УДК 546.185

І.В. Затовський

ВЗАЄМОДІЯ ТІ́N З РОЗПЛАВАМИ Li₂O—P₂O₅: Закономірності кристалізації фосфатів титану та будова Li_{1.61}Ti₂(PO₄)₃

Досліджено взаємодію ТіN з розплавами Li₂O—P₂O₅ для інтервалу співвідношень Li/P = 0.50—1.50 та встановлені області кристалізації фосфатів Ti(PO₃)₃, LiTiP₂O₇, Li_{3-x}Ti₂(PO₄)₃ (x = 0—2.0) та TiP₂O₇. З'ясовано вплив співвідношень вихідних компонентів і температурних умов на процеси окиснення Ti(III) \rightarrow Ti(IV) та формування у розплавах змішановалентних ортофосфатів Li_{3-x}Ti₂(PO₄)₃ (x = 0—2.0). Проведено структурні дослідження для кристалів Li_{1.61}Ti₂(PO₄)₃ (пр.гр. *Pbca*, a = 8.527(2), b = 8.623(2), c = 23.954(5) Å). Аніонна підгратка сполуки, яку побудовано поєднанням TiO₆-октаедрів через спільні кисневі вершини PO₄-тетраедрами, належить до типу NASICON. Атоми літію частково заповнюють дві кристалографічні позиції (заселеності Li(1) — 0.79, Li(2) — 0.81), які розташовані у каналах аніонної підгратки та мають чотири- і шестикоординаційне кисневе оточення.

ВСТУП. За останні роки значно зріс інтерес до сполук, які володіють суперйонною провідністю та, відповідно, є базисом для нових матеріалів у твердотільних елементах живлення. Зокрема, це стосується фосфатів літію та полівалентних металів, що зумовлено розробкою та широким впровадженням електродів на основі літійвмісних фосфатів для автономних джерел струму [1]. Найбільш відомим серед фосфатних електродів, які сьогодні використовуються у літій-йонних акумуляторах, є подвійний ортофосфат LiFePO₄ [2]. Не менш цікавими та перспективними у плані практичного застосування також залишаються й інші складні фосфати літію, що містять полівалентні метали у нижчих ступенях окиснення (тривалентні титан, ванадій, три- або чотиривалентний молібден та ін.), які можуть бути використані для автономних джерел струму з певними вольт-амперними характеристиками.

Раніше ми повідомляли, що взаємодія нітриду титану з розплавленими фосфатами лужних металів приводить до утворення подвійних фосфатів, які можуть містити тривалентний або змішановалентний (3+ та 4+) титан [3—5]. Дана робота розглядає взаємодію нітриду титану з розплавами типу Li₂O—P₂O₅ та закономірності процесів кристалізації у цій системі.

ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА. Взаємодію ТіN з літійфосфатними розплавами досліджували в інтервалі співвідношень Li/P від 0.50 до 1.50. В якості вихідних реагентів використовували літійфосфатне скло, яке отримували повільним ступінчатим нагріванням у платиновій чашці розрахованих кількостей Li₂CO₃ та NH₄H₂PO₄ до 1000 °С. Одержаний в такий спосіб розплав заморожували шляхом виливання на мідний лист та після охолодження подрібнювали скло. Наважки скла з певним значенням Li/P розплавляли у порцелянових тиглях при 950 °C та вносили при інтенсивному перемішуванні 3—15 % мас. дрібнодисперсного порошку TiN. Температуру піднімали до 1000—1050 °С та розчиняли нітрид титану при періодичному перемішуванні. Час розчинення становив від 0.5 до 10 год у залежності від складу розплаву та кількості нітриду. Як і у випадку натрій- та калієвмісних систем, взаємодія розплаву з ТіN на початковій стадії супроводжується інтенсивним горінням на поверхні розплаву та сублімацією Р2О5, що є наслідком відновлення фосфору нітридним азотом [4]. Кристалізацію гомогенних розплавів проводили у температурному інтервалі 1050—700 °С зі швидкістю 20—50 °С/год, а в окремих випадках 4 °С/год. По завершенню кристалізації розплави зливали з одержаних кристалічних осадів та відмивали від залишків плаву кип'ятінням з розбавленим розчином HCl.

