УДК 541.651+547.812.5+547.818.1

А.Я. Ильченко

НЕСИММЕТРИЧНЫЕ ПОЛИМЕТИНОВЫЕ КРАСИТЕЛИ

Показано, что квантово-химическим методом Паризера-Парра-Попла с новыми параметрами можно получить максимумы поглощения несимметричных полиметиновых красителей (красителей-стирилов, цианиновых и мероцианиновых красителей), практически совпадающие с экспериментальными.

Полиметиновые красители приобретают все более важное значение в современных информационных технологиях [1, 2], лазерной технике [3, 4], кинофотографии [5—8]. Постоянно возрастают требования к их свойствам, в частности к положению максимумов поглощения, определяющих цвет красителей. Поэтому установление зависимости окраски красителей от их строения и надежное предвидение их спектров поглощения имеет важное не только теоретическое, но и практическое значение.

Развитие теории цветности органических красителей дало возможность установить ряд закономерностей, позволяющих определять положение полос поглощения полиметиновых красителей [9—13]. Для интерпретации и обоснования этих закономерностей обычно используются квантово-химические методы в различных приближениях. Наиболее пригодным для этой цели является метод Паризера-Парра-Попла (метод ППП) [5, 10, 12]. Однако в рамках метода ППП важной проблемой является установление исходных параметров расчета для достижения удовлетворительных результатов. Нами подробно рассмотрен этот вопрос в предыдушей работе этой серии и предложен новый метод выбора параметров расчета, позволяющий определять максимумы поглощения симметричных полиметиновых красителей, практически совпадающие с экспериментально наблюдаемыми [14]. В настоящей работе рассмотрены особенности выбора параметров метода ППП, позволяющие получать в результате расчета максимумы поглощения несимметричных полиметиновых красителей.

Красители-стирилы. Для удобства записей формул полиметиновых красителей представим их в виде граничных структур с положитель-

ным зарядом в мезоположении, например, для красителя-стирила:

Для различных концевых групп (EG) рассматриваемых нами красителей введем следующие краткие обозначения:

© А.Я. Ильченко, 2005

Тогда формулы всех полиметиновых красителей можно кратко записывать в виде формул EG_1 – $C(H)^+$ – EG_2 , например, для красителейстирилов — EG_1 – $C(H)^+$ –AP, для симметричных красителей — EG_1 – $C(H)^+$ – EG_1 . Для каждой концевой группы можно оценить ее спектральную длину по формуле:

$$\lambda_o(EG) = 0.5(\lambda_{max}$$
-50) нм ,

где λ_{max} — максимум поглощения симметричного красителя $EG-C(H)^+-EG$.

Несимметричные полиметиновые красители, как правило, имеют максимумы поглощения λ , смещенные в коротковолновую сторону на величину $\Delta\lambda$ (девиация), по сравнению со средней арифметической величиной, вычисленной из двух максимумов поглощения соответствующих симметричных красителей:

$$\Delta \lambda = 0.5(\lambda_{max,1} + \lambda_{max,2}) - \lambda$$
.

Величины девиаций зависят от разности электронодонорностей концевых групп. Для количественной оценки электронодонорностей концевых групп используем шкалу D, предложенную нами в работе [15].

При квантово-химических расчетах максимумов поглощения красителей-стирилов методом ППП нами использованы в основном те же параметры, которые применялись нами в работе [14] для симметричных красителей. Только параметры $I_{\rm p}$ для гетероатомов несколько из-

Таблица 1 Спектральные характеристики красителей-стирилов менены для учета влияния девиаций, а именно: для более электронодонорных концевых групп они уменьшены, а для менее электронодонорных — увеличены.

В табл. 1 приведены экспериментальные и рассчитанные максимумы поглощения и другие спектральные характеристики красителейстирилов.

