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The study of the Dirichlet problem with arbitrary measurable data for harmonic functions in the unit disk I goes to
the known dissertation of Luzin. His result was formulated in terms of angular limits (along nontangent paths)
that are a traditional tool for the research of the boundary behavior in the geometric function theory. With a view to
Jfurther developments of the theory of boundary-value problems for semilinear equations, the present paper is de-
voted to the Dirichlet problem with arbitrary measurable (over logarithmic capacity) boundary data for quasilinear
Poisson equations in such_Jordan domains. For this purpose, it is firstly constructed completely continuous opera-
tors generating nonclassical solutions of the Dirichlet boundary-value problem with arbitrary measurable data
Jor the Poisson equations AU =G over the sources G e L?, p >1. The latter makes it possible to apply the Leray—
Schauder approach to the proof of theorems on the existence of regular nonclassical solutions of the measurable
Dirichlet problem for quasilinear Poisson equations of the form AU (z)=H (z)-Q (U (z)) for multipliers H < L?
with p >1 and continuous functions Q :R - R with Q(t)/t >0 ast —x.

These results can be applied to some specific quasilinear equations of mathematical physics, arising under a
modeling of various physical processes such as the dif fusion with absorption, plasma states, stationary burning, etc.
These results can be also applied to semilinear equations of mathematical physics in anisotropic and inhomoge-
neous media.

Keywords: logarithmic capacity, quasilinear Poisson equations, nonlinear sources, Dirichlet problem, measurable
boundary data, angular limits, nontangent paths.

1. Introduction. The research of boundary-value problems with arbitrary measurable data is
due to the known dissertation of Luzin, see its reprint [1] with comments of his pupils Bari
and Men’shov.

[MuryBannsa: Gutluanskii V.Ya.,, Nesmelova O.V, Ryazanov V.1, Yefimushkin A.S. Dirichlet problem with
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Following this way, we proved Theorem 7 in [2] on the solvability of the Dirichlet prob-
lem for the Poisson equations AU =G with sources in classes G e L?, p >1 in Jordan domains
with arbitrary boundary data that are measurable with respect to the logarithmic capacity.

With a view to further developments of the theory of boundary-value problems for semi-
linear equations, the present paper is devoted to the Dirichlet problem for quasilinear Poisson
equations in Jordan domains with arbitrary boundary data that are measurable over the loga-
rithmic capacity, see, e.g., [2] for its definition and properties.

Later on, we use the abbreviation q.e. (quasieverywhere) on a set E — C, if the correspon-
ding property holds only for all { e E except its subset with zero logarithmic capacity.

Recall also that a path in the domain D in C terminating at ¢ e D is called nontangent, if
its part in a neighborhood of ¢ lies inside of an angle in D with its vertex at {. Hence, the limit
along all nontangential paths at { e D also named the angular limit at a point.

2. Definitions and preliminary remarks. Here, we use the designation of the logarithmic
(Newtonian) potential N of sources G e L? (C), p>1, with compact supports given by the
formula:

NG(Z):ziJ‘ln|2—w\G(w)dm(w), (1)
C

where dm(w) corresponds to the Lebesgue measure in the plane.
Remark 1. As known, N, with G supported in D is continuous in C, belongs to the class
W27 (D), and AN, =G a.e. Moreover, N € ngcq (C) for some g >2, consequently, N is lo-

cally Holder-continuous. Furthermore, if G € L” (C), p > 2, then N, eC 1103 (©) forau:=(p-2)/p,
and for all a €(0,1) under p = (see, e.g., Lemma 3 in [2] or Theorem 2 in [3]).

Furthermore, the collection {N} is equicontinuous, if the collection {G} is bounded by
the norm in L” (C). More precisely, || Ng [lc <M-||G||, on each compact set S in C, where M
is a constant depending only on S, and, in particular, the restriction of N, to D is a comp-
letely continuous bounded linear operator (see, e.g., Lemma 2 in [2] or Theorem 1 in [3]).

Let us also recall the following analog of the Luzin theorem on the antiderivatives in terms
of the logarithmic capacity (see Theorem 3.1 in [4]).

Lemma 1. Let ¢:[a,b] > R be a measurable function over the logarithmic capacity. Then there
is a continuous function ®:[a,b] >R with ®'(x)=¢(x) q.e. on (a,b). Furthermore, ® can be
chosen with ®(a)=®(b)=0 and |®(x)|<e, x €[a,b] for arbitrary prescribed & >0 .

Remark 2. In view of the arbitrariness of ¢>0 in Lemma 1, for each ¢, there is an infinite
collection of such ®. Furthermore, it is easy to see by Lemma 3.1 in [4] that the space of such
functions ® has the infinite dimension.