Склад одержаних кристалічних фаз встановлено за даними хімічного аналізу: літій визначали методом полум'яної фотометрії (фотометр ФПЛ-1), фосфор — гравіметрично у вигляді $Mg_2P_2O_7$ згідно з методикою [6], титан — атомно-адсорбційною спектроскопією з використанням індуктивно зв'язаної плазми (спектрометр Spectroflame Modula ICP Spectro). Фазовий склад встановлювали за допомогою рентгенофазового аналізу (дифрактометр ДРОН-3.0, Си K_{α} -випромінювання з $\lambda =$

[©] І.В. Затовський, 2010

=1.54178 Å, кутовий інтервал 2θ = 5— 90 град).

При взаємодії ТіN з розплавами Li₂O—P₂O₅ відновлення фосфору нітридним азотом стає помітним при температурах 900—950 °С. У розплавах Li/P<1.0 відновлення проходить досить швидко: при 1000 °C повне розчинення 15 % мас. нітриду титану завершується вже за 0.5—2 год. За тих же температурних умов TiN у розплавах із співвідношеннями Li/P<1.0 розчиняється значно повільніше (2-5 год), а для інтервалу значень Li/P від 0.6 до 0.5 взаємодія не спостерігається. В останньому випадку розчинення TiN у розплаві можна здійснити лише за 8-10 год при 1050 °С.

При проведенні кристалізації у досліджених системах були одержані та охарактеризовані сполуки наступних складів: Ti(PO₃)₃, LiTiP₂O₇, Li_{3-x}Ti₂-(PO₄)₃ (x = 0—2.0) та TiP₂O₇. Встановлено, що на утворення сполуки певного складу впливає вихідне співвідношення компонентів, температура та режим кристалізації. Найбільш суттє-

вим фактором є вихідне співвідношення Li/P у розплаві. Області утворення зазначених сполук схематично зображено на рис. 1.

Рис. 1. Формування областей кристалізації фосфатів у залежності від вихідного співвідношення Li/P у розплавах системи Li₂O—P₂O₅—TiN.

Кристалізація метафосфату Ті(PO₃)₃ спостерігається у розплавах із співвідношеннями Li/P від 0.50 до 0.60 вже при 1000 °С. Повільне розчинення нітриду за наведених умов (8—10 год) не дозволяє отримувати дану сполуку в чистому вигляді (останній практично завжди містить незначну домішку TiP₂O₇). Взаємодія в ізотермічних умовах при 1050 °С, особливо при незначному збільшенні значень Li/P до 0.55—0.72, сприяє окисненню титану з утворенням дифосфату TiP₂O₇.

Умови утворення сполук у розплавах Li₂O—P₂O₅—TiN

Сполука	Вихідне співвідно- шення Li/Р у розплаві	Кількість внесеного у розплав ТіN, % мас.	Час взаємодії ТіN з роз- плавом, год (при t, ^о C)	Інтервал крис- талізації (°С) та швидкість охолодження (°С/год)
Ti(PO ₂) ₂	0.5-0.6	6–8	8-10 (1000)	1000-700 (50)
TiP_2O_7	0.55-0.72	3–5	5-10 (1050)	1050-700 (25-40)
LiTiP ₂ O ₇	0.6-0.64	7–9	10 (1020)	1020-850 (40-50)
2 /	0.64-0.72	3–9	3-5 (1000)	1000-850 (25-40)
	0.72-0.8	8-10	5 (1000)	850-700 (25-30)
	0.8-0.9	7-11	05-2 (1000)	850-700 (35-40)
$Li_{3-x}Ti_2(PO_4)_3$				
x = 2.8 - 3.0	0.9–1.0	5-12	1-2 (1020)	1020-750 (40-50)
	1.0 - 1.1	10-15	2 (1000)	1000-800 (50)
x = 2.4 - 2.8	1 - 1.1	5-10	1-2 (1000)	1000-750 (30-40)
	1.1 - 1.2	7–15	1 (1000)	1000-700 (30-40)
x = 2.0-2.4	1.2–1.35	5-12	1 (1000)	1000-700 (40-50)
x = 1.5 - 2.0	1.3–1.4	10-15	0.5-1 (1000)	1000-750 (20-30)
x = 1.0 - 1.5	1.3–1.5	5-10	1-2 (1000)	1000–750 (20–25)
LiTi ₂ (PO ₄) ₃	>1.5	3–5	5 (1000)	1000-800 (35-40)

Чистий Ti(PO₃)₃ виділено лише у випадку співвідношення Li/P = 0.5 (ізотермічна взаємодія 9 % мас. TiN з розплавом протягом 8 год при 1000 °C та подальша кристалізація до 800 °C зі швидкістю 40 °C/год).

