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Azimuthal surface waves (ASWs) are known to be eigen waves of cylindrical metal waveguides partially filled
by magnetoactive plasma. Zeroth radial modes were under study earlier. Their dispersion properties are known to be
significantly influenced by the plasma column properties: its particle density, external axial static magnetic field,
geometric dimensions, — rather than properties of the dielectric layer which separates the plasma column from the
metal wall. Application of higher order ASWs in the low-frequency range was shown earlier to make it possible to
get advantage of exciting ASWs with higher frequency than in the case of zeroth order ASWs without no change in
the waveguide design. The present study generalises those investigation for the case of the waves above the upper-

hybrid frequency.
PACS: 52.25.Xz, 52.35.Lv

INTRODUCTION

Surface type electromagnetic waves in plasmas are
known to have some advantages as compared to volume
waves in technological applications [1-3]. Their
excitation does not need to spend energy for creating the
wave structure in the plasma core as it takes place in the
case of volume waves. Since ASWs propagate with zero
axial wavenumber, k,=0, plasma electronic devices ion
their base can be designed with smaller axial
dimensions [3].

Dispersion properties of zeroth radial modes of
extraordinarily polarized ASWs (XASWSs) in cylindrical
metal waveguides partially filled by plasma column in

external axial static magnetic field, By||Z, were studied

in details in [3,4]. XASWSs propagate with the wave
field components E,, E,, and H, independently from
ordinarily polarized ASWs (OASWSs) which propagate
with the wave field components H,, H,, and E,. The
spatial-temporal dependence of the wave fields has the
following form, for example, for the axial wave
magnetic field:
H, (F)=H, (r)expli(me — at)]. (1)

In (1), m is azimuthal wavenumber, ¢ is azimuthal angle
and r is radial coordinate in cylindrical coordinates, w is
wave angular frequency, and t is a time.

The results of [3, 4] were generalized in [5] to the case
of higher radial modes in low-frequency (LF) range

oy <o<|wg, |we| <0< . )

In ), @ =-|og|/2+QZ+afl4 is the cutoff

frequencies for bulk modes, and @ is the lower hybrid

frequency, @. and Q. are electron cyclotron and plasma
frequencies, respectively. Plasma particle density is
assumed to be sufficiently large and external axial static
magnetic field is assumed to be sufficiently small in the
present paper, so that Q.>|a|.

They use to study the dispersion properties as a
dependence of an eigen frequency as a function of a
wavevector. In the case of ASWs, the ratio m/a could
play the role of characteristic azimuthal wavenumber

with a being the plasma column radius. In the most of
previous papers devoted to ASWSs, the frequency was
studied in dependence on dimensionless effective
wavenumber keg=|m|dla with &=c/Q, being the skin-
deplth. XASW eigen frequency of the zeroth radial mode
is known not to reach the upper limit of the LF frequency
range (2) regardless of the kg magnitude. They are higher
radial modes of XASWs whose frequencies overlap
entire range (2) [5]. This advantage of higher radial
modes initiated investigation of their application for
XASW excitation by electron beam gyrating around the
plasma column along large Larmor orbits [6]. The first
radial mode of LF XASWSs was shown to be appropriate
to be used for excitation for the following reasons. Its
frequency could be sufficiently higher than that of the
zeroth radial mode ceretis paribus while its growth rate
could be a little bit smaller than that of the zeroth radial
mode. However, the growth rate of the second radial
mode appears to be much smaller than that of the zeroth
radial mode which makes meaningless the application of
the second radial mode.

Explicit expressions for the limits of the range (2)
were obtained in [4] from the condition of surface
nature of XASWs in the plasma: k?>0. “Surface
nature” means that amplitudes of the XASW fields
decrease with going away from the plasma column
boundary into the plasma core. For example, the
amplitude of axial wave magnetic field behaves as
modified Bessel function I,(&):

H, (r)= Al (k,r). ©)
In 3), k2= (alc)’e(1/-1) with w=s)le, &, are the
components of cold collisionless plasma dielectric
permittivity tensor &;: e:=&11, and g=—i&,:

2 2
Q Q5 o,
51:1— ZZ—CZZ’ 82:_2%_ (4)
a0 —Wg (24 a)(a) —a)aJ

The condition kf >0 is valid also in the frequency range
above the upper-hybrid frequency oy :

WyH <O <y, ()

ISSN 1562-6016. BAHT. 2020. Ne6(130)

22 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2020, Mz 6. Series: Plasma Physics (26), p. 22-25.


https://doi.org/10.46813/2020-130-022

where @, =|w,|/2+Qf +f 14 is the cut-off

frequency for bulk modes. The objective of the present
paper is to study the dispersion properties of XASW
higher radial modes just in this frequency range.