Ранее [15] нами найдено, что девиации несимметричных красителей, в том числе и красителей-стирилов, могут быть оценены по эмпирическому уравнению:

$$\Delta \lambda = 36(\Delta D)^2 - (\Delta D)^3$$
,

где ΔD — разность электронодонорностей двух концевых групп несимметричного красителя. Это уравнение можно использовать для оценки спектральной длины концевых групп в несимметричных красителях по уравнению:

$$\lambda(EG) = \lambda_0(EG) - 18(\Delta D)^2 + 3(\Delta D)^3.$$

Это позволяет оценивать максимум поглощения несимметричного красителя по формуле:

$$\lambda = \lambda(EG_1) + \lambda(EG_2) + 50 \text{ HM}.$$

Например, для красителя-стирила ВТ– $C(H)^+$ – AP по этим формулам можно найти максимум поглощения 524.62 нм (экспериментальное значение 525 нм). Таким образом, спектральная длина концевой группы $\lambda_o(EG)$ максимальна в симметричных красителях, а в несимметричных она

Краси- тель	Концевая	Спектраль-	λ, нм	Ī	Парам	етры, эВ			3аряд на C ₆ H ₄ NMe ₂ , Q 0.396 0.296 0.289 0.284 0.252 0.160 0.193 0.183
	группа EG	ная длина $\lambda_o(EG)$, нм	Эксперимент	Расчет	$I_{ m N}$	I_{O}	$I_{ m S}$	D	
1	AP	280	610	609.6	17.20			0.00	0.396
2	4-P1	278.5	594	594.2	18.56	32.76		0.67	0.296
3	2-P1	309	610	610.2	18.91	32.41		0.98	0.289
4	I	250	545	544.9	17.23, 19.27			1.00	0.284
5	ВО	217.5	500	499.9	20.83, 19.76	24.78		1.45	0.252
6	BT	254	525	525.4	16.94, 20.20		15.56	1.48	0.160
7	2-Q	277	530	528.3	19.00, 19.20			1.77	0.193
8	4-Q	328	550	548.9	18.85, 19.50			2.02	0.183
9	2-Pd	257.5	470	469.7	17.39, 19.31			2.30	0.158
10	4-Pd	277.5	483	482.7	17.70, 19.56			2.37	0.150
11	Rd	245	466	466.0	19.65	14.55		2.20	0.138
12	BI	224	414	413.7	16.15, 21.70			2.50	0.093

уменьшается, причем тем больше, чем больше разность электронодонорностей концевых групп.

Результаты квантово-химических расчетов молекул красителей-стирилов методом ППП оказалось возможным использовать для оценки электронодонорности D концевой группы. Найдено, что положительный π -электронный заряд Q на концевой группе AP, то есть на группе $C_6H_4N(CH_3)_2$, постепенно уменьшается с увеличением электронодонорности другой концевой группы (см. табл. 1). Найдена корреляционная зависимость между электронодонорностью Dконцевой группы в красителе-стириле и положительным зарядом О на диметиламинофенильной группе:

$$D = 3.581 - 8.914Q$$
; $n=12$;

коэффициент корреляции R=0.986.

В монографии [13] приведен другой способ оценки электронодонорности концевых групп с помощью параметра $\Phi_{\rm o}$. Нами найдено, что электронодонорности по шкале D и параметры $\Phi_{\rm o}$ находятся в корреляционной зависимости:

$$\Phi_{\rm o} = 16.88 + 23.86D \; ; \quad n=10; R=0.954.$$

В табл. 2 приведены для сравнения заряды на атомах полиметиновой цепи, порядки связей в цепи (выше указаны номера

атомов) и энергии высших заполненных ($E_{\rm B3MO}$) и низших вакантных ($E_{\rm HBMO}$) молекулярных орбиталей некоторых красителей-стирилов в порядке возрастания электронодонорностей их концевых групп. Из таблицы видно, что по мере увеличения электронодонорностей концевых групп существенно уменьшаются заряды q_3 , порядки связей полиметиновой цепи с гетероостатками и увеличивается порядок центральной двойной связи.