По мірі зростання співвідношень Li/P від 0.60 до 0.90 розчинність нітриду в розплавах прискорюється. У цій області кристалізується подвійний дифосфат LiTiP₂O₇. Для співвідношень Li/P = 0.60 —0.72 формування останньої сполуки спостерігається вже при 1000 °C, а в інтервалі Li/P від 0.72 до 0.90 температура початку кристалізації поступово знижується до 850 °C.

Для інтервалу значень Li/P = 0.90—1.50 взасмодія TiN з розплавами приводить до кристалізації подвійних ортофосфатів літію-титану із загальним складом Li_{3-x}Ti₂(PO₄)₃ (x = 0—2.0), які одночасно містять три- та чотиривалентний титан. Склад сполук залежить як від вихідного співвідношення Li:P:Ti у системі, так і від температури та тривалості кристалізації. Умови отримання зазначених фосфатів наведено у табл. 1. Зі зростанням вихідного значення Li/P проявляється тенденція до окиснення тривалентного титану що, відповідно, відображається у складі Li_{3-x}Ti₂(PO₄)₃ (поступове зростання значення x від 0 до 2.0). На процес окиснення також значний вплив має температурний фактор, особливо для систем із значеннями Li/P>1.20. Чистий Li₃Ti₂(PO₄)₃ отримано в інтервалі кристалізації 1000—850 °C (охолодження 30 °C/год) із розплавів Li/P = 0.90—0.95, а LiTi₂(PO₄)₃ утворюється після повного окиснення тривалентного титану (розплави Li/P \geq 1.50).

Ідентифікацію одержаних сполук проведено за даними порошкової рентгенографії з використанням бази даних PDF2. З'ясовано, що синтезований у розплаві Ti(PO₃)₃ кристалізується у моноклинній сингонії (PDF2 N 82-1178), TiP₂O₇ належить до кубічної сингонії (PDF2 N 52-1469) [7], а Li₃Ti₂(PO₄)₃ (PDF2 N 40-0095) [8] та LiTi₂(PO₄)₃ (PDF2 N 35-0754) [9] є ромбоедричними.

За рентгенографічними даними було встановлено, що LiTiP₂O₇ є ізоструктурним до подвійних дифосфатів LiM^{III}P₂O₇ (M^{III} — Fe, Cr) [10]. Відповідно, у випадку LiTiP₂O₇ індиціювання отриманих рефлексів проведено для моноклинної сингонії (пр.гр. $P2_1$), а розраховані параметри кристалічної гратки наступні: a = 4.889(1), b =8.208(2), c = 6.955(1) Å, $\beta = 108.81(4)$ град, V = 264.2(2) Å³, Z = 2.

Будову подвійного ортофосфату Li_{1 61}-Ті₂(РО₄)₃, що одночасно містить титан 3+ та 4+, встановлено за даними рентгеноструктурного аналізу монокристалу. Кристали зазначеного складу одержано за наступною методикою: у розплав із співвідношенням Li/P = 1.3 при температурі 1000 °С та перемішуванні внесли 10 % мас. нітриду титану, витримали в ізотермічних умовах 1 год та охолодили до 750 °С зі швидкістю 15 °С/год. Після цього розплав декантували з одержаного осаду та після охолодження відмили кристали від плаву гарячою водою. Для проведення структурних досліджень відібрано чорно-фіалковий кристал прямокутної форми з лінійними розмірами 0.4x0.4x0.09 мм. Експеримент проведено при кімнатній температурі на дифрактометрі Enraf-Nonius CAD-4 (МоК_о-випромінювання з $\lambda = 0.71073$ Å, графітовий монохроматор, ω/2θ-сканування), кутовий діапазон зйомки 1.70<0<23.97 град для 0 ≤ h ≤ 9, $0 \le k \le 9, 0 \le l \le 27$, всього зареєстровано 1368 рефлексів. Структуру вирішено прямим методом та уточнено повноматричним методом найменших квадратів у анізотропному наближенні з використанням пакетів програм SHELXS-97 та SHELXL-97 [11]. Одержані заключні фактори розбіжності є наступні: $R_1 = 0.0401, wR_2 = 0.1064$ для 1274 незалежних відбиттів з $I > 2\sigma(I)$, GOOF = 1.312; максимальні та мінімальні значення залишкової електронної густини склали 0.505 та –0.541 $e/Å^3$. Отримані координати атомів та їх теплові параметри наведено у табл. 2, а основні міжатомні відстані та кути в координаційних поліедрах — у табл. 3.

