гидросульфита натрия до обесцвечивания. Продукт реакции выделяли добавлением насыщенного раствора хлорида аммония. Перед измерением окислительно-восстановительных потенциалов соединения І а — и последовательно кристаллизовали из этанола, диоксана и вновь из этанола или бензола. Чистоту контролировали методом ТСХ на пластинках «Силуфол УФ-254», элюент — смесь хлороформа и ацетона (3:1 по объему).

Окислительное дезаминирование I а — u. K раствору 0.025 моля I а — u в 150 мл уксусной кислоты добавляли раствор 8 г бихромата натрия в 40 мл воды. Через час отфильтровывали осадок (в случае Ід) и продукт кристаллизовали из бензола или реакционную массу разбавляли двухкратиым количеством воды и экстрагировали бен-золом. Бензольный слой промывали водой и дважды фильтровали через слой (2— 3 см.) силикагеля, растворитель отгоняли и продукт дважды кристаллизовали из бензола, каждый раз обрабатывая силикагелем. Выделение IV a-u методом колоночпой хроматографии на окиси алюминия или силикагеле невозможно вследствие их разложения при длительном контакте с адсорбентом.

\ Бензолсульфонил-1,4-аминофенолы (III $6-\partial$). Суспензию 0,01 моля соотнетствующего хипонимина VI в 25 мл уксусной кислоты перемешивали 0,5 часа с 1.0 г цинковой пыли, нагревали до кипения, фильтровали и фильтрат разбавляли

100 мл воды. Осадок отделяли и кристаллизовали из уксусной кислоты.

1 Бурмистров К. С., Бурмистров С. И. Природа влияния заместителя при атоме азоокислительно-восстановительные потенциалы *п*-бензохинонмоноиминов.— Журн орган. химии, 1980, **16**, № 7, с. 1487—1494.

2. Дубина В. Л., Бурмистров К. С. Окислительно-восстановительные потенциалы сис-

тем N-аренсульфонилхинонимин — аренсульфамидофенол.— Там жс, 1977, 13, № 2,

c. 378—380.

3. Fieser L. F. The potentials of some unstable oxidation-reduction systems.— J. Amer. Chem. Soc., 1930, 52, N 12, p. 4915—4940.
4. Corbett J. F. Benzoquinone imines. Pt 1. p-Phenylendiamin — ferricyanide and p-1000 N 2 1 1000 N 2

- aminophenol ferricyanide redox systems.— J. Chem. Soc. B. 1969, N 3, p. 207— 212.
- 5. Электрохимические свойства N-ацилзамещенных хинондииминов и монохинониминов / С. А. Петрова, К. С. Бурмистров, М. В. Колодяжный, О. С. Ксенжек.— Электрохимия, 1979, **15**, № 11, с. 1666—1670. 6. *Бурмистров К. С., Бурмистров С. И.* Окислительно-восстановительные потенциа-
- лы хинондипминов.— Вопр. химии и хим. технологии, 1981, вып. 65, с. 42—44.

 7. Morgan G. T., Micklethwait F. M. G. The aryl sulphonyl-p-diazoimides.— J. Chem. Soc., 1905, 87, p. 921—930.
- 8. Adams R., Colgrove R. S. Quinone imides. XXXVI. Orientation of groups in adducts quinone diimides with different N-substituents.- J. Amer. Chem. Soc., 1954,

76, N 13, p. 3584—3587.
9. Adams R., Looker J. H. Quinone imides. IV. p-Quinone monosulfonimides.—Ibid., 1951, 73, N 3, p. 1145—1149.

10. Титов Е. А., Сухина Н. К. Гидрохлорирование N, О-бис-ацилхинониминоксимов.— Хим. технология, 1971, вып. 22, с. 15—19.