Corollary 1. Let ¢:0D — R be a measurable function with respect to the logarithmic capacity.
Then the space of continuous functions ® :0D —[-1,1] with ®(1)=0, |®(L)|<e forall LoD
under arbitrary prescribed € >0, and ®'(e™)=o(e") g.e.on R has the infinite dimension.

On this basis, we obtain the following result (see, e.g., Theorem 4.1 in [4]).

Proposition 1. Let ¢:0D — R be a measurable function over the logarithmic capacity. Then
there is a space of harmonic functions U in a unit disk D of the infinite dimension with the an-
gular limits limu(z)=¢@({) g.e. on OD.

z—(¢
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Remark 3. By the proof of Theorem 4.1 in [4], u(z) = %U (z), where

U(rei‘g)zijZT 1-r*
2n 5 1-2rcos(8—-t)+r

S ® (e )d, (2)

i.e., for any function ® from Corollary 1, # can be calculated in the explicit form

2n 2\ -
ioy__ T (1-r7")sin(8-t) ity 4 3
u(re™) n'([(1—2rcos(8—t)+rz)2q)(e )at ©)

Later on, it was shown by Theorems 1 and 3 in [5] that the functions u(z) can be represented
as the Poisson—Stieltjes integrals

Uq)(z):i]il),(f)—t)d(b(e”) Vz=re', re(0,1), 9e[-nn], (4)

where P (©)=(1-7?) /(1-2rcos®+7r?), r<1, @eR, isthe Poisson kernel.
The corresponding analytic functions A(z) in D with the real parts u(z) can be repre-
sented as the Schwartz—Stieltjes integrals

50 () =5 [ Z2d0 (), zeD, (5)

6]D)C_2

because the Poisson kernel is the real part of the (analytic in the variable z) Schwartz kernel
(C+z)/(C-2z). Integrating (5) by parts (see Lemma 1 and Remark 1 in [5]), we obtain the
more convenient form of the representation

s, (2)=2 [-2©) 4 . 6
0@ =7 [ de 2eD (6)

3. On completely continuous Dirichlet operators. By Proposition 1, there is a space of har-
monic functions # in a unit disk D of the infinite dimension with the angular limits q.e. on D

lifé”(z):wc ©)=0)=0:(Q), 9 (L)=N;(Q). )

By Remark 1, U :=u+N |p with such u are continuous solutions of the Poisson equa-
tion AU =G a.e. in the class ng;:p (]ID)lei’cq (D), g > 2, with the angular limits

limU (z2)=¢(C) q.e. on oD. (8)

z—(¢

By Remark 3, such a harmonic function z: 1D — R can be obtained in the form of the real part
of the analytic function
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Y (©)
Sy (2)=2 [ —52_gc, zeD,
¥ nam)((;_z)Z (9)

where W is an antiderivative of the function y, from Corollary 1.
Consequently, such a harmonic function u# can be represented in the form

u@)=uy(2) -G (2), u(2)=ReSy (), ug(@)=ReSq_(2), (10)

where ® and @, are antiderivatives of ¢ and ¢, in Corollary 1, correspondingly. Note that
the harmonic function %, does not depend on the sources G at all.

Let us choose the function ®; in a suitable way to guarantee that the correspondence
G - u+ N/, is a Dirichlet operator D that is completely continuous on compact sets in D gen-
erating solutions of the Poisson equation AU =G a.e. in the class C le(z)’C” (D) with the Dir-
ichlet boundary condition (8).

Namely, the following function @, is an antiderivative for the function ¢ :

9
D (6):= [N (e°)d0-5(9), ¢=¢”, 0, 9¢[0,2n], (11)
0
where S :[0, 2n] — C is either zero or a singular function of the form
2n ] ]
5(9)::0(3)ch(e19)de, =€, 0, 9¢[0,2n], (12)
0

with a singular function C:[0,2x]—[0,1] of the Cantor ladder type, i.e., C is continuous,
nondecreasing, C(0)=0, C(2r)=1 and C'=0 q.e. Recall that the existence of such functions
C follows from Lemma 3.1 in [4].

Setting u; =ReSg, , it is easy to see in view of the second part of Remark 1 that

|G (©)|<4nM |G|,  VCedD 13)
and, by (6), that, for the constants C, and C, depending only on r € (0,1),
lu ()|<Sq, ()| <C |G, VzeD,, (14)

|ug (21)~ug (22)|<’S®G (21)—S@G (22)|<C: G Hp|21_22 Lz4,2,€D,. (15)

Consequently, the operator u; :=Re S, = is completely continuous on compact sets in D by
the Arzela—Ascoli theorem (see, e.g., Theorem IV.6.7 in [6]). Thus, we obtain the next conclusion.