Змішановалентний ортофосфат Li_{1.61}Ti₂(PO₄)₃ кристалізується в орторомбічній сингонії та належить до просторової групи *Pbca* з наступними параметрами кристалічної гратки: a = 8.527(2), b = 8.623(2), c = 23.954(5) Å, V = 1761.3(7) Å³; Z = 8; $\rho_{po3} = 2.950$ г/см³. Основою кристалічної структури

Таблиця 2

Координати та ізотропні теплові параметри атомів у структурі Li_{1.61}Ti₂(PO₄)₃

Атом	Заселе- ність	x	у	Z	U _{eq}
Ti(1)	1	0.49611(11)	0.21727(12)	0.17893(4)	0.0094(4)
Ti(2)	1	0.49957(10)	0.21183(11)	-0.06865(4)	0.0093(4)
P(1)	1	0.6509(2)	0.1372(2)	0.05281(6)	0.0087(4)
P(2)	1	0.3580(2)	0.3548(2)	0.30115(6)	0.0087(4)
P(3)	1	0.2105(2)	0.0040(2)	0.12151(6)	0.0094(4)
Li(1)	0.81(4)	-0.0064(27)	-0.0088(27)	0.0051(8)	0.017(3)
Li(2)	0.79(6)	-0.0350(13)	0.0340(13)	0.2144(5)	0.013(2)
O(1)	1	0.6010(5)	0.1911(5)	0.1101(2)	0.0178(9)
O(2)	1	0.5689(5)	0.2362(4)	0.0093(2)	0.0138(9)
O(3)	1	0.6100(5)	-0.0342(4)	0.0458(2)	0.0141(9)
O(4)	1	0.8290(4)	0.1495(5)	0.0463(2)	0.0130(9)
O(5)	1	0.4181(5)	0.2967(5)	0.3571(2)	0.0176(9)
O(6)	1	0.1794(4)	0.3563(5)	0.2991(2)	0.0147(9)
O(7)	1	0.4203(4)	0.2407(4)	0.2577(2)	0.0127(9)
O(8)	1	0.4186(4)	0.5185(4)	0.2886(2)	0.0135(9)
O(9)	1	0.3081(5)	0.1156(5)	0.1558(2)	0.0201(10)
O(10)	1	0.1098(5)	0.0890(4)	0.0789(2)	0.0150(9)
O(11)	1	0.3158(4)	-0.1078(5)	0.0891(2)	0.0159(9)
O(12)	1	0.1022(5)	-0.0817(4)	0.1622(2)	0.0157(9)
Трим	ітка	. Позиція дл	1я всіх атомі	в 8с.	

Неорганическая и физическая химия

Таблиця З

Довжини зв'язків (Å) та кути (град) у координаційних поліедрах для Li_{1.61}Ti₂(PO₄)₃

