITWASs are in fact chains of coupled reso-
nators connected with two external waveguides. This
apparent simplicity of structure is very deceiving. The
reason is that the homogeneous periodic waveguide has
the infinite number of eigen waves, most of which do
not propagate (evanescent waves). Any inhomogeneity
leads to the appearance such fields that decay exponen-
tially from the interface at which they are formed. In
ITWAS there are many small discontinuities with small
field disturbance. Developing an electrodynamic model
that combines propagation and evanescence is not an
easy task. This is proved by the fact that before “com-
puter age”, as we know, only one mathematical model
that could rigorously describe characteristics of IT-
WAS:s was developed [2].

Today, using various computer programs, we can
simulate almost any accelerating sections (see, for ex-
ample, [3, 4]). However, the complexity of the results
obtained, their strong dependence on the grid parame-
ters and impossibility of using approximate analysis still
make the development and use of semi-analytical ap-
proaches actual.

Two approximate approaches were mainly used to
describe ITWASSs: a coupled cavity model [5 - 17] and a
waveguide approximation [18 - 25]. While the first ap-
proach is based on the strict physical and mathematical
foundation, the necessities of use many eigen modes,
difficulties of coupling coefficient calculation and tak-
ing into account the losses in walls made the definition
of parameters of coupled cavity models very approxi-
mate. Nevertheless, these models were useful in practice
and together with developer skills gave good results.

The second approach is based on assumption that
there are such slow parameter changes under which
there are no practical differences between equations of
homogeneous and inhomogeneous waveguides. Under
such assumption, we can transform the definition for
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monic) into an equation R, (z)=E,(z)/ P(z), which is the
base of this approach. It was a useful assumption, but
nobody knows accuracy of the obtained results.

Smooth approximate models are widely used, espe-
cially in the study of beam current loading and transient
effects, but so far the notion of spatial averaged electric
field in the model equations (together with model equa-
tions) has not yet been rigorously defined.

Approximate model equations are used with parame-
ters that are the slow functions of coordinate. Under
assumptions of these models in the considered struc-
tures there are only two independent (forward and
backward) waves which characteristics slowly change
along the waveguide. Evanescent wave are ignored in
these models. These features arise in mathematic phys-
ics when we use asymptotic expansions. It is obvious
that approximate models are based on the several first
equations of the asymptotic expansion chain of the solu-
tions of the exact equations (if such equations exist).
But at what level: on the equations of the zero (Eikonal)
or first (WKB) order?

The possibility of using the WKB approach to de-
scribe the ITWAS gives not only a simplification of the
calculation. It also allows the use of simpler physical
models of transient processes. Using the traveling wave
concept simplifies the understanding of pulsed-excited
ITWAS transients and the development of methods to
mitigate their effect on beam parameters.

Difficulties in describing the ITWASs arise from the
fact that there were not obtained closed and rigorous
equations (except the Maxwell equations with boundary
conditions) for parameters of the ITWAS from which
we could obtain approximate models by using different
mathematic methods.

There are works that study waves in slowly varying
band-gap media on the base of analyses of differential
operators without assumption that the wavelength is long
compared with the size of the repeating cell (see, for ex-
ample, [26 - 30] and cited there literature). Results ob-
tained in these works cannot be used for description IT-
WAS:s as there are no suitable smooth differential opera-
tors. Taking into account this circumstance it was pro-
posed to use difference equations to describe ITWASs
[31]. The first attempt was made on the base of the cou-
pled cavities model that was developed with using many
eigen modes and rigorous calculation of coupling coeffi-
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cients, but without losses in the walls [16]. Obtained
difference equations that connect the values of electric
field in different points of resonators correctly describe
the main waves but also contain different spurious oscil-
lations. The reason of appearance of spurious oscillations
and its influence on the solutions are not quite clear.

To explore other possibilities of using difference
equations and approximate methods, we propose a sim-
ple but rigorous model of ITWAS [32]. This model is
based on the method of Coupled Integral Equations
(CIE) [33]. In paper we also present the results of the
development of approximate methods for the analysis of
this model. Using the theory of solving matrix equations
[34, 35] and the decomposition method [36], we ob-
tained new matrix difference equations, on the basis of
which various approximate approaches, including the
WKB approach, can be developed.

It is worth to note that the unknowns in the matrix
difference equations are vectors which components are
the moments of electric fields on the surfaces that divide
the chain resonators. Determining these moments gives
possibility to calculate electromagnetic fields in any
point of resonator. Therefore, proposed equations are
not direct equations for the electric field. This circum-
stance makes it difficult to analyze the foundations of
the equations that are currently used.

