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Based on the tensor Green's function for hexagonal crystals obtained by the Lifshitz-Rosenzweig method, the
analytical expression of the elastic interaction energy of radiation point defects is calculated in the model of force

dipoles with a dislocation vacancy loop (basal plane of occurrence {0001} , Burgers vector b™ :1/6<ZO§3> ), in

zirconium.
PACS: 62.20.Dc; 62.20.Fe

INRODUCTION

Under irradiation with high-energy particles, point
defects (vacancies and interstitial atoms (SIA)) are gen-
erated in the crystal. The future of these defects is diffu-
sion migration and absorption by macroscopic sinks
(pores, dislocations, grain boundaries, etc.) or recombi-
nation upon encounter. As a result, the initial crystal
structure changes, which leads to such phenomena as
radiation swelling, radiation growth, and other pheno-
mena. During irradiation zirconium alloys behave diffe-
rently from most other engineering alloys in that they
resist swelling. They do exhibit anisotropic dimensional
changes in the absence of an applied stress that depend
on the microstructure; this process is called irradiation
growth. Straight-line dislocations and dislocation loops
are important internal sinks. And knowledge of the
processes that control their evolution is very important
for understanding the mechanisms of radiation damage.

According to the generally accepted concept (the so-
called bias factor) the edge straight-line dislocations,
and the dislocation loops absorb SIA better than vacan-
cies. The reason is a stronger attraction of the SIA due
to the elastic interaction. Moreover, its value does not
depend on the nature of the loop (interstitial or va-
cancy). Therefore, according to the ideology, there
should not be vacancy loops on a macroscopic scale.
For BCC and GCC metals, this point is acceptable (they
demonstrate radiation swelling) [1]. In particular, for
steels, this conclusion is confirmed by numerous expe-
riments [2].

As for HCP metals, along with interstitial vacancies
in there vacancy loops of rather large sizes are also ob-
served under irradiation [3]. The phenomenon of radia-
tion growth, in particular, in zirconium, is associated
with them. Radiation growth is accompanied by a
change of the shape of the material without the applica-
tion of an external load and a noticeable change in vo-
lume. Thus zirconium during radiation growth expands
along the <a>-direction and narrows along the <c>-axis
[4]. One of the variations in its shape is explained by the
growth of vacancy loops in the basal planes, and
interstitial — in prismatic ones. Today, there is no com-
plete understanding of the existence of loops of both
types in HCP metals. The most common version of such
a distribution of point defect (PD) flows is anisotropic
diffusion between zirconium planes [5]. However, it
does not explain the dependence on the radius of the
loop, its nature, and other characteristics. Perhaps the
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elastic anisotropy of HCP metals can explain the
phenomenon of radiation growth. It is considered in the
work that it is too early to discard the elastic interaction.
It is necessary to calculate it correctly. It is possible that
dislocation loops on different planes of the HCP metal
have an elastic preference factor different from the
magnitude of the preference for SMA. Then, under
irradiation, SIAs will be better absorbed by loops with a
large bias factor. Vacancies that remain in excess will
go on loops with a smaller bias factor. And, if the
formers are on prismatic planes, and the others on the
basal planes, then there is a place for the separation of
flows between the planes, but purely elastic.

The goal of the work is to apply the expressions ob-
tained earlier based on tensor Green functions for hex-
agonal crystals in the Lifshitz-Rosenzweig approach to
calculate the elastic energy of radiation interaction of
radiation point defects with a vacancy basis loop with a

Burgers vector b =1/6(2023) in zirconium.

1. BASIC EQUATIONS
In the paper, the classical formula [6, 7] was used
for the displacement due to dislocation in an anisotropic
medium, which is modeled by the tensor Green's func-
tion:

— = > r . 6
U, (r)=Cjk,mbmS{n,Gijvk (F=r)d?r"; Gy, zaGij. 1)

Here C,,, — tensor of elastic moduli of a medium simu-
lating a crystal; b, — component of the Burgers vector
of the dislocation; n, — component of the normal vector
to an arbitrary surface S, , based on a dislocation line

D; G; - tensor Green function; r — point of observa-

tion; surface integration S, ; ¥ — surface point coordi-

nate.
The energy of interaction between two systems of

internal stresses S (u®,ef, oy ) and T (u',ef, oy ),
with a known fictitious distribution of volume forces,

which simulates a real source S according to Eshelby
[8], can be represented by an integral of the form:

En(S.T)=—[ fulav, @)
which is taken over an area containing only the source
of the system S. Let this system be caused by a PD,

described in the theory of elasticity by the volume
distribution of dipole forces without moment

D
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fi(r-r)=-RBV;o(r-r); B =P;. (3)
For the interaction energy between it and the stress sys-
tem T, we have

En () =—[ fi(r'=nu/ (r)dr'=-Ref (). (@)
Here B;— power of dipole moments.