Зв'язок	Кут	Зв'язок	Кут	Зв'язок	Кут			
Октаелри ТіО								
Ti(1) - O(1)	1.890(4)	$T_{i}(1) - O(12)^{i}$	1.966(4)	$Ti(1)-O(8)^{ii}$	2.018(4)			
Ti(1) - O(9)	1.909(4)	$T_{i}(1) - O(7)$	2.005(4)	$Ti(1) - O(6)^{iii}$	2.039(4)			
$O(7) - Ti(1) - O(8)^{ii}$	80.7(2)	$O(9)-Ti(1)-O(12)^{i}$	89.3(2)	$O(8)^{ii}$ -Ti(1)-O(6) ⁱⁱⁱ	97.1(2)			
$O(12)^{i}$ -Ti(1)-O(6) ⁱⁱⁱ	82.0(2)	$O(9) - Ti(1) - O(8)^{ii}$	91.4(2)	$O(1) - Ti(1) - O(12)^{i}$	97.5(2)			
$O(7) - Ti(1) - O(6)^{iii}$	86.8(2)	O(9) - Ti(1) - O(7)	92.8(2)	$O(12)^{i}$ -Ti(1)-O(8) ⁱⁱ	168.7(2)			
$O(1)-Ti(1)-O(6)^{iii}$	86.1(2)	$O(1) - Ti(1) - O(8)^{ii}$	93.7(2)	O(1)-Ti(1)-O(7)	170.4(2)			
$O(12)^{i} - Ti(1) - O(7)$	88.0(2)	O(1)–Ti(1)–O(9)	95.1(2)	$O(9)-Ti(1)-O(6)^{iii}$	171.3(2)			
$Ti(2)-O(3)^{iv}$	1.876(4)	$Ti(2)-O(3)^{v}$	1.910(4)	Ti(2)–O(2)	1.970(4)			
$Ti(2)-O(11)^{iv}$	1.877(4)	$Ti(2)-O(4)^{vi}$	1.957(4)	$Ti(2)-O(3)^{vii}$	1.973(4)			
$O(4)^{vi}$ -Ti(2)-O(10) ^{vii}	81.7 (2)	$O(5)^{v}$ -Ti(2)-O(4) ^{vi}	90.5 (2)	$O(5)^{v}$ -Ti(2)-O(10) ^{vii}	95.2(2)			
O(2)-Ti(2)-O(10) ^{vii}	83.2(2)	$O(11)^{iv}$ -Ti(2)-O(5) ^v	92.5(2)	$O(3)^{iv}$ -Ti(2)-O(11) ^{iv}	96.0(2)			
O(4) ^{vi} -Ti(2)-O(2)	84.2(2)	$O(11)^{iv}$ -Ti(2)-O(2)	92.7(2)	$O(3)^{iv}$ -Ti(2)-O(10) ^{vii}	169.8(2)			
$O(3)^{iv}$ -Ti(2)-O(2)	87.7(2)	$O(3)^{iv}$ -Ti(2)-O(4) ^{vi}	92.8(2)	$O(11)^{iv}$ -Ti(2)-O(4) ^{vi}	170.6(2)			
$O(11)^{iv}$ -Ti(2)-O(10) ^{vii}	89.1(2)	$O(3)^{iv}$ -Ti(2)-O(5) ^v	93.4(2)	$O(5)^{v}$ -Ti(2)-O(2)	174.6(2)			
	Тетраедри РО							
P(1)–O(1)	1.509(4)	P(1)–O(3)	1.528(4)					
P(1)–O(2)	1.518(4)	P(1)–O(4)	1.531(4)					
O(1)–P(1)–O(2)	108.7(2)	O(1)–P(1)–O(3)	109.5(2)	O(2)–P(1)–O(3)	111.3(2)			
O(1)–P(1)–O(4)	110.6(2)	O(2)–P(1)–O(4)	110.4(2)	O(3)–P(1)–O(4)	106.4(2)			
P(2)–O(5)	1.520(4)	P(2)–O(7)	1.527(4)					
P(2)–O(6)	1.524(4)	P(2)–O(8)	1.533(4)					
O(5)–P(2)–O(6)	111.6(2)	O(5)–P(2)–O(7)	105.8(2)	O(6)–P(2)–O(7)	109.4(2)			
O(5)–P(2)–O(8)	111.3(2)	O(6)–P(2)–O(8)	108.8(2)	O(7)–P(2)–O(8)	110.0(2)			
P(3)–O(9)	1.515(4)	P(3)–O(11)	1.529(4)					
P(3)–O(10)	1.523(4)	P(3)–O(12)	1.533(4)					
O(9)–P(3)–O(10)	111.6(2)	O(9)–P(3)–O(11)	110.7(2)	O(10)–P(3)–O(11)	107.1(2)			
O(9)–P(3)–O(12)	107.0(2)	O(10)–P(3)–O(12)	108.6(2)	O(11)–P(3)–O(12)	111.9(2)			
Поліедри LiO ₆ та LiO ₄								
$Li(1) - O(4)^{XV1}$	2.19(2)2	$Li(1)-O(4)^{1V}$	2.30(2)	$Li(1)-O(4)^{v_1}$	2.46(2)			
$Li(1) - O(2)^{XIV}$.	2.26(2)	$Li(1) - O(10)^{X111}$	2.30(2)					
$O(10)-Li(1)-O(4)^{XV1}$	71.8(7)	$O(2)^{X1V}$ -Li(1)-O(4) ^{1V}	70.5(7)	$O(10)-Li(1)-O(2)^{v_1}$	68.2(7)			
O(10)-Li(1)-O(2) ^{XIV}	116.3(9)	O(10)-Li(1)-O(10) ^{x111}	172.7(10)	$O(4)^{xv_1}$ -Li(1)-O(2) ^{v_1}	68.6(7)			
$O(4)^{xv_1}$ -Li(1)-O(2) ^{xv_2}	115.7(9)	$O(4)^{XV1}$ -Li(1)-O(10)^{X111}	109.6(10)	$O(2)^{x_1v} - Li(1) - O(2)^{v_1}$	174.2(10)			
$O(10)-Li(1)-O(4)^{11}$	109.7(10)	$O(2)^{x_{1v}}_{} - Li(1) - O(10)^{x_{11}}_{}$	69.9(7)	$O(4)^{1V}$ -Li(1)-O(2) ^{V1}	104.9(8)			
$O(4)^{XV1}$ -Li(1)-O(4) ^{1V}	172.6(10)	$O(4)^{1V}$ -Li(1)-O(10) ^{X111}	68.0(6)	$O(10)^{X111}$ -Li(1)-O(2) ^{V1}	105.3(8)			
$Li(2) - O(7)^{x_1}$	1.941(12)	$Li(2)-O(6)^{xv}$	1.992(12)					
Li(2)–O(12)	1.982(12)	$Li(2) - O(8)^{X1V}$	2.040(12)					
$O(7)^{x_1}$ -Li(2)-O(12)	142.7(7)	$O(12)-Li(2)-O(6)^{xv}$	82.8(5)	$O(12)-Li(2)-O(8)^{XiV}$	103.2(5)			
$O(7)^{x_1}$ -Li(2)- $O(6)^{x_V}$	129.9(6)	$O(7)^{x_1}$ -Li(2)-O(8)^{x_1v}	81.7(5)	$O(6)^{xv}$ -Li(2)-O(8) ^{xv}	113.1(6)			
$Li(1) - Li(1)^{XIII}$	0.31(4)	:						
$Li(1)-O(10)-Li(1)^{X111}$	7.3(10)	$Li(1)^{1}-O(2)-Li(1)^{V11}$	5.8(10)					