Lemma 2. Let ¢:0D — R be measurable over the logarithmic capacity. Then there is a Dirichlet
operator D over G:D—C in LP (D), p>1, generating continuous solutions U :D— R of the
Poisson equation AU =G in the class Wli’c P (D) with the Dirichlet boundary condition (8) in the
sense of angular limits q.e. on 0D, which is completely continuous over D, foreach r €(0,1).
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Remark 4. Note that the nonlinear operator D, constructed above is not bounded except the
trivial case ® =0 because then D,=S,, #0. However, the restriction of the operator D, to D,
under each r €(0,1) is bounded at infinity in the sense that max|D; (2)|<M-||G]||, for some

zel

M >0 and all G with large enough ||G [|,. Note also that, by Corollary 1, we are able always to
choose @ for any o, including ¢ =0, which is not identically 0 in the unit disk ID.

Moreover, by the above construction, U :=D belongs to the class Wli’cq (D) for some
q>2. Consequently, U is locally Hélder continuous. Furthermore, if G € L” (D), p >2, then
Ue Cﬁ;c“ (D) for a:=(p—-2)/p,and forall ae(0,1) under p=c0.

4. The Dirichlet problem in a unit disk. In this section, we study the solvability of the Di-
richlet problem for semilinear Poisson equations of the form AU (z)=H (z)-Q (U (z)) in the
unit disk D.

Theorem 1. Let ¢:0D — R be measurable with respect to the logarithmic capacity. Suppose
that H : D — R is a function in the class LP (D) for p >1 with compact support in D, and Q : R — R
is a continuous function with

hm@:o. (16)

t—o

Then there is a function U :D — R in the class W >P (D) such that

loc
AU (2)=H () QU (z)) ae.in D 7
with the angular limits

limU (2)=¢(C) ge. on oD. (18)

z—C

Moreover, U belongs to the class W, (D) for some q>2; consequently, U is locally Holder

loc

continuous. Furthemore, if G e L’ (D), p>2, then U eC]t;c“ (D) for a:=(p-2)/p, and for all
ae(0,1) under p=o.

Proof. If || H||,=0 or |Q||o=0, then any harmonic function from Theorem 7.2 in [7] gi-
ves the desired solution of (17). Thus, we may assume that ||H|,#0 and [[Q]lc#0. Set

Q.(t)=max|Q ()|, t eR":=[0,00). Then the function Q.:R* - R" is continuous and non-
hl<e

decreasing. Moreover, by (16),

lim O g, (19)

t—o0 t

By Lemma 2 and Remark 4, we obtain the family of operators F (G;t):L%, (D) — L%, (D),
where L%, (D) consists of functions G € L” (D) with supports in the support of H

F(G;1)=tH-Q(D;) Vte[0,1] (20)

which satisfies hypothesis H1-H3 of Theorem 1 in [8] (see also [2]). Indeed:
ISSN 1025-6415. /lonos. Hay,. axad. nayx Yxp. 2022. Ne 1 15
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H1). First of all, by Lemma 2, the function F (G; 1) € L}; (D) for all t€[0,1] and G L%, (C)
because the function Q(D,,) is continuous. Furthermore, the operators F (; 1) are completely
continuous for each te[0,1] and even uniformly continuous in the parameter t€[0,1].

H2). The index of the operator F (;0) is obviously equal to 1.

H3). Let us assume that solutions of the equations G =F (G;t) are not bounded in
L5 (D), i, there is a sequence of functions G, € Lf; (D) with ||G,, ||,—>% as n— o such that
G,=F(G,;t,) for some 1, €[0,1], n=1,2,.... However, by Remark 4, we have that, for some
constant M >0,

and, consequently,

Q*(M||Gan)> 1
MG, ll, — MIH],

(21)

for all large enough n. The latter is impossible in view of condition (19). The obtained contra-
diction disproves the above assumption.

Thus, by Theorem 1 in [8], there is a function G € L}, (D) with F (G;1) =G, and, by Lemma
2, the function U =D, gives the desired solution of (16). The rest properties of the given so-
lution U follow from Remark 4.

Remark 5. By the construction in the above proof, U =D, where D, is the completely con-
tinuous Dirichlet operator described in the last section, and the support of G is in the support
of H. The upper bound of |G|, depends only on ||H [, and on the function Q. Moreover,
G :D—R is a fixed point of the nonlinear operator Q. :=H-Q(D;): L}, (D) — L}, (D), where
L%, (D) consists of functions G in L (D) with supports in the support of H .