For a hexagonal crystal, the power components of
dipole moments P, supposed in the form Pi;=Py=F;

E.lr?ts E( )( 11611 +P228 +P e )_( 1)( 11(e11 +ezz )"'8P11€3Dss):_P

Pay3s# Py, P1p=P13=P,3=0. Let ¢ =

‘U|'U

Substituting the power of dipole moments into for-
mula (4) P, and components of the strain tensor e; [9]

we have the following expression for the interaction
energy between a dislocation loop and a point defect:

(e +e)+eely). ®)

Here e>®(r) =e? (r)+e (r) represented by the sum of the strain tensors due to the contribution of the shear e; and

prismatic eii loop components

2
e (r)=b” .[ d zr'[C13ZGia,ai (r=r")+CyGiy 5 (r — r')l
a=1

So
eisi (I’) = bsc44 j |:Gi3, i1 (I’
So

The paper considers a circular vacancy loop of ra-
dius R, which lies on the plane z = 0. An example of an
object of this kind is ¢ — loops for the Burgers vector

pos :1/6<20§3> in zirconium under neutron irradia-

tion at a temperature from 560 to 773 K [10]. The
Burgers vector is at an angle to the normal vector x axis
— along the direction of the projection of the Burgers
vector in the basal plane, z — along the normal vector.

Expand the Burgers vector b =1/6(2023) on
prismatic b°=1/2(0001) (perpendicular to the loop
plane) and shear b®=1/3(1010) (lying in the loop

plane) components. Their modules correspond to the
components b ,b® b*. Using the inverse transition

+G|1 |3

(6)

]dZ!

2

2
ZGtﬂ,al + ZGal,a3 +

—Hljdzr' C44bs a=1 a=1
s +& [Gss,w (r-

EDS =

int

Let's write the components: & and B, for
hexagonal crystal through dilation volume AV and
coefficient y,, which are determined experimentally.
To do this, we will rewrite these components through

the displacement dipole. For hexagonal crystal, the
displacement dipole are presented in this form

Qi =Qy Qi # Qs Q, =Q3=0Q, =0, where s
7o = Qs / Q. Because B, =C,Q,, , then
R,=P= (Cll +Cy, +7Q013)Q11'
2C. +7,C
5<7Q): 13 T Vqbss . (10)
Cu + C12 +7 QC13

Consider the forces acting on the point defect in the
hexagonal crystal, the balance of power equation
oy ;+f=0. Here fi=—Cy Q V,;0(r) and

=C;, & for a point defect, the sum of diagonal
elements of the strain tensor can be presented through
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r')+Gyy 55 (r— r’)]

formulas from the Miller-Brave indices to the Miller
indices
r+2s n

:2r+s;V: w=" %
3 3 3

we get the vectors in 3 dimensional coordinates:
b"® :1/18<423> ; b° :1/9<210>; bP° :1/6<001>. (8)
Modulus of vector b®=1/6. Since the angle
between the axis in the HCP lattice is 120 degrees,
modulus of vector b® =+/12/18. Burger’s vector b°
(0°) +(b°) =21/18.
The tensor of strain e (r) (6) presented (5) by the
integral in the form:

module will be equal p® =

13 Z Z Gya ay + 8C33G33 33 ( )
O

2

+(C33 +gC13)ZG3a,a3(r -r’)
1

a=.

+b®

dilation volume e, =divi=AVS(r). Then, by
substituting f, and e, in the equation of equilibrium of
forces that act on a point defect, we have
Cn V,AVS(F) -Cyy Q V;6(1) =0 or Q, =AV /(2+7,).

Putting in the equation (10) we have components: ¢

ijll

and B, , scheduled through experimentally obtained
data, such as dilatation volume and coefficient y, :
C,+C,+7,C
P11=P=( 1Tl T 13)AV,
(2+7)
2C; +7,Cs4

(70)

2. THE GREEN’S FUNCTIONS METHOD:
LIFSHITZ-ROSENZWEIG’S APPROACH

The formula (9) takes the following form [9]
according to the Lifshitz-Rosenzweig approach:

— . (11)
C,+Cp,+7, QC13

85



Ex (p)=-P= 5 (b°7; 7,H® () -b°HP(23)), (12)
RS |p—p|
where
HS (%) ={3{T(r§>—v(r§>}+215d—f+2<1—r§)d—i}, (13)
dr, dr,
HP (2) = {(1—3132)(9(%2) +322 (1-#)%} . (14)
73

The result ispresented in dimensionless cylinrical
coordinates p=r/R,¢, ¢ =z/R. The notation here
is as follow:

7, =(pcos(p) - p'cos(e)) | p— P
7, = (psin(p) - p'sin(e))/|p- '
%= p-pT
lp—p| = p*+¢? —2pp' cos(p—@) +p°;
@, —azimuth angles.
Q(72) = C K (22) + eC W (22) + (6Cpy + Cu )V (75) ;
W(r5) =Cy V() + W (2));
Y(23) =Cy (K(z3) + &V (z3)).
Functions K(z), W(zZ), V(z2) are very complicated
and therefore made in the Appendix.