Примітка. Симетричні трансляції, які приводять до генерації еквівалентних атомів: (i) -x+1/2, y+1/2, z; (ii) -x+1, y-1/2, -z+1/2; (iii) x+1/2, y, -z+1/2; (iv) -x+1, -y, -z; (v) x, -y+1/2, z-1/2; (vi) x-1/2, -y+1/2, -z; (vii) x+1/2, -y+1/2, -z; (vii) x+1/2, y, -y+1/2, -z; (vii) x+1/2, -y+1/2, -z; (vii) x+1/2, y, -y+1/2, -z; (vii) x+1/2, y, -y+1/2, -z; (vii) x+1, y, z; (ix) x, -y+1/2, z+1/2; (x) -x, y+1/2, -z+1/2; (xi) x-1/2, y, -z+1/2; (xii) -x+1, y+1/2, -z+1/2; (xii) -x, -y, -z; (xiv) -x+1/2, y-1/2, z; (xv) -x, y-1/2, -z+1/2; (xv) x-1, y, z.

одержаної сполуки є тривимірна аніонна підгратка, яку побудовано поєднанням ТіО₆-октаедрів фосфатними тетраедрами. За принципами формування такий каркас належить до типу NASICON (сімейство сполук зі структурою NPZ — NaZr₂(PO₄)₃) [12]. Кожний PO₄-тетраедр поєднує через спільні кисневі вершини чотири різних ТіО₆-октаедри, а, відповідно, кожен з октаедрів ТіО₆ зв'язаний з шістьома різними фосфатними групами. Основним будівельним блоком аніонної підгратки є фрагмент Ti₂(PO₄)₃, який утворено двома типами октаедрів TiO₆ та фосфатними тетраедрами трьох типів (рис. 2).