5. Extension of the main result to Jordan domains. Here, we extend the result to domains
D with the quasihyperbolic boundary condition by Gehring—Martio (see [9]). Recall that, by the
discussion in [10] and [7], every smooth (or Lipschitz) domain satisfies the quasihyperbolic
boundary condition. But such boundaries can be even nowhere locally rectifiable, and without
the so-called (A)-condition by Ladyzhenskaya—Ural’tseva in [11], which was standard in the
theory of boundary-value problems for PDEs.

Theorem 2. Let D be a Jordan domain in C with the quasihyperbolic boundary condition,
0D have a tangent q.e., and ¢:0D — R be measurable over the logarithmic capacity. Suppose that
H :D — R is a function in the class L’ (D) for p >1 with compact supportin D , and Q :R —> R
is a continuous function with

lim 29 g (22)

t—o0 t

Then there is a continuous function U :D — R in class Wli;:p (D) such that

AU)=H()-QUE) ae inD (23)

16 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2022. Ne 1
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with the angular limits
lim U€)=0(o) ge. on oD. (24)

Moreover, U belongs to the class Wl1 9(D) for some q>2. Consequently, U is locally Holder
continuous in D . Furthermore, if G e LP(D), p>2, then U eC1 (D) for a=(p-2)/p, and
Jorall a.e(0,1) under p=o.

Proof. Let ¢ be a conformal mapping of D onto D that exists by the Riemann mapping
theorem, see, e.g., Theorem 11.2.1 in [12]. Now, by the Caratheodory theorem (see, e.g., Theorem
I1.3.4in [12]), ¢ is extended to a homeomorphism ¢ of D onto D). Furthermore, by Corollary
of Theorem 1 in [13], ¢« :=¢ |,: 0D — 0D and its inverse function are Hélder continuous. Then
$:=@oc. ! is measurable over the logarithmic capacity (see, e.g., Remarks 2.1 and 2.2 in [7]).

Now, set H =|C'[* -H oC, where C is the inverse conformal mapping C :=¢ ' : D — D. Then
it is clear by the hypotheses of Theorem 2 that H has compact support in D and belongs to
the class L” (D). Consequently, by Theorem 1, there is a continuous function U : 1D — R in the
class Wlﬁ’cp (D) such that

AU (z)=H (2)-QU (z)) ae. in D (25)
with the angular limits

limU (2) =3(&) q.e. on OD. (26)

z—C

Moreover, U = Dy, where Dy is the completely continuous Dirichlet operator described in
Section 3, and the support of G is in the support of H. The upper bound of |G |, depends
only on || H |, and on the function Q.

Next, setting U =U oc, we obtain by simple calculations that AU = ¢']*-AU o¢ and, conse-
quently, the continuous function U : D — C is in the class W P (D) that satisfies Eq. (23) a.e.
Moreover, U(§)=Dz(c(§)), where D is the completely contmuous Dirichlet operator
from Section 3. Hence by Remark 4, U belongs to the class Wl1 9(D) for some g>2. Conse-
quently, U is locally Holder continuous in D and, if G e LP(D), p>2, then U eC J(D) for
a:=(p-2)/p,and forall ae(0,1) under p=co.

It remains to show that (26) implies (23). Indeed, by the Lindel6f theorem, see, e.g., Theo-
rem I1.C.2 in [14], if D has a tangent at a point ®, then arg [c. (w)—c (§)]-arg[m—&] — const
as £ - o. In other words, the images under the conformal mapping ¢ of sectors in D with a
vertex at e dD is asymptotically the same as sectors in D with a vertex at {=c.(w)edD.
Consequently, the nontangential paths in D are transformed under ¢ into nontangential paths
in D and inversely q.e. on éD and 0D, respectively, because D has a tangent q.e. and c¢. and
¢! keep sets of the logarithmic capacity zero.

Theorem 2 can be applied as in [10] to problems of mathematical physics appearing under
modeling various types of physical and chemical absorptions with diffusion, plasma states, sta-
tionary burning, etc. Finally, due to the factorization theorem in [15], we are able, by the quasi-
conformal replacements of variables, to extend the above results to semilinear equations of the
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Poisson type describing the corresponding physical phenomena in anisotropic and inhomo-
geneous media that shall be published elsewhere.