1. CHAIN OF THE FINITE NUMBER
OF RESONATORS. BASIC EQUATIONS

Consider a chain of cylindrical resonators with annu-
lar discs of zero thickness. The first and last resonators
are connected through cylindrical openings to semi-
infinite cylindrical waveguides. The geometry of the
chain is shown in Fig. 1. All resonators are filled with
dielectric (¢ =¢'+ig", €">0). We will consider
only axially symmetric fields with E_,E,H, compo-

nents (TM). Time dependence is exp(—iwt). In each

resonator we expand the electromagnetic field with the
waveguide modes

A=Y (10RO 7 ®), (1)

s

EW =Y (hOEQ+hPED), )

where

E(“ = [Z rjexp{ ik)(Z—Zk)}’ (3)
P -

b, A
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Imy® >0, Rey™ <0, y¥=—®, J (1,)=0,
z€[0,d,], r€[0,5,].

In the waveguides the electromagnetic field can also
be decompose in terms of TM modes (k =1,2)

(GO
”-(SJ/’ -
k) _
gs,r -

lSCL)

» (6)
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A =3 (GOHP +GOH ), (7)

s

E0R _ Z(G@g(w,k) i Gf’k)éi(,“’"‘)) , (8)

where z,, =z, z, ,=z

w,2 Np+12

g0 =J, (ir}xp{yi““’” -z, )
s bw’k s
b
w‘go w,k Jl Zg
A'S bw,k
b,,
e
A'S bw,k
) b:/,k ) ¢

The boundary conditions at the interface z=z require

HP =i {(7"9(z=z,,)} . (10)

{70 @=z,0}, (A1)

(12)

the continuity of the tangential magnetic fields across
the apertures at z=2z, (k=2,3,..N;)

Z(hik)ﬂsf” h(")ﬂ_(f;,)

(13)
= Z(hik'”?isff/‘;'” +hS A ), z=2z,0<r<a,.
Substituting H.") from (4), we get
b ) ) A
Z—k(hj") +hf’;))Jl Zpl=
=7 b,
Pl k-1 g
—Z b, exp( k- 1) [ A, ”J (14)
T A [ +RED exp( U, l) by )

0<r<a,.

We will use the Moment Method to solve the system
of coupled equations. Multiplying the right and left
sides of this relation by a testing function
v, (r /a, ), s'=1,2..,.N
spect to » from 0 to a,, we get N, equations

z%R;«;w (1 +hP) =

s s

and integrating with re-

m

(k-1) (k=1)
_ 3 B g | AL S
AT |+ exp(r4 70, )
k=2’3 NR,S,=12 Nm:
RYED = j'/’ Jy(a,Ax b, ) xdx,
(16)
RV = J"V J (a,Ax /b, ) xdx.

For the first and last resonators we have
(1) 2/ (wl) Mz DY _
(GO + GO ) =
' (17)
= Z(h;”?-/sf;) + hf??‘[f;’)w ), z=z2,0<r<a,

Z(hwk)ﬁ/(lvk) + h(NR)H(NR))

_ZG(Z)H(W ,2) — (18)

0<r<a

ZNp+12 Ng+12
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Fig. 1. Chain of resonators with two waveguides

Using the same procedure, we get

b, b

2ul RO (G0 4 GV) = 32RO (10 140 )5 =1,2... N, » (19)
SR (61 +0) <o TR ) ) =12,

{hi”"’exp(yv ", )

b, » by,
W, R"',(M'Z)G(z) — 1 R RV/(M ,2)
T TN G )

] (20)
s'=1,2..,N,.
The tangential electromagnetic field E”(r,z=d,) we

expand in terms of a set of basis functions ¢_(r/a,)

NIY’I
EQ=>CY¢ (rla,). (21)
s=1

The boundary condition for electric field at the junc-
tion z=z can be written as
Mm

S (R sntet )= %S

s
0, a, <r<b,,

o, (r/a),0<r<a,

(22)

Z”‘:Cf,k)(p\,,(r/ak ),O£r<ak,

s'=1

(k=1) o (k1) (k=1) o (k=1)) _
3 (AELD +IESD) -
.\"

0, a, <r<b,,.

Using the completeness and orthogonality of Bessel

functions J, (A,r/b), we obtain (k =1,...,N )
£l Ivm N
—a2, 3 RIEIICED 1 exp(y40d, )l Y RIEDCY
s= e (23)
3 72
B o)
Cah, SRIEICED L exp(yd, a3 R C,
s'=1 s'=1
where
RO = Igo Ji (a2, x 1 b, ) xdx,
(24)

@(k+1,2) _
Ry Ico

Consider the case when the dimensions of two
waveguides are chosen such that only the dominant
mode TM,, propagates, and the higher-order modes are

J, (a7, x /b, )xdx.

all evanescent. We will suppose that there is an incident
wave that travels from z=-o0 with amplitude G" =1
(G =0,5>2).