Рис. 2. Елементарний структурний блок [Ti₂(PO₄)₃] аніонної підгратки структури Li_{1.61}Ti₂(PO₄)₃.

Два типи кисневих октаедрів титану мають дещо відмінну ступінь деформації (табл. 3). Зв'язки Ті–О у поліедрах Ті(1)О₆ (1.890(4)—2.039(4) Å; Ті–О_{сер} = 1.971 Å) є дещо більшими за відповідні в октаедрах Ті(2)О₆ (від 1.876(4) до 1.973(4) Å; Ті–О_{сер} = 1.927 Å). Така геометрія свідчить на користь того, що позиції Ті(1) пріоритетно займає тривалентний титан, а, відповідно, позиції Ті(2) — титан 4+. Відстані Р–О (Р–О_{сер} = 1.524 Å) у фосфатних тетраедрах (табл. 3) є досить типовими для ортофосфатів з каркасовим типом NA-SICON [13].

Атоми літію у Li_{1.61}Ti₂(PO₄)₃ знаходяться у двох кристалографічних позиціях, що відповідає їх чотирьох- та шестикоординаційному кисневому оточенню (у межах відстаней 2.46(2) Å). Ступінь заповнення позицій Li(1) та Li(2) літієм відповідно складає 0.79(6) та 0.81(4). Поліедр Li(1)O₆ є практично правильною трикутною антипризмою, в екваторіальній площині якої атоми літію розташовуються у двох підпозиціях на відстані 0.31(4) Å (рис. 3, *a*). Така динамічна рухливість атомів літію може бути пов'язана з екві-

Рис. 3. Кисневе оточення літію у $Li_{1.61}Ti_2(PO_4)_3$ (симетричні трансляції, які приводять до генерації еквівалентних атомів: (iv) 1-x, -y, -z; (vi) -0.5+x, 0.5-y, -z; (xi) -0.5+x, y, 0.5-z; (xiii) -x, -y, -z; (xiv) 0.5-x, -0.5+y, z; (xv) -x, -0.5+y, 0.5-z; (xvi) -1+x, y, z.

Рис. 4. Проекція структури $\text{Li}_{1.61}\text{Ti}_2(\text{PO}_4)_3$ на площину bc (TiO₆ — сірі октаедри; PO₄ — білі тетраедри; Li — світло-сірі кульки).

валентним набором кисневих атомів, які формують основу його призматичного оточення. Всі відстані Li–O у поліедрі Li(2)O₄, який є сильно деформованим тетраедром (рис. 3, δ), близькі та знаходяться у межах 1.94—2.04 Å.

Два типи атомів літію заповнюють сформовані аніонною підграткою [Ti₂(PO₄)₃] канали, які простягаються у різних кристалографічних напрямках (рис. 4). Наявність вакантних позицій літію у каналах структури та його значна рухливість, особливо у позиціях Li(1), обумовлюють можливість суперйонної провідності для дослідженої сполуки.

ВИСНОВКИ. Отже, проведені дослідження взаємодії ТіN з розплавами Li₂O-P₂O₅ виявили, що на склад одержаних фосфатів титану та границі областей їх кристалізації першочергово впливає вихідне співвідношення Li/P. При цьому зі зростанням значення Li/P від 0.5 до 1.5 спостерігається дискретне зменшення ступеня полімерності фосфатних тетраедрів у отриманих сполуках: формування мета- (Ti(PO₃)₃), ди- (LiTiP₂O₇) та ортофосфатів (Li_{3-x}Ti₂(PO₄)₃, x = 0—2.0). З'ясовані особливості утворення змішановалентних ортофосфатів літію-титану (III, IV) показали, що окиснення Ti(III) → Ti(IV) відбувається у розплавах з Li/P>0.9, а швидкість даного процесу зростає як зі збільшенням зазначеного співвідношення, так і з підвищенням температури. Дослідження особливостей будови Li_{1.61}Ti₂(PO₄)₃ дозволяють прогнозувати для даної сполуки наявність суперйонних провідних властивостей.