In general, expression for the amplitude of the wave
axial magnetic field as a solution of Maxwell’s
equations contains two constants of integration. The Eq.
(3) contains only one constant since the expression
accounts the boundary condition at the axis of the
waveguide. The wave fields should be of finite
magnitude there.

1. STATEMENT OF THE PROBLEM

The following plasma-dielectric-metal cylindrical
structure is under the consideration. Cold plasma
column with a circular cross-section of radius a is
separated from the loss-free metal wall of radius b by
the dielectric layer with dielectric constant &5 The
structure is placed into external axial static magnetic

field By|Z (Fig. 1).

Within the dielectric layer the amplitude of the wave
axial magnetic field is described in terms of the Bessel
functions of the first, J,(x), and second, Nn(x), kinds
[6]:

H(1)=B[In(x1) Niy(xb) — Ni(1) In(sb)].  (6)

In (6), the radial wave vector is K=w@/c. The Eq.

(6) contains only one constant of integration to satisfy
the boundary condition at the ideal metal interface,
where wave tangential (azimuthal) electric field should
be equal to zero.

Application of the boundary conditions at the plasma-
dielectric interface (H,(r) and E,(r) should be continuous at
r=a) results in the dispersion relation [3, 4]:

& In(@)NGy (k) = I (kNG (@) _

ki Iin (k0N (k@) = I (k@)N T ()

_ Iﬁw(kLa)+ﬂ
Ink,a) ka’

In (7), the primes denote derivatives with respect to the
argument.
2. ASYMPTOTIC SOLUTIONS OF THE
DISPERSION RELATION

The asymptotic solution of the dispersion relation
(7) in the case of LF XASWs and small depth of the
wave penetration into the plasma, k,a>>1 (that is
kes <<1), was given in [5]:

2
o~ zlc 1 M . ®)
Jegb-a)| QZa(b-a)
In (8), | is the wave radial mode number.

Nearby the upper limit of the LF frequency range
(2), the depth of the wave penetration into the plasma
becomes large, k a<<1, and eigen frequency of LF
XASWSs with positive azimuthal wavenumber writes as:

()

c

aQ,
m[;z(l -0.5)+ W} . (9)

W=

ISSN 1562-6016. BAHT. 2020. Ne6(130)

In the case of m<0, asymptotic expression for LF
XASWs looks like Eqg. (9) with the different second
term in square brackets:

;{ﬂa _o.s)+2(|%fl)} |

(10)

metal

Fig. 1. Geometry of the problem

Nearby the upper limit of the HF frequency range
(5), one can apply the Eqg. (9) as asymptotic expression
for the eigen frequency of HF XASWs which propagate
with negative azimuthal wavenumbers, and Eq. (10) in
the case of HF XASWSs which propagate with positive
m with replacing | by (I+1).

Solid curves in Fig. 2 show the dependence of XASW
eigen frequency normalized by the electron cyclotron
frequency as a function of effective wavenumber.
Numerals near the curves mark the radial mode number .
Dash-dotted lines correspond to the limits of the
frequency ranges (2) and (5). Dashed curve shows the
asymptote (8). It exceeds the respective curve for I=2 by
less than 16 %, the accuracy being better for smaller k.
Although the asymptote (10) exceeds the magnitude of
HF XASW with 1=1 by less than 18 %, its curve is not
shown in Fig. 2, since it would lie above the range (5).
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Fig. 2. XASW eigen frequency vs K
Z=0Q/| @|=5, bla=2, &=4, m=-1
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Those sections of the dispersion curves of HF
XASWs, which are described by the Egs. (3) and (4)
and correspond to the frequencies near the upper limit
of the range, are situated closely to each other. The
curve with the radial wavenumber (I+1) is situated on
the left hand of that with I. The higher is the radial
wavenumber 1, the less is distance Akg(I+1,I) between
the two curves which correspond to two neighboring
radial wavenumbers (1+1) and I, Ak (I+1,1)ecI™. Increase
of the radial wavenumber | is accompanied by the
approach of the dispersion curve to the wvertical
disposition. The angle between the sections under the
consideration and a vertical line is inversely
proportional to .