The result is given as the sum of two loop
components:

edge
B 1 d2 ’
En(P)=PR [ s ED) )
sD|,0_,0|
and shear
£ (a)z_plfﬁ(bsr RHY (). (16)
int \P) = R "3 31 S
sD|P_,0|
a -
I(p=0)
] =] o: .,-‘
[N N ] /. .‘
(p=1/ D Ne Ny
llp=3t/4) e bW
[ ) " o “-"“'—-'ﬂ""‘_ T
I{‘J:T} .' .-....'

0 ! 3 .

relative distance o

At the edge, the Burgers vector is directed along the
z axis. For this part, there is cylindrical symmetry with
respect to rotation. She has no azimuthal dependence.
For the shear part, the Burgers vector is directed parallel
to the basal plane. This result depends on the azimuthal
angle.

3. RESULTS

Numerical evaluations have been carried out for
zirconium. The experimental values of its elastic moduli
according to [11] are as follows (Mbar): C, =1,554;
C,=0,672; C,=0,646; C,=1725; C,=C,, =0,363.
The comparison results are presented in Figs. 1-5 in
dimensionless cylindrical coordinates p=r/R; ¢;
¢=z/R.

1. First, consider the center of dilatation, when &£=1

Fig. 1 shows the radial dependence for the
dimensionless interaction energy
1(p,9,&)=-RE> /b™P of the dislocation loop and
PD for the planes z=0.1R and z=0.5R, where
¢ =z/r. Functions with angles 0, z/4, n/2,3z14,
7 are shown in Fig. 1.

Dependency in range -2z is the same as in the
opposite direction. With increasing angle, the minimum

in the radial dependence decreases. In range
0 - 7 minimum transforms to maximum.
b 10,
= 0\
I(p=0) -
5 A |
llp=r'4 oL e
sene . ‘
(p=1/2 o | Y ———
-
- -
C=:1|' J: : .-
-em -5 -
I(p=n)
- 1% 1 2

relative distance 2

Fig. 1. Function I(p, @, &) depending on the relative distance p inthe plane:a— z=0.5R andb-z=0.1R

On Fig. 1 radial dependence on the angle z/2 and
37 /2 responds to the lack of contribution of the shift
part. It for this angle qualitatively corresponds to the
radial dependence of the vacancy edge loop (with the

Burger’s vector, b®=1/2(0001)) in the base plane.
Therefore, negative values show the area of attraction of
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vacancies, and positive — SIA; the area of repulsion is
the opposite.

For corners from /2 to 3z /2 the contribution is
positive. Therefore, on the graphs of radial
dependencies 3z/4, =z you can see the greater
attraction of the SMA. For angles —z /2 from up to
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712 in this range, the shift part gives a negative
contribution, so on the graphs of radial dependencies 0,
14 a greater attraction of vacancies than SIA except
for a certain area in the middle of the loop. This is
because the prismatic component of the interaction
energy is more than a shift in the middle of the loop.

-

relative distance o

The shear energy of the interaction gives a negative

contribution to the area {0%} and {3?”,24 , and the

positive in the field 1,3—” .
2 2

b
llp=1/)) )
( I\
1 ) /
‘Isd(o:oj * "
L -
LAAL ‘1‘-‘:: --..‘::nm——
| L1 .
ll.{: 2: | ® .
) . .
. .
Py - 2
1 0=F) ° e
s\ ! P
=-ie T

relative distance

Fig. 2. Function I(p,¢=7/2,{) and 14 (p,(¢=0,7/2,7),{) depending on the relative distance p in the
plane:a— z=05R andb - z=0.1R

This contribution of the shear part 1(p,¢,{) is
shown in Fig. 2 versus the edge of the function
1(p,9,¢&), in the form of radial function dependence
l(p,p=712,), shear part of the function
I, (o9, &), for angles ¢@=07/2,7z. ¢=0
corresponds to the maximum negative contribution of
the shear part, ¢ =z /2 the lack of contribution, ¢ =7
the maximum positive contribution.

4

>

On Fig. 2 it is shown that near the loop the
contribution of the shear part is greater than that of the
radial part. When one move away from the loop the
contribution of the edge part on the contrary becomes
more than a shear one. The contribution of the shear
part is concentrated near the dislocation line, so in the
area inside the loop to a certain value of a
disproportionate radius p , where the contribution of the

shear part becomes commensurate with the edge, there
is only the attraction of the SIA and repulsion vacancies.