РЕЗЮМЕ. Исследовано взаимодействие TiN с расплавами Li₂O-P₂O₅ в интервале соотношений Li/P = 0.50-1.50 и определены области кристаллизации фосфатов $Ti(PO_3)_3$, $LiTiP_2O_7$, $Li_{3-x}Ti_2(PO_4)_3$ (x = 0—2.0) и ТіР₂О₇. Установлено влияние соотношений исходных компонентов и температурных условий на процессы окисления Ti(III) → Ti(IV) и формирование в расплавах смешановалентных ортофосфатов Li_{3-r}Ti₂(PO₄)₃ (x = 0-2.0). Проведены структурные исследования для кристаллов $\text{Li}_{1.61}\text{Ti}_2(\text{PO}_4)_3$ (пр.гр. *Pbca*, a = 8.527(2), b = 8.623(2), c = 23.954(5) Å). Анионная подрешетка соединения, построенная путем сочленения через общие кислородные вершины TiO₆-октаэдров PO₄-тетраэдрами, принадлежит к типу NASICON. Атомы лития частично заполняют две кристаллографические позиции (заселенность Li(1) — 0.79, Li(2) — 0.81), которые размещены в каналах анионной подрешетки и находятся в четырехи шестикоординационном кислородном окружении.

Київський національний університет ім. Тараса Шевченка НТК "Інститут монокристалів" НАН України, Київ

SUMMARY. Interaction of TiN with $Li_2O-P_2O_5$ melts within the initial ratios Li/P = 0.50-1.50 and fields of crystallization of $Ti(PO_3)_3$, $LiTiP_2O_7$, $Li_{3-x}Ti_2(PO_4)_3$ (x = 0-2.0) Ta TiP_2O_7 are presented. The influence of initial components and temperature on oxidization Ti(III) $\rightarrow Ti(IV)$ and as a result formation mixedvalent phosphates $Li_{3-x}Ti_2(PO_4)_3$ (x = 0-2.0) are discussed. Structural investigations are performed for single crystals $Li_{1.61}Ti_2(PO_4)_3$ (space group *Pbca*, a = 8.527(2), b = 8.623(2), c = 23.954(5)Å). Anionic framework is related to NASICON-type and is organized by linking TiO_6 octahedra via common oxygen vertices with PO_4 tetrahedra. Lithium atoms are partly in two crystallographic positions (occupancies Li(1) - 0.79, Li(2) - 0.81), lay in canals of anionic sublattice and possess four – and six-coordinated environment.

- 1. Nazri G.-A., Pistoia G. Lithium Batteries: Science and Technology. -Springer, 2004.
- Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. В 2 т. -СПб: Изд-во С.-Петерб. ун-та, 2000.
- 3. Затовский И.В., Слободяник Н.С., Стратийчук Д.А. // Укр. хим. журн. -1998. -64, № 11-12. -С. 75—80.
- Zatovsky I.V., Slobodynik N.S., Stratiychuk D.A. et al. // Zeitschrift fur Naturforschung. Tel. B. -2000. -55, № 3/4. -P. 291—298.
- 5. Затовський І.В. // Доп. НАН України. -2008. -№ 11. -С. 129—133.
- 6. Гиллебрандт В.Ф., Лендель Г.Э., Брайт Г.А., Гофман Д.И. Практическое руководство по неорганическому анализу. -М.: Химия, 1966.
- 7. Anderson A., Norby P. // Inorg. Chem. -1998. -37. -P. 4313-4320.
- Nadiri A., Delmas C. // C.R. Seances Acad. Sci. Ser. 2. -1987. -304. -P. 415—421.
- 9. *Masse B*. // Bull. Soc. Fr. Mineral Cristallogr. -1970. -93. -P. 500.
- Генкина Е.А. // Журн. структур. химии. -1990. -31, № 6. -С. 92—96.
- Sheldrick G.M. SHELXS97 and SHELXL97. Programs for Crystal Structure solution and refinement. -University of Gottingen, Germany, 1997.
- 12. Hong H. // Mater. Res. Bull. -1976. -11. -P. 173-181.
- 13. Corbridge D.E.C. The structural Chemistry of Phosporus. -Amsterdam.: Elsevier, 1974.

Надійшла 07.09.2009