Днепропетровский химико-технологический институт Поступила 22.12.82

УДК 517.572+541.651+539.196

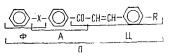
природа полос электронных спектров поглощения НЕПРЕДЕЛЬНЫХ КЕТОНОВ

В. М. Никитченко, В. П. Чуев, В. Ф. Лаврушин

Электронные спектры непредельных кетонов и дикетонов, содержащих ядро дифенилсульфида, описаны в статьях [1, 2]. Там же проведен графический анализ спектров поглощения и рассмотрено их основное и возбужденное состояния п-электронных систем в рамках полуэмпирической теории МО. В настоящей работе мы исследовали электронные спектры непредельных кетонов, содержащих ядра дифенилметана, дифенилоксида, дифениламина и его N-метилпроизводного общей формулы: C_6H_5 —X— C_6H_4 —CO—CH=CH— C_6H_4 —R, rge X= CH_2 , O, NH, NCH_3 ; R = H, OCH₃, $N(CH_3)_2$, Cl, Br, NO_2 (табл. 1, 2). Электронные спектры соединений I—XIV (табл. 1) измерены в изооктане и диоксане, а соединений XV—XXVII (табл. 2) в диоксане и этиловом спирте.

Для выяснения числа интенсивных полос и отнесения их к отдельным переходам для ряда соединений проведено графическое выделение

49,


Спектральные характеристики соединений I—XIV

$$\begin{array}{c|c}
 & -X - & -CD - CH - CH - CH - R
\end{array}$$

Номер соеди- иения*	R	λ, нм (ε·10 ^{—3}) изооктан	Отнесение полосы	λ, нм (ε·10 ^{—3}) диоксан	Отнес е ние полосы	Номер соеди- нения	R	λ, нм (ε·10 ⁻³) изооктан	Отнесение полосы	λ, нм (ε·10 ^{—3}) диоксан	Отнесение полосы
I	Н	298 (28,8) 263 (9,0)	$_{ m A}^{ m II_1}$	309 (26,5) 273 (7,2) 230 (13,6)	$\operatorname*{H}_{1}_{\mathbf{A}}$	VIII	Н	310 (33,8) 278 (12,0) 227 (16,0)	${\rm \coprod_1\atop A\atop \coprod_2}$	313 (33,9)	Ц,
II	OCH ₃	330 (27,0) 267 (10,5) 229 (15,3)	$\mathop{\rm II}_1 \atop \mathop{\rm A} \atop \mathop{\rm II}_2$	341 (23,7)	Ц	IX	OCH₃	331 (33,6) 286 (10,8) 231 (20,6)	${\displaystyle\operatorname*{II}_{1}\atop A}$	336 (26,3)	Ці
III	$N(CH_3)_2$	387 (34,4) 261 (21,0)	Ц ₁ А	402 (34,1)	Ц1	Х	N(CH ₃) ₂	385 (34,7) 322 (3,6) 288 (12,0) 272 (3,01) 253 (10,0)	$egin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	402 (25,7)	Ц
IV	Cl	309 (30,0) 270 (10,5)	$_{ m A}^{ m II_1}$	318 (30,4)	Ц,	XI	Cl	314 (40,0) 282 (16,0)	$\mathbf{H}_{\mathbf{i}}$	317 (38,0)	Ц1
V	Br	310 (39,4) 270 (12,0)	$_{ m A}^{ m II_1}$	318 (28,4)	Ц1	XII	Br	314 (41,1) 282 (14,8)	$_{ m A}^{ m II_1}$	318 (37,2)	Ці
VI	NO_2	307 (35,3)	Π_1	313 (25,2)	Щ	XIII	NO_2	318 (25,2) 290 (16,6)	$\mathbf{H}_{\mathbf{i}}$	321 (23,4)	Ц,
VII	Н	_	-	338 (38,4) 274 (10,0) 235 (11,6)	$egin{array}{c} \Pi_1 \ A \ \Pi_2 \end{array}$	XIV	Н	_		340 (43,5) 290 (12,0) 253 (8,0) 234 (19,6)	\mathbf{L}_{1} A O \mathbf{L}_{2} $+\Phi$
IA**				249 (14,4)	A	VIIIA***	_	267 (18,2)	A		

* Для соединений I—VII X=CH₂; для VIII—XIV X=0; VII—
$$\bigcirc$$
 CH₂— \bigcirc CO-(CH=CH)₂— \bigcirc ; XIV— \bigcirc -0- \bigcirc -(CH=CH)₂— \bigcirc ; ** 4-ацетилдифенилоксид.