Несимметричные цианиновые красители. В табл. 3 приведены экспериментальные и рассчитанные методом ППП максимумы поглощения несимметричных цианиновых красителей $EG_1-C(H)^+-EG_2$ с двумя гетероциклическими кон-

T а б л и ц а 2 Заряды на атомах (q), порядки связей (p) и энергии орбиталей $(E, \, 9B)$ красителей-стирилов

Краси- тель	q_2	q_3	$p_{1,2}$	$p_{2,3}$	p _{3,4}	$E_{ m B3MO}$	$E_{ m HBMO}$
4	-0.126	+0.167	0.598	0.694	0.641	-12.752	-8.480
•							
5	-0.139	+0.211	0.577	0.711	0.505	-13.183	-8.623
6	-0.119	+0.130	0.494	0.772	0.457	-12.779	-8.293
7	-0.129	+0.156	0.492	0.763	0.471	-12.689	-8.451
9	-0.141	+0.127	0.443	0.793	0.451	-12.644	-7.995
10	-0.099	+0.119	0.457	0.792	0.448	-12.510	-8.013
12	-0.117	+0.061	0.379	0.836	0.417	-12.894	-7.736

Таблица 3 Спектральные характеристики несимметричных цианиновых красителей

Концевые группы		λ,	НМ	Параметры, эВ			
EG_1	EG_2	Экспе- римент	Расчет	$I_{ m N}$	I_{O}	$I_{ m S}$	
I	ВО	508	508.0	20.60, 21.41	25.46		
I	BT	542	542.1	20.00, 18.4		16.67	
I	2-Q	561	561.1	19.62, 20,28			
I	2-Pd	509	509.1	20.00, 18.80			
I	4-Pd	525	525.2	19.95, 19.05			
I	BI	463	462.6	21.14, 17.48			
2-Q	BT	578	578.1	20.50, 18.55		17.05	
2-Q	2-Pd	577	577.4	20.90, 19.20			
2-Q	4-Pd	597	597.0	21.00, 19.30			
	I I I I I 2-Q 2-Q	группы EG1 EG2 I BO I BT I 2-Q I 2-Pd I 4-Pd I BI 2-Q BT 2-Q 2-Pd	группы А, EG1 EG2 Эксперимент I BO 508 I BT 542 I 2-Q 561 I 2-Pd 509 I 4-Pd 525 I BI 463 2-Q BT 578 2-Q 2-Pd 577	группы A, нм EG1 EG2 Эксперимент Расчет I BO 508 508.0 I BT 542 542.1 I 2-Q 561 561.1 I 2-Pd 509 509.1 I 4-Pd 525 525.2 I BI 463 462.6 2-Q BT 578 578.1 2-Q 2-Pd 577 577.4	группы λ , нм Парамен EG $_1$ EG $_2$ Эксперимент Расчет I_N I BO 508 508.0 20.60, 21.41 I BT 542 542.1 20.00, 18.4 I 2-Q 561 561.1 19.62, 20,28 I 2-Pd 509 509.1 20.00, 18.80 I 4-Pd 525 525.2 19.95, 19.05 I BI 463 462.6 21.14, 17.48 2-Q BT 578 578.1 20.50, 18.55 2-Q 2-Pd 577 577.4 20.90, 19.20	группы A, HM Параметры, эв EG1 EG2 Эксперимент Расчет I _N I _O I BO 508 508.0 20.60, 21.41 25.46 I BT 542 542.1 20.00, 18.4 I 2-Q 561 561.1 19.62, 20,28 I 2-Pd 509 509.1 20.00, 18.80 I 4-Pd 525 525.2 19.95, 19.05 I BI 463 462.6 21.14, 17.48 2-Q BT 578 578.1 20.50, 18.55 2-Q 2-Pd 577 577.4 20.90, 19.20	

цевыми группами, например, красителя $BT-C(H)^+-I$:

Из табл. З видно, что при соответствующем выборе параметров расчета методом ППП могут быть получены максимумы поглощения и несимметричных цианиновых красителей, практически совпадающие с экспериментальными.