Then the boundary condition for electric field at the
junction of the first waveguide and the first resonator
(z = z,) gives relations
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2 N,
146G = ah Z "’(”)C(‘)
-1 s',1
()“ )bn l)/ll)bu SERE
§ (25)
Ger B Sy
- (}" )bu ly(l)bn 1 e ’
Using the same procedure at the junction z=z, ,,
weget(s=12,.,N, )
2 N,,
G;z) _ _2 Cl;vRH)L - ZRf,(yRH’Z)C;’NRH)' (26)
()" )bu 27/ bn 2 s

For the case of one diaphragm between two circular
waveguides we obtain

b, b
LR%@,I) G§1)+G(1? _ W,2 R‘,’f(,w’z)sz) (27
gls s, ( K 75) ZA:)LA s, K ( )
Substitution (25) and (26) into (27) gives such sys-
tem
RW(M I)Rw(l L) b »

C(I) W
Z z[bz T (A )gvbml*b % Jf(l\_.)yf_?’bwl

w,1 w,l Zw,2!

u/(nul) ¢(1,2)
a? RV RO

} __1 RO (28)
ll Sy

2. COUPLED INTEGRAL EQUATION
MODEL

Substitution (23) into (15) gives (N, —1) systems

from (N, +1) necessary systems' of the CIE technique
[33].

YT Nzw;,l)qv ST S A 20, (29)
s'=1 s'=1 s'=1
where k =2,3,...,N,,s=12,..,N,,
<A1> _% ZA(A)(d i) RV RotkD
J (A« ) sm m,s >
a A“ V(d,)
<A 2y _ % Z k-1 Rf’if 2>R""" 2
b % T
. (30)
T(k %) ak+l Z A (O) t//(k I)R(/J(Ic/+l,2)
5,8 ak o J (A« ) sm m,s
T(A 4) _ alf—l Z A(A 1)(0) (k,2)R<p(k/—l,l)
- akbkl m J(A) R "
) d
ch| by® =Sk
(k) dk bk
A, (2) = (3D

, d_
b sh(b,y bf‘)
k

From (19) and (20) we obtain two additional sys-
tems

! We have ( N, +1) interfaces.
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N, N, b
(1,1) (1) 1,3) ~(2) _ “w,l v (w,1)
Z(E];J, _VVS,S’)_ZEYL,S’ Cs’ - a 21 Rs’,l )
s'=1 s'=1 1
32
Ny Ny, ( )
(Ngp+1,4) ~(Ng) (2) (Ng+1,2) (Np+1) _
DT OCH Y (W2 =T ) ¥ =0,
s'=1 s'=1
where
Rl//(w,l)R(/?(l,l)
m_ % som Lstm
VVS’,S - b ZJz P (w,l)b ’ (33)
w, m 1 ( m )ym w,l
a Rl//(w,Z)R(p(NR+l,l)
(2) _ Np+l s, m s',m
VVS’,S - b ZJz P 2, . (34)
w,2 m 1 ( m )ym w,2

The reflection and transmission coefficients are
given by

2 N,
R,=GV=14+2— 44 4 RIICY , (35)
e, &
2
T =G® =— 2aNR”)L1 %Rw(i\/kﬂl)c(mﬂ) (36)
w 1 s .

2 2 () s,
Jl (ll)bw,zyl bw,z s’

Electric field in the k-th resonator can be calculated
by summing the relevant sequences

N, N,
EX(z,,r=0)=Y T PCcH -3 150C*D 0<z, <d,, (37)

s=1 s"=1

where
TE® _ 2a_’fz ARy (2 —dy)
R ) AN
TE® = 2@2 A R ()
R i

Therefore, the set of systems (in matrix form) of the
CIE Model are (k = 2,3,...,N,)

( 7D | pk2) )C"‘) _ kI k) _ kA oD _
(ST(LU —W“))C“) — T ? :hRﬁ’(W"),
a

ST(NR”A)C(NR) _,’_(W(Z) _ST(NRHJ) )C(NR+I) — 0’

» (39)

where T W are N xN,

.
(k) _ (k) (k) (Ng+1) (w1) _ (w,1) (w,1) (w1)
C® = (€0, G ) S ROD =(RYD R, R

complex matrices,

T

We can rewrite (39) as
T*C* = R, (40)
where 7> is a  block-tridiagonal — matrix,
C* =(C(‘),C(2),...,C(NR“)). Block tridiagonal systems
of linear equations are of great interest since they are
encountered in a wide variety of problems, in particular,

in discrete differential equations (see, for example, [37]
and the literature cited there).