Таблица 2 Спектральные характеристики соединений XV—XXVII

Номер соеди- нения*	R	λ, ям (ε·10 ^{—3}) диоксан	Отнесение полосы	λ, нм (ε·10 ^{—3}) спирт	Отнесение полосы	Номер соеди- непия	R	λ, нм (ε·10 ^{—3}) диоксан	Отнесение полосы	λ, нм (ε·10 ⁻³) спирг	Отнесение полосы
		370 (27,8)	A	392 (23,6) 303 (18,4)	$\overset{ ext{A_1}}{ ext{L}_1}$	XXII	Н	357 (19,2) 294 (12,0)	$\overset{\mathbf{A_{1}}}{\coprod_{1}}$	389 (25,2)	A_1
XV	Н	299 (19,2)	\coprod_{1}	272 (8,2)	О			270 (3,2)	O	303 (18,0)	\coprod_{1}
		26 3 (6 , 4)	O ^T A	341 (9,2)	$\Phi + A_2$			244 (10,8)	$\Phi + A_2$	274 (8,0)	O -
XVI	CH_3	369 (29,8) 306 (17,2)	А Ц ₁	391 (25,2) 313 (16,0)	$\overset{\mathbf{A_{1}}}{\coprod_{1}}$	XXIII	OCH ₃	363 (22,4) 317 (12,0)	$\mathcal{L}_{1}^{\mathbf{A_{1}}}$	391 (32,6)	${\rm II_1}\atop{\rm O}\atop{\rm A_1}$
		278 (7,2)	0	282 (8.8)	$ \stackrel{\text{O}}{}^{1} \Phi + A_{2} $	l l		274(5,4)	O'	333 (16,8)	${f L_1}$
XVII	OCH ₃	373 (35,8)	Δ	241 (10,8) 397 (33,0)	$\Phi_{+}A_{2}$	XXIV	$N(CH_3)_2$	244 (16,0) 403 (36,0)	$\Phi + A_2$		
	00113	317 (10,0)	$\overset{ ext{A}}{\overset{ ext{U}}{\text{C}}}_{ ext{1}}$	333 (14,4)	A ₁ Ц О		11(0113/2	345 (12,0)	¹	427 (44,4)	$\coprod_{\mathbf{i}}$
		282 (6,0)	C,	282 (9,4)	O .	Į.		308 (2,8)	Ц ₁ А Ф О А ₁ Ц ₁ О	, ,	' -
VIII	$N(CH_3)_2$	403 (45,8)	Щ	241 (14,6) 431 (47,2)	$\Phi + A_2$	XXV	Br	279 (8,0) 358 (20,0)	О Л :		
, 111	14(C113)2	351 (16,4)	A	370 (16,4)	$ \begin{array}{c} \Pi_{i} \\ \Lambda_{1} \\ \Phi \end{array} $ O	127	Dı	299 (12,0)	Π_1	394 (26,2)	A_1
		308 (4,0)	Φ Ο	313 (3,6)	Φ	1		272 (6,0)	O,	- (= · , = /	- 1
VIV	01	283 (8,0)	Ò	287 (11,0)	o o	3737375	***	250 (15,2)	$\Phi + A_2$		
XIX	Cl	379 (26,8) 308 (18,8)	А Ц ₁	397 (25,2) 308 (19,2)	$\overset{\mathbf{A_{1}}}{\coprod_{1}}$	XXVI	NO_2	385 (13,4) 314 (25,2)	$\begin{array}{c} A_1 \\ \coprod_1 \\ O \end{array}$	413 (19,8)	Δ.
		280 (6,8)	O¹	278 (7,2)	0	1		282 (4,4)	\vec{O}^1	314 (30,0)	$\overset{ ext{A_1}}{ ext{$ ext{$\sc L_1$}}}$
		(, ,		241 (10.0)	$\Phi + A_2$	1		256 (8,0)	$\Phi + A_2$	352 (, -)	'3
XX	D	070 (07.0)	4	397 (25,6)	А ₁ Ц ₁	XXVII	H	379 (37,7)	A_1		
AA	Br	379 (27,9) 308 (20,8)	А Ц ₁	308 (19,8) 278 (6,8)	$\overset{\Pi_1}{\mathrm{O}}$			328 (27,2) 286 (12,7)	Ω_1		
		280 (6,4)	\ddot{o}'	241 (11.6)	$\Phi + A_2$)		265 (8.8)	$\widecheck{\Phi}$		
XXI	NO_2	395 (20,8)	A_1	417 (21,2)	${f A_1}\ {f \coprod_1}$	XXVIII**	_	317 (24.9)	$egin{array}{c} A_1 \ 1 \ 0 \ \mathbf{\Phi} \ A_1 \ \mathbf{\Phi} \ \mathbf{\Phi} \end{array}$		
		315 (31,2) 286 (4,8)	\mathbf{U}_{1}	321 (30,8) 286 (6,8)	$\overset{\Pi_1}{\mathrm{O}}$	1		276 (3,6)	Ф	_	
		260 (4,8)	$\Phi + A_2$	263 (6,0)	$\Phi + A_2$	ŀ		241 (7,2) 228 (8,4)	$egin{matrix} \Phi \ A_{f 2} \end{matrix}$		
			- ,2	200 (0,0)	- 12	XXIX***		321 (26,4)	A ₁		
								236 (8,0)	Φ		
						И		224 (8,0)	A_2		