This work was partially supported by grants of Ministry of Education and Science of Ukraine,

project number is 0119U100421.
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SAOAYA JIPIXJIE 3 BUMIPHUMU JAHUMU
JIJIA HAIIBJITHIMHMX PIBHAHD HA IIJIOIIMHI

Busuenns 3amaui [lipixiie 3 10BiIbHUMYU BUMIDHUMU JAHUMU JIJI51 TADMOHIYHUX (DYHKITIN B OMMHUYHOMY KOJIi D
cXOUTh 10 BigoMoi auceprarii Jlysina. Moro pesyssrar GyB chopMy/iboBanuii y TepMiHAX KyTOBHX TPAHUIlb
(Y3IOBK HEJIOTUYHUX TIJISXIB), SIKi € TPAAUIIIHHUM IHCTPYMEHTOM JIJIsT TOCJIIPKEHHST TPAHUYHOI MOBE/IIHKY Bi-
JOOpaskeHb y TeOMeTPUYHIN Teopii pyHKiii. Corigyoun UM IIJISX0M, paHilie MU OB TeopeMy PO PO3B’s3-
HicTb 3aj1aui Jlipixire st piBasinb [yaccona AU =G 3 jukepesiaMmu B kiacax G € LP | p > 1, B JkopianoBux obJrac-
TSIX 3 IOBITBHUMI TPAHUYHUME JAaHUMHY, BUMIPHUMU BiTHOCHO JorapudmiuHoi emHocTi. [Ipu mbomy mepenba-
Yajiocs, 1o 06J1acTi 3aJ0BOJIBHSIIOTH KBasirinepOoiuny rpannuny ymoBy lepinra—Maprio, B3arasi kaxyuu, 6e3
Biztomoi (A)-ymoBu JlaamkeHChKOI— YpasblieBoi i, 30KkpeMa, 6e3 YMOBU 30BHINTHLOTO KOHYCa, siKi Oy cTaH-
JNAPTHUMU I KPAOBUX 3aj1au B Teopil AudepeHiliaibHiX PiBHSAHb Y YACTUHHUX MOXiAHUX. Bigznauumo, 1o
Taki JKOpAaHOBI 006J1aCTI MOKYTh OYTH HaBIiTh JIOKAJIBHO HECTTPAMIIOBAHIMHU.

3 MeTOI0 MOAJBINOr0 PO3ZBUTKY TeOpii KpaloBUX 3aj1au JJIsi HAIBJIIHIHHUX PIBHSIHB Y POOOTI TOCTIIKY -
eTpes 3amava Jlipixie 3 ZOBITbHUMY BUMiIpHUMH (BiTHOCHO JTOTapU(MMIYHOI EMHOCTI) TPAHUYHUMHU JaHUMU 7T
KBasizniniinux pisasub [lyaccona B Takux obmactsx. [liist 1boro cnoyarky OyayioThCst IIOBHICTIO HellepepBHi
OTIEPaTOPH, SKi TTOPOJKYIOTh HEKJIACHYHI PO3B’I3KM KpaiioBoi 3aayi /lipixire 3 IOBITHHUMU BUMiPDHUMU TaHUMU
ans pisaanb Ilyaccona AU =G 3 mxepenamu G e [P, p>1. OcranHe nae 3Mory sacrocyBaTu 1ijxiz Jlepe—
[Taynepa mo moBemeHHsT TEOPEM PO iCHYyBaHHS PETYJISPHUX HEKJIACUIHUX PO3B’SI3KiB BUMipHOi 3amaui /lipixie
111 KBasiminiitnux piBusanb [lyaccona suny AU (z)=H (z)-Q (U (z)) ansa muoxnukis H e LP 3 p >1 i nenepeps-
Hux Gyt Q:R—->R 3 Q(¢)/t >0 aust ¢ —oo. Ili pesysbraTu MOXyTb OyTH 3aCTOCOBAHI 10 JESIKUX KOH-
KPETHUX KBa3iJiHINHUX PIBHSHb MaTeMaTUUHOI (hi3UKH, 1110 BUHUKAIOTH 1111 4aC MOJIEJIIOBAaHHS PisHUX (hi3uy-
HUX MPOIECIB, TaKNX K Audy3ist 3 abcopOIIieio, CTaHu TJIa3MH, CTallioHapHe TOPIHHS 1 T .., a TAKOK 0 HaIliB-
JIIHIMHUX PIBHSHB MaTeMATUYHOI (Di3UKHU B aHI30TPOITHUX 1 HEOTHOPITHUX CEPEOBUIIAX.

Kmouosi cnosa: nozapugmiuna emmicmo, keasininitine pisnanns Ilyaccona, neninitini dacepena, sadaua /ipixie,
BUMIpHI zpanuuni Oani, Kymoei zpanuiyi, HeOMuyHi ULTSXU.
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