3. NUMERICAL IMPLEMENTATIONS
OF THE MODEL

In our models we have to make several choices: the
kind and the number N, of the basis functions ¢, and
the testing functions v, , and the upper limit r  of
summation in the sums for calculation of matrix ele-
ments 7, .

In this work we used the entire-domain basis and
testing functions. We considered several sets that give
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analytical expressions for the Hankel transform (24)
(coefficients R?“’). The simplest case (J-]) is the use
of the Bessel functions ¢, (x)=y, (x)=J,(4,x),
x €[0,1]

1 a4 )
R =2 = o ()

b b (Lzmjl(mz "(41)

b,

al,
Jo| T (A,
y(k,2) (k,2) 1 a4 a4, O( by j 1( M)
R = RIGY = [y (x) | 27 e = =22
0

k-1 b (a A ’ 2 .
“hl(z)

k-1

In this case the edge behavior of electric field is not
incorporated into the algorithm. The second case (M-J)
is the use the Bessel functions as the testing functions
v, (x)=J,(1,x), x €[0,1] and the complete set of func-

tions that fulfil the edge condition on the diaphragm
rims as the basis functions (the Meixner basis). We use
P—l

such Meixner basis [38]
— 7 _ 1—r2), 42
o085 T— 2 42)

I'(s+1 1
0, =Hr
where P"(x) are Legendre functions (or spherical
functions) of the first kind [39]. The first three functions
are:

o) =——, (43)
1-r

0, (r) = ———1{-57> +4], (44)
1-72

0,(r) = ﬁ{zlr“ ~28r7 48} (45)

There exist useful integral for our consideration

1
. T
[, (xt)edt = j,, , (x) = ',ZJ“’“ (x) » (46)
0
' A al b, al
(k) _ ) Jalzm Xdc=17. ., *m | kg, A'm’
R J[:(Pm(x) ( h J szl[ b J 21, mU.S[ b J(47)
' A a,/, b, a,
R — [ (T | &l \ype= 7 | Gl :/ ket g i |
ot J[:(Pm (€9 ( b, J szl[b“ J 2, mus[bu J

The third case (M-M) is the use the Meixner basis as
the basis and testing functions.

The simplest geometrical configuration that can give
estimations about the “quality” of the chosen sets of
functions is the one thin diaphragm in the cylindrical
waveguide. Few calculations were performed to obtain
the characteristics of the scattering TM waves on the
circular diaphragm [40 - 43], so we studied the numeri-
cal convergence of the results that was obtained with
using the Moment Method. It is known that the Moment
Method can lead to ill-conditioned systems of linear
equations (see, for example, [44 - 47]).

We studied diffraction of TM,;, wave on the circular

diaphragm (frequency f =2.856 GHz, waveguide ra-
dius b, =b,, =42 cm, aperture radius a=1.5 cm).

From calculation results we can make such conclusions:

- there is a wide range of parameters for which the
system of linear equations (39) is not ill-conditioned and
we can get results with acceptable accuracy;
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- using all three sets of functions gives similar re-
sults;

- accuracy of J-J sets is worse than M-J and M-M;

- accuracy of M-]J sets is the same as M-M sets;

- accuracy of amplitude calculations in the fourth
sign and hundredths of a degree in phase is achieved at
N,=2and L =500 for the M-J and M-M cases.

The correctness of the calculation results is con-
firmed by comparison with the experimental results
[40].

Bellow we will be use the M-J representation with
N,=2and L, =500.

Analysis of more complicated system (wave diffrac-
tion on the two coupled resonators
b, =b,,=b =b, =4.2 cm, aperture radius a =1.5 cm)
shows that chosen values of the number of functions
give acceptable accuracy of field calculation too.

4. TRANSFORMATION OF THE BASIC
EQUATIONS

Matrix equations (39), that describe the finite chain
of resonators, we can rewrite as:

wl

(&‘T(]’]) _W(l))c(l) —8T(]’3)C(2) b" 1 RW(W 1)
a
(T(ZJ) + T(Z*Z) ) C(Z) _ T(2'3)C(3 TU\ 4) C(l _ 0

ChD) 4 Fh oo _ FOo® 3 4 -1, (48)
(Twm + T(N«l))cw,n _ eI W) _ T(NRA D —,

(Np+1,4) ~(Ny) 2 (Ng+1,2) (Np+1) _
ET R C R +(W()_8T R )C R _0’

where
76 = kD k)
F® — gt (49)
f(k’4) — T(k,3)—lT(k,4).