^{*}Для соединений XV—XXI X = NH; для XXII—XXVI X=NCH₃; XXVII— О-NH—О-СО-(CH=CH)₂—О; ** 4-ацетилметилдифениламин; *** 4-ацетилдифениламин (в изооктане).

полос поглощения. Кривым поглощения приписывали асимметрию и предполагали, что индивидуальные кривые могут быть описаны уравнением, приведенным в работе [3]. Природу полос исследуемых соединений обсуждали на основе расчетных данных, полученных по методу ППП. Расчет выполняли по программе [4], модифицированной и дополненной в работе [5] с учетом 25 однократно возбужденных конфигураций. Параметры расчета $\gamma_{\mathbf{x}},~W_{\mathbf{x}}$ и $eta_{\mathsf{C}=\mathbf{x}},~\mathrm{yr}$ лы и межатомные расстояния $r_{\mu\nu}$ для мостиковых гетероатомов, используемых нами при расчете, взяты из работы [6]. Для метиленовой группы мы воспользовались такими же параметрами, как и для метильной, подобно тому, как было предложено в [7]. Параметры β_{C-C} (алифат.), β_{C-C} (аромат.), $\beta_{C=C}$ и $\beta_{C=C}$ принимали равными -2,1; -2,38; -2,5 и -3,3 эВ соответственно. Оценка величин двухцентровых интегралов электронного отталкивания уць проведена по Матага-Нишимото. При расчете принимали плоские транс-структуры с S-цис-расположением карбонильной группы и двойной связи (табл. 3, рис. 1).

Характерной особенностью исследуемых соединений является наличие в них двух центров кросс-сопряжения различной электронной природы — X и карбонильной группы. Исходя из этого, следует полагать, что в каждом из них можно выделить три фрагмента, определенным образом взаимодействующих друг с другом — циннамоильный (Ц), ацетофеноновый (А) и соответствующий фрагмент замещенного фенила (Ф). Поэтому в спектрах следует ожидать проявление полос соответствующих фрагментов, несколько смещенных в результате их взаимного влияния [8]. Взаимодействие кросс-сопряженных фрагментов должно проявляться в преимущественной локализации электронных переходов на том или ином из них. Меру локализации L_A мы оценивали как сумму диагональных элементов квадрата переходной матрицы плотности [9].