В табл. 4 для сравнения приводятся заряды на атомах полиметиновой цепи, порядки связей в цепи и энергии молекулярных орбиталей для

T а б л и ц а 4 B Заряды на атомах B , порядки связей B и энергии орбиталей B , B цианиновых красителей

Концевые группы		a	a	а	n	n	n	n	F	F
EG_1	EG ₂	q_2	q_3	q_4	$p_{1,2}$	$p_{2,3}$	<i>p</i> _{3,4}	$p_{4,5}$	$E_{ m B3MO}$	$E_{ m HBMO}$
I	I	-0.140	+0.175	-0.140	0.660	0.628	0.628	0.660	-12.908	-8.584
ВО	ВО	-0.158	+0.189	-0.158	0.658	0.631	0.631	0.658	-13.253	-8.526
BT	BT	-0.168	+0.134	-0.168	0.624	0.638	0.638	0.624	-12.506	-8.216
2-Q	2-Q	-0.164	+0.128	-0.164	0.597	0.644	0.644	0.597	-12.352	-8.348
BI	BI	-0.255	+0.073	-0.255	0.529	0.658	0.658	0.529	-12.022	-7.419
ВО	I	-0.131	+0.191	-0.154	0.626	0.658	0.597	0.704	-13.191	-8.620
BT	I	-0.143	+0.149	-0.150	0.577	0.688	0.576	0.712	-12.754	8.395
2-Q	I	-0.148	+0.147	-0.148	0.552	0.696	0.575	0.707	-12.672	-8.469
BI	I	-0.141	+0.091	-0.162	0.430	0.780	0.504	0.783	-12.69	-7.908

симметричных и несимметричных цианиновых красителей. Из табл. 4 видно, что с увеличением электронодонорности концевой группы постепенно снижается порядок ее кратной связи и увеличивается порядок соседней связи с мезоатомом углерода в цепи, а для менее электронодонорной концевой группы, наоборот, увеличивается порядок кратной связи и уменьшается порядок ее связи с мезоатомом углерода в цепи.

Мероцианиновые красители, производные роданина. В настоящей работе методом ППП рассчитаны молекулы симметричного роданинового красителя $RD-C(H)^+-RD$ и несимметричных мероцианиновых красителей, производных роданина, например, красителя $I-C(H)^+-RD$:

Для расчета молекулы роданинового симметричного красителя (R — алкил) методом ППП нами предложены следующие параметры: $I_{\rm C}$ =11.16, $I_{\rm N}$ =17.20, $I_{\rm S}$:=23.60, $I_{\rm S}$ =15.00, $I_{\rm O}$ =17.00 эВ. Другие параметры приняты такими же, как в работе [14]. Для расчета молекул мероцианиновых красителей использованы параметры, приведенные в табл. 5, в которой пред-

106

Таблица 5 Спектральные характеристики мероцианиновых красителей, производных роданина

Краси- тель	Концевые группы		λ,	НМ	Параметры, эВ			
	EG_1	EG_2	Экспе- римент	Расчет	$I_{ m N}$	I_{O}	$I_{ m S}$	
22	Rd	Rd	540	540.8	17.20	17.00	23.60, 15.00	
23	AP	Rd	466	466.0	19.65	14.55		
24	I	Rd	503	503.6	20.40	18.10		
25	2-Q	Rd	568	568.3	20.04	17.56		
26	2-Pd	Rd	542	542.2	19.20	17.30		
27	BI	Rd	514	514.0	18.15	17.50		

ставлены также экспериментальные и найденные максимумы поглощения.

В табл. 6 приведены для сравнения заряды на атомах полиметиновой цепи, порядки связей в цепи и энергии молекулярных орбиталей. Из табл. 6 видно, что по мере возрастания электронодонорности концевой группы постепенно увеличивается отрицатель-

ный заряд на соседнем атоме полиметиновой цепи, увеличивается положительный заряд на соседнем с роданиновым ядром атоме углерода в цепи, уменьшаются порядки соседних с гетероостатками связей и возрастает порядок центральной связи полиметиновой цепи.

Общим результатом работы является то, что квантово-химический метод ППП с новыми

T а б л и ц а б B Заряды на атомах B порядки связей B и энергии орбиталей B мероцианиновых красителей, производных роданина

Краси- тель	q_2	q_3	$p_{1,2}$	$p_{2,3}$	$p_{3,4}$	$E_{ m B3MO}$	$E_{ m HBMO}$
24	-0.128	+0.221	0.739	0.560	0.678	-11.534	-6.852
25	-0.166	+0.182	0.606	0.637	0.630	-10.963	-6.710
26	-0.199	+0.167	0.561	0.666	0.611	-10.795	-6.338
27	-0.223	+0.148	0.508	0.698	0.589	-10.767	-6.153

параметрами позволяет получать максимумы поглощения, практически совпадающие с экспериментально наблюдаемыми, и, следовательно, пригоден для изучения и интерпретации спектров поглощения не только симметричных, но и несимметричных полиметиновых красителей.