We separated the equations for the first two and the
last two resonators from the others, since when the
waveguides are matched to the chain, the first and last
resonators can be very different from the rest.

WKB asymptotic approximation theory (see [48]
and the literature sited there) was developed for a class
of almost-diagonal (‘asymptotically diagonal’) linear
second-order matrix difference equations

CHD 4 gDt L BOc® =0, (50)
by transforming them into the form
c*? 2c* ¢ +GPC® =0. (51)
We shall transform (50) into the other form
c*? 4 c® 4 g*c*Y =0, (52)

We use the procedure similar to that was used in
[35].

In equation (k =3,4,...,N,—1)
O | Tl kD) _ o) k) (53)
we put (k=2,3,...,N;)
CH =5bE® (54)

with invertible matrices = .
Suppose that the matrices E* satisfy the equation

=(k+2) _ T(l\+] A= (k) (55)
= = = s

= (k)

with 2% =2® =71, I — the unit matrix.
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Solution of equation (55) is (n=2,3,...):

=0 _ - f—v(ZsflA)’ =) _ - Fesh (56)
il il
Equation (53) takes  then the form
(k=3,4,.,N,-1)
é(kn) " Cw(k—l) _ fw(k)é(k) (57)

where 7 = Z#1F 00

As the equation (57) is of the second order, we rep-
resent the solution of the matrix difference equation (57)
as the sum of two new vectors [36] (k =2,3,...,N;)

CH = kD L Ok, (58)
By introducing two new unknowns C*” instead of

the one C*, we can impose an additional condition.
This condition we write in the form (k£ =2,3,...,N, —1)

Cw(kH) — M(k,l)Cw(k,l) +M(k,2)é(k,2)’ (59)

where M " are the arbitrary invertible matrices.
Using (58) and (59) we can rewrite (57) as
(k=2,4,.,N,~2)

(M(m D _ ke C(A+I D {(75 k) _ g ten) )MM o }é(k.l) n
+{ T(A+I) M M(A 2) }Cw(k,l)’ (60)
(M(M 2) _ gkt C(A+I 2) _ {(T(AH) D )M(A b }Cw(k.l) .

+{(T(k+l) _M(k+l,l))M(k,2) _ I} Cv(k,l).

Let's choose matrices M (k’i)(i =1, 2 ) so that they

satisfy quadratic matrix equations (k =2,4,...,.N, —2
R
(Y;v(k-#l) _M(k+l,i) )M(k+1,i) — I . (61)

It should be noted that these equations do not define
M As M©*D
M) = G

Then (60) transforms into
M(k+l,2) (M(IHI,I) _M(It+l,2))é(k+l,l) :(M(l\'+l,l) _M(k+l,2) )é(k,l) +

+(M(k,2) _M(k+l,2) )C(k,Z) +(M(k,l) _M(k+l,l) )é(k,l) ,(62)
M D (M(k+l,2) — pED )é(kH,Z) :(M(m,z) — D )é(k,Z) +

+(M(I(,I) _M(IHI,I))C(I(,I) +(M(k,2) _M(k+l,2) )C(k,Z).

can be chosen arbitrary, we shall take

It can be shown that in our case® the matrix 7%

is
nondefective, and can be decomposed as
70 — yghr- (63)
where U® is the matrix of eigen vectors and
0" =diag(6",0,",..,0y)) , 6 — cigen values.

Then the solutions of quadratic equations (61) are
M(k,i) — U(k)A(k,i)U(k)—l (64)
where A" =diag(A"", 24" ,..,A0") and %" are

the solutions of the characteristic equations

? The infinitive uniform disk-loaded waveguide has 2N, differ-

ent independent solutions (waves). We can expect that this property
will be correct for inhomogeneous waveguide too, at least for the case
of slowly varying parameters.
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&Fk,i)Z —H;k))k;k’i) +1 =0’

i;k’l) =9;k) /2+ ’(aa) /2)2 _1’
A5 =g 12—\ [(0 72) -1,

The matrices M " have the same eigen vectors,
therefore they are commutative. As A""A*? =1, the

(65)

matrices M “" satisfy the condition
MEIMED = (66)
Using these properties we transform (62) into
(k=2,4,..N,-2)
GO = g 6D +(M(k+l,l) _])(M(k,l) _M(k+l,l))é(k,l) i
~r(k+1,1) (k,2) (k+1,2) | A(k,2)
+ M (MED - D) CE, (67)
C(k+1,2) — M(k,z)é(k,z) +(M(k+l,2) _])(M(k,z) _M(k+l,2))é(k,2) +
+M(k+l,2) (M(k,l) _M(k+l,l))é(k,l),
where

MED = [Mum (M(k,n _ D )T = U A&y 0T
MED [M(k,n (M‘“’ _pMD )T — R A EDH-
A%D = diag((l R )" (1= A )" )

Ak _ dl-ag((l_/‘L](k,l)z )*' ’,..,(l—l,i,k,l)z)*‘).