На основании интенсивности экспериментальных полос и их реакции на переход от инертного растворителя к полярному, исследуемые непредельные кетоны обладают в области 220-420 нм двумя — четырьмя интенсивными полосами $\pi-\pi^*$ -типа. Первую, наиболее длинноволновую в ряду соединений I—XIV (табл. 1, рис. 2, a), мы отнесли к батохромно смещенной полосе циннамоильного фрагмента, что подтверждается данными квантово-химического расчета (рис. 1, a, табл. 3), а

Таблица 3 Перенос заряда при переходах Ψ_0 — Ψ_k ($\sum_{\mu \in \Phi p} [\Delta P_{\mu\mu}], e \cdot 10^3$), локализация L электронных пере

	L, %								
Фрагмент		I	VIII						
- Pariment	Ψ_0 – Ψ_1	$\Psi_0 - \Psi_4$	Ψ₀-Ψ1	Ψ ₀ Ψ ₂	Ψ ₀ Ψ ₅				
X	0 (—6)	5 (86)	3 (—60)	5 (—90)	9 (—173)				
$\mathbf{B_1}$	1 (-11)	12 (220)	6 (—73)	9 (122)	66 (+418)				
$\mathbf{b_2}$	9 (+43)	47 (-210)	20 (9)	36 (58)	20 (—313)				
K	15 (+225)	20 (+265)	15 (+262)	18 (+202)	2 (5)				
Э	34 (-15)	11 (+181)	27 (+27)	16 (十106)	2 (+39)				
Б 3	41 (-238)	5 (+65)	29 (-147)	16 (39)	1 (+35)				
Гип персхода	Ц	A	Ц	Α	Φ				

^{*} Приняты обозначения: (5) X (5)

также изменением ее положения при введении в циннамоильный фрагмент заместителей различной электронной природы. Согласно расчету, эта полоса формируется электронным переходом Ψ_0 — Ψ_1 и является полосой внутримолекулярного переноса заряда с R-замещенного фенильного кольца на пропеновую цепь (табл. 3).

Вторая полоса (рис. 2, a) в соединениях I и VIII сильно перекрыта с первой и поэтому выделяется только графически. Введение донорных заместителей (II, III, IX, X), а также переход к пентадиенонам (VII и XIV) приводит к существенному батохромному смещению первой полосы, в то время как вторая практически не изменяет своего положения и поэтому становится легко наблюдаемой. Мы отнесли ее к батохромно смещенной полосе ацетофенонового фрагмента ($\Delta\lambda=18$ и 19 нм, ср. II и IX с IA и VIIIA табл. 1). Она формируется переходами Ψ_0 — Ψ_4 и Ψ_0 — Ψ_2 (для соединений I и VIII соответственно), локализованными преимущественно на ацетофеноновом фрагменте (рис. 1, a), причем, как видно из рис. 1, δ , эти переходы мало чувствительны к замещению в циннамоильной группе.

Третью полосу, там где возможно было ее выделить, исходя из влияния на ее положение заместителей R, по нашему мнению, можно отнести к батохромно смещенной второй циннамоильной полосе, что подтверждается и данными квантово-химического расчета (например, переходы Ψ_0 — Ψ_7 и Ψ_0 — Ψ_8) для соединений I и VIII (рис. 1, a). Хотя полосу поглощения фенильного фрагмента Φ нам выделить не удалось из-за малой интенсивности и перекрывания с другими полосами, в расчетном спектре соединения VIII имеется переход Ψ_0 — Ψ_6 (рис. 1, a), локализованный в основном на фенильном фрагменте (табл. 3).