3. RESULTS OF NUMERICAL ANALYSIS

In Figs. 3-7, the results of numerical analysis of the
dispersion relation are presented in the form of
dependencies of XASW eigen frequency o on effective
wavenumber k. Choice of kg as an ordinate makes it
possible to study the @ as a function of the plasma
column radius and its particle density. Eigen frequency
is normalized by electron cyclotron frequency, except of
the Fig. 5, wherein the influence of axial static magnetic
field By is studied, and @ is normalized by the Langmuir
frequency Q..

Application of B, is known to remove the spectrum

degeneracy in the respect of azimuthal wavenumber
sign. Analytical study predicts a(+|m[)>a(—|m|) for both
HF and LF ranges (note, <0 in LF range (2)), which is
confirmed by the calculations in Fig. 3. The difference
between the curves related to LF XASWSs with m=+1 is
invisible already for 1=3.

Decreasing of LF XASW eigen frequency with
increasing of azimuthal wavenumber absolute value was
shown for higher radial modes in [5].
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Fig. 3. XASW eigen frequency vs Ke
Z=5, b/a=2, &=4,
m=-1 (solid curves), m=+1 (dashed curves)
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Fig. 4. XASW eigen frequency vs Kes.
Z=5, bla=2, =4, m=-1 (solid curves),
and m=-2 (dashed curves)

This behavior is in qualitative agreement with the
asympto-te (8). Analogous qualitative dependence of
HF XASW frequency on the |m| is predicted by the
asymptote (9).

Although axial static magnetic field is not present in
asymptotic expressions (9) and (10), it is a necessary
element of plasma electronic devices based on electron

beams rotating in B, around the plasma column.

Significant increase of By in Fig. 5 causes weak increase
of the HF range and weak decrease (increase) of w for
fixed ke for XASWs with negative (positive) m.
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Fig. 5. XASW eigen frequency vs Kes
Z=5 (solid curves), Z=8 (dashed curves),
b/a=2, &=4, m=-1

CONCLUSIONS
A comprehensive analysis of the dispersion
properties of the higher radial modes of HF XASWs is
presented. The dependence of HF XASW eigen
frequencies on the parameters of the plasma waveguide
(radius of the plasma column and the metal wall, plasma
particle  density, azimuthal  wavenumber and
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dielectric constant) is studied for the case of higher
radial modes. HF XASW eigen frequency is shown to
increase with decreasing dielectric layer width (b-a),
absolute value of azimuthal mode number |m|, dielectric
constant g, and especially with increasing the radial
mode number 1. An increase in the constant axial static
magnetic field B, causes a weak decrease in the eigen
frequency of the higher radial HF XASW modes for the
given magnitude of effective wavenumber. The
dispersion properties of the higher radial HF XASW
modes are compared with the properties of the zero radial
HF XASW mode. Eigen frequencies of HF XASWs with
positive azimuthal wavenumbers are shown to be higher
than those of XASws with negative m.

Increase in the radial mode number | (decrease in the
width of the dielectric and its dielectric constant) causes
shift the HF XASW dispersion curve towards smaller
magnitudes of the effective wavenumber, which means
larger magnitudes of the plasma column radius a and
particle density n.. Application of higher radial modes
of HF XASWs does not give any gain in the form of
increasing the frequency compared to the zeroth mode,
as it is in the case in the LF range, but expands the range
of parameters of the plasma waveguide for which they
can be excited towards larger values of n, and/or a.