As M5 L pr*2 — 1 then from (67) we get
é(k+l) — Cv(k+|,l) +C~v(k+|,2) — M(k,])é(k,]) +M(k,2)c~w(k,2). (69)
This matches the condition (59).
If elements of matrices M“" vary sufficiently
slowly with k, then the differences |M§f‘”j"” - Mjfn;i)| are

(68)

the small values and we can neglect them (Eikonal ap-
proximation)

CNv(kH,l) — M(k,l)év(k,l)
CNv(k+l,2) — M(k,2)6v(k,2).
If we neglect only nondiagonal terms in (67) we get
the WKB approximation

é(k+l,l) — A}(k+l,l)c(k,l) —
k+1,1 “r (k+1,1) (k,1) (k+1,1) N(k,l)
={M<+ D+ M (M - M )}C ,

(70)

5 (71)
G2 _ el ) Bk2) _
_ {M(k+l,2) ) (M(k,Z) _ pp ) )} Cﬂ(k,z).
Finally, we can wright the transformed system
- ~ b,
T W)W _ g (G@D 4 GD) = Zul pronh)
( ) ( ) al, ! (72)

@) (@D A(2,2) | _ (23) ( AG.D) ~(3,2) ) _pQ24hH () _
77 (C* +C T cH+C 7'=7Cc% =0,
k=2,3,..,N, -2,
GO _ prGeth ARD 4 ekt (M(k,Z) _ )C(k,z)’ (73)
C(A»+1,2) — M(k+1,2)C(k,2) +M(k+1,2) (M(k.l) _M(k+l,l) )C(k,l)’
(Np)=(Ng) (Np—L1) ~(Ng-11) (Np=1,2) A(Ng-1,2) ) _
T've M C +M C
_TWNe =2 (VgD (C(N,,—l,l) 4 C(N,,—l,2) ) — TWe) WD) 0,
(74)
ST(‘VR+1v4)E(NIE) (M(er,l)(j(er,l) +M(er,2)é(er,2))+
+(W(2) — gTWetl2) )C(Nkﬂ) =0.
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Electric field in the k-th resonator can be calculated
by summing the relevant sequences (0 <z, <d,)

Nm Nm
EO(z,,r=0)=) THOCH - TEOCHD (75)
s=1 s"=1

where
O = ) 4 (6D ZZWERD L ZOEED (76)
As in the WKB and Eikonal approximations the ma-
trix equations (70) and (71) have the analytic solutions,
we can greatly simplify the system (72). Under this, it
should be borne in mind that one part of the field is de-
scribed by growing solutions when moving in the posi-
tive direction of the waveguide axis; therefore, it is nec-
essary to calculate the field by moving in the negative
direction. It is also convenient to use vectors C **" as
they determine the values of electric field (see (75)).
Such simplified system of equations is
CHtD =y®he®h - =23 N, -2,

(k,2) (k+1,2) ~(k+1,2) (77)
c*? =YWt k=N, -2,..,3,2,

where
D) (k) g (k4L m (k)1
YD = 25D pr =07,

(h+12) _ =) [ 2y (k+1,2) - —(k+1)-1 (78)
Y =2 M = .

Boundary values of vectors C*" (C(z")) and
c*? (C(NR"’”) are defined by equations
(ST(U) —W“))C(” _ T _

b
)= (Np—1)— - 1
gT(U)M( )= (Np—-1) 1c(NR L2) _ "w RIW(W’])

a4 (79)
—T(2’4)C(1) +(T(2) _T(2,3)M(3,1))C(2,1) +
2 2,3 3.2 (=)= (Ng=D)=1 ~(Ng-1,2) _
+(T =TCIMOD )Y OEN N <,
(T(NR)E(NR)M(NR—U) _T(NR,4)E(NR—1))M(*-)C(ZJ) +
+(T<NR):(NR)M<NR—1,2>:(NR—1>—1 _ T W )C(NR—M) _
(Ng,3) (N +1)
—TNeHCMeth 0, (80)
gT(NR+1,4)':(NR)M(Nk—l,l)M(*-)C(ZJ)+
+8T(NR+L4)E(NR)M(NR—1,2)E(NR—1)—1c(NR—L2) +
+(W(2) — gTWet12) )C<NR+1) -0,
where
Ng-1 ~ 3 ~ ) -1 (81)
M® = HM("'"’,M(” _ H (M‘“ ) '
k=3 k=Ng -1