Несколько иное расположение полос обнаруживают производные 4-ацетилдифениламина и его N-метилзамещенные (табл. 2, рис. 2, δ). Интерпретация интенсивной наиболее длинноволновой $\pi-\pi^*$ -полосы в ряду соединений XV—XXVI, за исключением соединений XVIII и XXIV, не вызывает сомнения. Она относится к батохромно смещенной полосе ацетофенонового фрагмента, возмущенной за счет взаимодействия с бензольным кольцом через мостиковый гетероатом и циннамоильным фрагментом через карбонильную группу. Поэтому введение таких заместителей, как метил, метокси, хлор или бром, в циннамоильный фрагмент, а также переход к молекулам пентадиенонов практически не

ходов*

P _{μμ})	xv						
Ψ_0 — Ψ_8	Ψ_{0} — Ψ_{1}	Ψ_0 — Ψ_3	Ψ_0 — Ψ_4	Ψ_0 — $\Psi_{\mathfrak{s}}$			
6 (118)	16 (—298)	2 (—28)	16 (—315)	16 (—325)			
18 (—152)	18 (147)	3 (-21)	60 (+534)	26 (104)			
49 (—219)	35 (1)	5 (+49)	17 (—276)	26 (-151)			
6 (+78)	17 (+287)	16 (+167)	2 (0)	1 (—14)			
9(+172)	10 (+125)	34 (+22)	3 (+35)	11 (+205)			
12 (+239)	4 (+32)	40 (184)	2 (+24)	20 (+389)			
Ô	À	Щ	Φ	O			

соответственно CH_2 , O, NH.

сказываются на положении этой полосы (табл. 2). Природа ее не изменяется и в том случае, если в молекулу вводить мощный акцептор — нитрогруппу (XXI и XXVI, табл. 2), хотя из-за сильного поляризующего действия нитрогруппы наблюдается значительное батохромное смещение. Исходя из данных квантово-химического расчета, проведен-

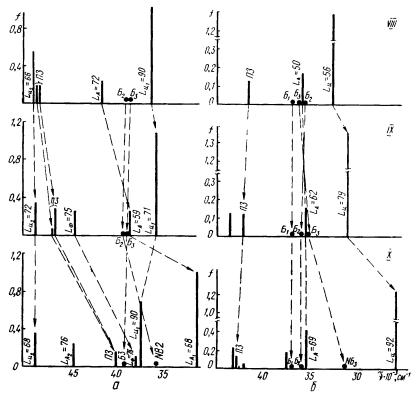


Рис. 1. Данные квантово-химического расчета.

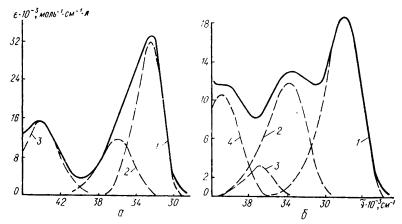
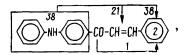


Рис. 2. Графический анализ спектров поглощения. a. Соединение VIII: 1, 3 — циннамонльный; 2 — ацетофеноновый фрагмент. δ . Соединение XXII: 1 — ацетофеноновый; 2 — циннамонльный фрагмент; 3 — общемолекулярная; 4 — сложная полоса.


ного на примере соединения XV, можно сказать, что эта полоса относится к интенсивному переходу Ψ_0 — Ψ_1 , локализованному на ацетофеноновом фрагменте (68%), и является полосой внутримолекулярного переноса заряда (—0,446 e) с дифениламинового фрагмента на карбонильную группу (рис. 1, a, табл. 3). На последовательность расположения полос в спектрах этого ряда соединений заместители различной электронной природы не оказывают существенного влияния. Лишь введение в молекулу соединения XV такого сильного донора, как диме-

тиламиногруппа, приводит к изменению характера первой полосы (она становится диметиламиноциннамоильной), что подтверждается и значительным батохромным смещением на 33 и 46 нм (ср. XV с XVIII и XXII c XXIV).

Метилирование ядра дифениламина в большинстве случаев приводит к гипсохромному смещению длинноволновой полосы с одновременным падением ее интенсивности (табл. 2). Исключение составляют соединения, содержащие в фенильном кольце диметиламиногруппу. Вероятнее всего это связано с возникновением дополнительных стерических препятствий, приводящих к нарушению общей л-электронной системы молекул [10].