РЕЗЮМЕ. Показано, що квантово-хімічним методом Парізера—Парра—Попла можна одержати максимуми поглинання несиметричних поліметинових барвників (барвників-стирилів, ціанінових та мероціанінових барвників), які практично збігаються з експериментальними.

SUMMARY. The absorption maximums of unsymmetric polymethine dyes (dyes-styryls, cyanine and merocyanine dyes), which are practically coincided with observed maximums, are shown to be found by quantummechanic Parizer-Parr-Pople methods with new parameters.

Институт органической химии НАН Украины, Киев

- 1. Fabian J., Nakazumi H., Matsuoka M. //
 Chem. Rev. -1992. -92, № 6. -P. 1197—
 1228.
- 2. *Law K.Y.* // Ibid. -1993. **-93**, № 1. -P. 449—486.
- 3. *Лазеры* на красителях / Под ред. Ф.П. Шефера. -М.: Мир, 1976.
- 4. Ищенко А.А. Строение и спектральнолюминесцентные свойства полиметиновых красителей. -К.: Наук. думка, 1994.
- 5. Tyutyulkov N., Fabian J., Mehlhorn A. et al. Polymethine dyes. Structure and properties. -Sofia: St Kliment Ohridski University Press, 1991.
- 6. Джеймс Т. Теория фотографическогопроцесса. -Л.: Химия, 1980.
- 7. *Миз К.*, Джеймс Т. Теория фотографического процесса. -Л.: Химия, 1973.
- 8. *Шапиро Б.И.* Теоретические начала фотографического процесса. -М.: Эдиториал УРСС, 2000.
- 9. *Киприанов А.И*. Введение в электронную теорию органических соединений. -К.: Наук. думка, 1975.
- Griffiths J. Colour and constitution of organic molecules. -London: Academ. Press, 1976.
- 11. *Киприанов А.И.* Цвет и строение полиметиновых красителей. -К.: Наук. думка, 1979.
- 12. Fabian J, Hartmann H. Light absorption of organic colorants. Theoretical treatment and empirical rules. -Berlin: Springer, 1980.
- 13. Качковский А.Д. Строение и цвет полиметиновых красителей. -К.: Наук. думка, 1989.
- 14. *Ильченко А.Я.* // Журн. орг.-фарм химии. -2004. -2, № 1(6). -C. 45.
- 15. *Ильченко А.Я.* // Укр. хим. журн. -1976. -**42**, № 2. -C. 162.

Поступила 02.08.2004

УЛК 547.854

В.Д. Дяченко, А.Г. Постернак

СПОСОБ СИНТЕЗА ЗАМЕЩЕННЫХ 2-АЛКИЛТИО-7-АМИНО-6-ЦИАНО(ЭТОКСИКАРБОНИЛ)-5H-ПИРАНО[2,3-d]ПИРИМИДИН-4(3H)-ОНОВ

Многокомпонентной конденсацией тиобарбитуровой кислоты, альдегидов, малононитрила или цианоуксусного эфира, алкилгалогенидов и морфолина получены замещенные 2-алкилтио-7-амино-6-циано(этоксикарбонил)-5H-пирано[2,3-d]пиримидин-4(3H)-оны.

Интерес исследователей к барбитуровой и тиобарбитуровой кислотам обусловлен как широким спектром биологической активности производных этих кислот, так и возможностью получения на их основе других важных гетеро-

циклических систем [1, 2]. Продолжая изучение реакции Михаэля применительно к синтезу халькогенсодержащих гетероциклов [3—5], мы исследовали конденсацию тиобарбитуровой кислоты (I) с альдегидами (II а,б) и малононит-

© В.Д. Дяченко, А.Г. Постернак, 2005