This system of equation is more suitable for simula-
tion as we have to solve a system of linear equations
which dimension is fixed and equals to 8. This makes
possible to consider any number of resonators N, .
Comparison of results of calculation by using this sys-
tem and the one based on the solving the full system of
linear equations (72) - (74) in the WKB approximation
shows their good coincidence (error is up to 1.E-7)

5. INFINITE HOMOGENEOUS CHAIN

If we omit the presence of boundaries for the uni-
form chain of resonators (b, =b, a, =a), we obtain
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the equations describing an infinite homogeneous disk-
loaded waveguide

Cw(k+l,l) — M(I)Cw(k,l)
é(k+l,2) — M(Z)é(k,z).
For the uniform chain of resonators matrices
E® =1 and C*) =C*).
It can be shown that the general solutions of the dif-
ference matrix equations (82) are

N
(ki) _ (i) 9 (Dk
c* =3 BA"U,
s=1

(82)

(83)

where B"” — are constants, A, (characteristic or Floquet

multipliers) are the solutions of the characteristic equa-
tions

A2—02 +1=0, (84)

with 6, and U, that are eigen values and eigen vectors

of matrix 7'
TU, =0.U,. (85)
From (84) it follows that
A, =1. (86)

This property of the Floquet multipliers (along with
the assumption that &”#0) guarantees that problem
(72) - (74) is well-conditioned, at least in the case when
matrix elements are slowly changing [48].

Analysis of the solution (83) shows that representa-
tion (58) is not a trivial decomposition into forward and
backward waves. Decomposition (58) with the condi-
tions (59) and (61) divide the solution of matrix differ-
ence equation (57) into two parts each of which is gen-
eralization of concepts forward and backward waves,
especially in the case of inhomogeneous waveguides.

Starting from the N, -dimensional system, in the
case of homogeneous waveguide we can obtain the dif-
ference equation that describes the behavior of one

component of the variables C*’, say C*. The above
solution of equation for C* (83) shows that the charac-
teristic equation of this difference equation must have
roots that coincide with the 2N, eigenvalues A .

The general form of this equation can be prompted
by considering the simplest case N, =2 in system (48)
for infinite chain

(Cl(km + CI(H) ) B ﬁ,lcl(k) = ﬁ,zcék) >

- - . (87)
(C et )Tt =T,
We introduce the commutative operators Ijl.
L=6"+¢ -T,, (88)

where &* (c?b(k) =b(k+l)) and & (6—b<k> =b(k—l)) _

are shift operators. From (87) we can get such equation
det Lo T, c® =0,
_Tz,l Lz

where the operator det is defined on the base of rules of
common determinants’

(89)

3 . . .
We have deal with commutative matrices.
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- (L -T o
det (—f;l Z:J =LL,-T,T,, (90)
It can be shown that in general case we get the equation
Ll _71,2 _YI,N,”
~ | -7 L ,
det ! . c®=0, 91)
_TN,,, 1 _TN,,, i e L N,
with the characteristic equation
- T A+1 AT, —AL
AT, A =T, ,A+1
2,1 2,2 — 0 (92)
Al e AZ—TNI v At

Numerical calculations show that (84) and (92) give
the values of A, which coincide with good accuracy.

It can be shown that equations for other components
of vector C*® are the same as (91).

6. FINITE CHAIN OF RESONATORS

We wrote two computer codes. The first is based on
the system (39), the second — on the transformed system
(72) - (74). All results that are given bellow were calcu-
lated with N, = 24 L, =500. These codes give prac-

tically the same results. It is confirmed by results of
calculation that are presented in Fig. 2 (& =1°), where
differences between amplitudes of electric fields at the
centers of resonators calculated on the base of systems
(39) and (72) - (74) for homogeneous and inhomogene-
ous waveguides with 60 resonators are given
(d_g =3.4989 cm, b, s, = 4.16595 cm,

b, =b,, =4.19825 cm, a, = ag = 1.7661 cm,
f =2.856 GHz, changes in the size of the apertures are
shown in Fig.3). Here and below we consider the

propagation of an incident TM,, wave with a unit am-

plitude through the disk-loaded waveguide (DLW),
shown schematically in Fig. 1.
Abs([E4|-| E,|)/IE4|