Вторая полоса (рис. 2, б) соединений XV—XXVII относится к первой полосе циннамоильного фрагмента, что подтверждается ее чувствительностью к заместителям различной электронной природы (табл. 2), а также данными расчета (рис. 1, a, табл. 3, переход Ψ_0 — Ψ_3). Только в соединениях XVIII и XXIV вторая полоса является ацетофеноновой.

Интерпретация третьей полосы, выделенной графически, вызывает затруднения. Вероятнее всего, она относится к «общемолекулярной» (0). В расчетном спектре соединения XV ей соответствует переход Ψ_0 — Ψ_6 общемолекулярного типа, который описывается диаграммой

где в циклах указаны парциальные числа локализации соответствующих фрагментов, а числа у стрелок обозначают числа переноса заряда (в %) [5].

Переходы общемолекулярного типа обнаруживаются и в расчетных спектрах соединений I—XIV (табл. 3) и для некоторых других 4-замещенных халконов. Следует отметить, что по мере возрастания донорного характера заместителя эти переходы также смещаются батохромно. В работе [8] отмечали полосы, не относящиеся ни к одному из кросс-сопряженных фрагментов. Вероятно, они и формируются переходами общемолекулярного типа со сквозным переносом заряда.

Четвертая полоса для соединений XV—XXVII сложна и, вероятнее всего, обусловлена перекрыванием второй полосы ацетофенонового и фенилзамещенного фрагментов.

- 1. Никитченко В. М., Чуев В. П., Лаврушин В. Ф. Электронные спектры непасыщенных кетонов и дикетонов, производных дифенилсульфида.— Укр. хим. журн., 1981, 47, № 5, с. 528—533.
- 2. Чуев В. П., Никитченко В. М., Лаврушин В. Ф. Электронные спектры непредельных кетонов и дикетонов, содержащих ядро дифенилсульфида.— Там же, № 8, c. 835—839*.*
- 3. Siano D. P., Meller D. E. Band Shapes of Electronic Spectra of Complex Molecules.—J. Chem. Phys., 1969, 51, N 5, p. 1856—1861.
- 4. *Методы* расчета электронной структуры и спектров молекул / К Г. Г. Дядюща, В. А. Куприевич и др. К.: Наук. думка, 1969.—307 с. молекул / Ю. А. Кругляк,
- 5. Лузанов А. В., Педаш В. Ф. Интерпретация возужденных состояний с помощью чисел перспоса заряда.— Теорет. и эксперим. химия, 1979, 15, № 4, с. 436—441.
 6. Belligsley F. P., Bloor J. E. Teoretical Studies on the Electronic Spectra of substituted aromatic molecules.— Teoretical Chim. Acta, 1968, 11, N 1, p. 325—343.
- 7. Хибаум Г., Фратев Ф. Квантово-хемично изследован на влиянието на метилната л. мерите Ф. квантово-хемично изследован на влиянието на метилната група въерху електроните спектры и електроната структура на спергнати системы. — Изв. отд. хим. науки Бълг. АН, 1973, 6, № 4, с. 753—761.
 Интерпретация электронных спектров винилогов бензофенона / А. А. Сухоруков, О. В. Лаврушина, В. Х. Гриф и др. — Журн. общ. химин, 1978, 48, № 2, с. 377—385.
 Лузанов А. В., Сухоруков А. А., Уманский В. Э. Применение переходной матрицы плотности для анализа возбужденных состояний. — Теорет. и эксперим. химия, 1974, 10, № 4, с. 456—464.
- 1974, 10, № 4, c. 456—464.
- Теоретический конформационный апализ пскоторых соединений дифениламинового ряда /А. Н. Панкратов, Е. Е. Федоров, Н. И. Гусакова, С. П. Муштакова, Л. А. Грибов.— Саратов, 1980.—35 с.— Рукопись деп. в ОНИИТЭХИМ, Черкассы, 12.01.81, № 176.

Харьковский государственный университет

Поступила 17.08.82