2 [ 6

o>

Fig. 3. Function I((p :0.5,1,1.5),(p, ¢) depending on the azimuthal angle in the plane: a — z=0.5R and b — z=0.1R

The following Fig. 3 show exactly how the shear
part contributes for two cases respectively, inside the
loop area 0.5R and beyond 1.5R. So for a 0.5R radius
we have a change in energy of interaction values only in
a positive area. Outside, the same loop given angular
dependence for a radius of 1.5R as opposed to the area
inside the loop has a case of changing the nature of the
interaction to the opposite. In addition, the total area of
attraction of vacancies is greater than the attraction of
the ISA.
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2. For a case &=P4/B, #1, when, the radial
dependence for the immeasurable energy of interaction
I(p,0,&)=—RE> /b™P of the dislocation loop and

int
point defect for planes z=0.1R and z=0.5R, will be a
little different. Consider three radial dependencies for:
a)0; b) #/2; c)x angles. For them, we will consider
three values &£=05, 1, 1.5. The graphs show a

flattened PD point line £=0.5, a solid line dilation
center £ =1, a stretched PD dotted line £ =1.5.
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The plane z = 0.5R (Fig. 4)

a =0 b
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Fig. 4. Function 1(p, ¢, <) depending on the relative distance p in the plane z=0.5R :

a—-@=0;b-—@p=x/2,andc- p=7x

The plane z = 0.1R (Fig. 5)

a

It can be noticed that more elongated point defects
have an interaction energy much greater than at equal

values P(g=1). Flattened point defects are less. The
nature of the interaction corresponds to the center of

=0

>

relative distance 2

oo 1
ee® .

" e A 2

0 1 3

relative distance o

H e 8.0 2:0u8: @k Bud

-
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Fig. 5. Function 1(p,¢,<) depending on the relative distance o in the plane z=0.1R:

a-9=0;b-@p=xn/2,andc- p=x

dilation for the plane z = 0.5R.

However, the radial dependences for the z=0.5R
plane have two minima for the angle O, with a
subsequent transition to one minimum and one
maximum for the angle 7 /2 and up to two maxima for
the angle z. This can be explained by the stronger
contribution of the shear part to the radial dependence

of the oblate point defect.

In addition, calculating from formula (11) P, and ¢,
it is possible to determine what type a point defect has,

and also find the energy of elastic interaction.

The energy of elastic interaction for the real loop in
the zirconium (basal plane of the lie, the Burger’s vector

bD5:1/6<20§3>) with a point defect using the
received in the [12] Green's tensor function method

Lifhitz-Rosenzweig is calculated [13]. The result makes
it possible to calculate diffusion fluxes of PD on a loop

CONCLUSION

phenomenon as radiation growth in reactor materials
under irradiation [14].

The authors are grateful to P.N. Ostapchuk for
productive discussion of results.
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APPENDIX

V(z}) = 1-32))D(z3) + 275 (1—z-§)d_qz;
dz;
W) = F(e2) - 20— ) 2,
dz;
aN

K(z2)=-N(2) -2z} F—SQ

3

d
M(r§)+2r§(1—r§)g O(z;) =

2i  a+b+y+p.
(Zl+ZZ) A(Tsz) ’

o 2i : . a+2b ),
F(r3)=—(Zl+22)A(T§)((b+p)+(a+b P)7s . sz,
N(TZ)E 2' R(Taz) _ bT; .

Y () DAE) b P(2) (b+p)a-22)

M(z2) = 2i S(z2) B P(z2) +bz? :

Y @tz) - AE)  \bPE) b+ p)-72)
Rty @00+ 0) AR P(ed) ) .

’ 2, 7, 2b+p)A-z)\ " ° P@E))

+7,

$(z3) =(a+b)(b+p){

A@z3) =2[ k+1(1-73)-m1-3)* |;
B(zZ) =2k +1(1-7%); P(l)=b+pl-72).
Constants k, I, m are defined by expressions:
k=(a+2b)(b+p); m=(a+b—p)y—()(+2p)2;
I =(a+2b)y+(2b—x)(x+2p).

Here

1
a=Cyp; bZE(Cll_Clz) =Cq; x=C3-Cy;

1 1
p=C, _E(Cll_clz) ; p=Cy _E(Cll_clz) ;

[ B 2k B
S ey 21”2"‘/5[ A(riﬁA(ri)] |
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1 2:| A(Tsz) P(Te?) |:( bj ( 2.2 b[ ZB:D 2]
2|3 3 g, —— |+| i+ =z, -— | |7 |;
2, 200+ p)L-72) P P A
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