9E-13
8E-13
7E-13 P\
6E-13

5E3 |,
4E-13 \I
3E-13

| \] \/

1E13 Y I s » . / . .
o LAAAANAAAN NSNS AN

0 10 20 30 40 50 60
Resonator Number

Fig. 2. Differences between amplitudes of electric fields
at the centers of resonators calculated on the base
of systems (39) and (72) - (72) for two DLW:
homogeneous (1) and inhomogeneous (2)

2E-13

4 . . . . . .
Taking such value we include in consideration one propagation
wave and one evanescent oscillation.
SIfIme #0 the differences become greater, but less than 1.E-6.
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Fig. 3. Dimensions of the apertures considered
waveguides
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Fig. 4. Comparisons of electric field amplitude distribu-
tions calculated on the base of the initial system (39)
and WKB approximation (71) - (1), the initial system

(39) and Eikonal approximation (70) - (2)

At the selected frequency and for a homogeneous
DLW with a, ;y =1.3 cm (the first disk aperture dis-
tribution (1) in Fig. 3) the phase shift per cell® in the
DLW equals 27 /3, the reflection coefficient is R =
7.86E-04 (T = 0.9999).

Arg(E)-Arg(E,), degree

35
30
25 ,Yfiff
20 V

15
10

—x—2

0 20 40 60
Resonator Number

Fig. 5. Comparisons of electric field phase distributions
calculated on the base of the initial system (39) and
WKB approximation (71) - (1), the initial system (39)

and Eikonal approximation (70) - (2)

Consider the accuracy of WKB approximation in the
case of IDLW with the geometric dimensions indicated
above (the second disk aperture distribution (2) in Fig. 3).
Parameters of this IDLW change along the waveguide at
a moderate gradient. Results of comparison of electric
field distributions calculated on the base of systems (39)

® In the first propagation zone.
ISSN 1562-6016. BAHT. 2021. Ne3(133)

and (71) are presented in Figs. 4 and 5 — (1). We also
present a comparison of the electric field distributions
calculated on the base of systems (39) and (70) (see
Figs. 4 and 5 — (2)).

Results of comparisons show that for moderate gra-
dient of IDLW parameters the WKB approximation
gives suitable accuracy, while the results of the Eikonal
approximation differ from the exact ones more signifi-
cantly, especially in the phase distribution.

CONCLUSIONS

The presented approach to the description of inho-
mogeneous resonator chains (inhomogeneous disk-
loaded waveguides) can be a useful tool in studying the
properties of slow wave system. On its basis, various
approximate approaches have been developed, including
the WKB approximation.
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MOJIEJIb KOHEYHOM HEOJHOPO/IHOM LIENTIOYKH PE3OHATOPOB
U MPUBJINKEHHBIE METO/IbI EE AHAJIM3A

H.U. Aiizaukuii

[IpemioskeH HOBBIM MOIXOA K ONMMCAHHIO HEOMHOPOIHOM IEIH CBA3aHHBIX PE30HATOPOB (HEOTHOPOIHBIX JHa-
(hparMUpOBaHHBIX BOJTHOBOIOB). [loNyueHb HOBbIC MATPUYHBIC Pa3HOCTHBIC YPAaBHCHHS, OCHOBAHHBIC Ha TEXHUKE
CBSI3aHHBIX MHTETPAJIbHBIX YPAaBHEHUH U METO/E MEKOMITO3UIMH. Pa3paboTaHbl pa3IUuHbIC IPUOIMKECHHBIC TTOX0-
IIbI, BKITIOYas puommkenrne WKB.

MOJEJIb KIHIIEBOI'O HEOJHOPIJJTHOI'O JIAHIIOT' A PE3OHATOPIB
I HABJIM)KEHI METO/IM ii AHAJII3Y

M. 1. Aiizaubkuii

3anpornoHOBaHO HOBUH MiAXif IO OMUCY HEOJHOPITHOIO JAHIFOTa 3B'I3aHUX PE30HATOPIB (HCOMHOPIIHUX diad-
parMoBaHMX XBHJIEBOMIB). OTpUMaHi HOBI MaTPHYHI PI3HUIIEBI PIBHSHHS, SIKi 32CHOBaHI HA TEXHIIl 3B'S3aHUX 1HTET-
paJIbHUX PiBHSHb Ta METOJI JeKoMro3ullii. Po3pobiieHi pi3Hi HabIvmKeH] miaxoau, BKitoyaodn Haommkenns WKB.
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