The results obtained in the present paper can be of
interest for plasma electronics and medical physics [8].
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BBICIIME PAJIMAJIBHBIE MO/IbI ABUMYTAJIBHBIX IOBEPXHOCTHBIX BOJIH BbBIIIIE
BEPXHEU 'NBPUTHOU YACTOTBI B HUJIMHAPUYECKHUX BOJITHOBOJAAX, YACTUYHO
3ANOJIHEHHBIX IJIA3MOM

H. T'upka, B. Konopamenko

W3BectHO, dUYTO a3uMyTanbHBIE MOBepXHOCTHBIE BONHBI (AIIB) sBIsSIOTCS COOCTBEHHBIMH BOJHAMU
UMWIMHIPUYECKUX METaJUIMYECKUX BOJIHOBOAOB, YaCTUYHO 3aMOJHEHHBIX MAarHUTOAKTUBHOW Iua3moil. Hynesbie
paguansHbie Monabl AIIB m3yueHsl panee. M3BecTHO, YTO Ha HMX JUCIIEPCHOHHBIE CBOMCTBA 3aMETHEE BIUSIOT
nmapamMeTpsl IIa3MEHHOTO CTOJ0a: MIOTHOCTh €ro YacTHIl, BHEIIHEe aKCHaJbHOE MOCTOSHHOE MAarHuTHOE IIoJie,
TEOMETPHUYECKHE Pa3Mephl, — YeM CBOMCTBA TUAJIEKTPUYECKOTO CNOs,, KOTOPBIM OTAENSEeT IUIa3MEHHBIH cToJ0 OT
MeTaJuIn4eckoil cTeHku. PaHee OBIIO MOKa3aHO, YTO IPHMEHEHHME BBICIIMX paauaibHeIX Monx AlIB B
HU3KOYAaCTOTHOM JMamna30He MO3BOJIAET AOCTHYh IpenMylnecTBa Ipu Bo30OyxaeHuu AIIB B Buzae 6osee BBICOKOH
4acTOTHI, YeM B CiIy4ae HyJeBoH pamuansHOi Monbl AIIB, 0e3 kakux-nmbo W3MEHEHHH B MapaMeTpax BOIHOBOJA.
Orta paboTa 00001IaeT MPOBEICHHBIC paHee HCCIICIOBAHNUS HA CITydail BOJH BBIIIEC BEPXHEH THOPUIHON YaCTOTHI.

BUIII PAIIAJTBHI MOJH ASUMYTAJIBHUX TOBEPXHEBUX XBWUJIb BUIIIE BEPXHbBOI
T'TBPATHOI YACTOTH B HWJITHIAPUYHUX XBUJIEBOJAX,
AKI YACTKOBO 3AIIOBHEHI ITIJIA3MOIO

L TI'ipxa, B. Konopamenxo

Bimomo, mo asmmyrambHi mnoBepxHeBi xBwini (AIIX) € BIacHUMU XBWISMH IIWIIHAPHYHUX METaJCBHX
XBHUJICBOJIIB, SIKi YACTKOBO 3aIIOBHCHI MarHiTOAKTHBHOO Ia3Moro. Hymbosi paniansHi Mmoau AITX BuBUeHI paHile.
Bimomo, mo Ha iXHi AUCHEPCiiiHI BIACTUBOCTI OUTBII 3HAYHOIO MIPOIO BIDIMBAIOTH MMAPaMETPH IJIa3MOBOTO CTOBIA:
TYCTHHAa HOTO YacTWHOK, 30BHIIIHE aKCiaJlbHE CTalleé MarHiTHE I0Jie, TEOMETPUYHI PO3MIpH, — HIK BIACTHUBOCTI
JIENeKTPUIHOTO Mapy, SKUH BiTOKPEMIIIOE TIIIa3MOBHI CTOBI Bif MeTaleBoi CTiHKU. PaHime Oyso mokasaHo, 110
3aCTOCYBaHHA BHIINX pafianbHuX Mox AIIX B HM3pKOYACTOTHOMY Jiama3oHi Ja€ MOXIMBICTh JAOCSTTH IepeBary
npu 30ymkerHi AIIX y Burmsai GimbIn BHCOKOI 4acTOTH, HIX y BHIAIKY HyJIhOBOI paxianbHoi momu AlIX, 6e3
KOIHMX 3MiH y mapameTpax xBwiIeBoxy. Ll poOora y3araipHIOE TPOBEICHI paHime AOCHIIPKEHHS Ha BHIAIOK
XBUJIb BUINE BEPXHBOT T1OPUIHOT YACTOTH.
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