УДК 541.135

ИЗМЕНЕНИЕ КОНЦЕНТРАЦИИ И ТОКА В ПСЕВДООЖИЖЕННЫХ ЭЛЕКТРОДАХ В РАМКАХ ДИСПЕРСИОННОЙ МОДЕЛИ

С. В. Бордунов, А. В. Городыский, Н. А. Шваб

Ранее [1] была рассмотрена модель идеального вытеснения (МИВ) массопереноса в псевдоожиженных электродах (ПОЭ) и подтверждена ее достаточная точность. В то же время очевидна некоторая упрощенность МИВ. Точнее динамику процесса описывает однопараметрическая дисперсионная модель [2]:

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - \frac{Q}{\varepsilon A} \cdot \frac{\partial c}{\partial x} - \frac{ka}{\varepsilon} c, \tag{1}$$

где член $D = \frac{\partial^2 c}{\partial x^2}$ учитывает продольное перемешивание, — $\frac{Q}{\epsilon A} \cdot \frac{\partial c}{\partial x}$ — кон-

векцию вещества, а член — $\frac{ka}{\varepsilon}\,c$ отвечает утверждению, что массоперенос пропорционален первой степепи локальной концентрации.

Однако в работе [2] рассмотрена дисперсионная модель (ДМ) массопереноса в ПОЭ лишь постоянного поперечного сечения. Важно, как в теоретическом, так и практическом плане, изучить с позиций ДМ массоперенос в ПОЭ с поперечным сечением A, зависящим от высоты ПОЭ x. В данной работе рассматривается линейная зависимость

$$A(x) = A_0 + Bx. (2)$$

Примем, что электропроводность твердой и жидкой фаз по высоте $\Pi O \ni$ и во времени не изменяется. Подставив A из формулы (2) в (1), получим уравнение нестационарной $\mathcal{L}M$ для случая линейного закона изменения поперечного сечения $\Pi O \ni$ с его высотой:

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - \frac{Q}{\varepsilon (A_0 + Bx)} \frac{\partial c}{\partial x} - \frac{ka}{\varepsilon} c, \tag{3}$$

где D — коэффициент продольного перемешивания; Q — объемная скорость электролита; ε — порозность ПОЭ; k — коэффициент массопереноса; a — удельная поверхность ПОЭ; B — небольшой коэффициент, определяющийся из конструктивных размеров ячейки. Поскольку объем ПОЭ, как правило, намного меньше общего объема электролита, уравнение (3) целесообразно решать в стационарном приближении [2]:

$$\frac{d^2c}{dx^2} - \frac{Q}{D\varepsilon} (A_0 + Bx)^{-1} \frac{dc}{dx} - \frac{ka}{D\varepsilon} c = 0.$$
 (4)

Для получения граничных условий уравнения (4) временно ограничимся рассмотрением изменения концентрации за счет аксиальной дисперсии и конвекции. С таким допущением граничные условия при $A \neq A(x)$ получены в [3]. Аналогично можно получить граничные условия для случая

$$A(x) = A_0 + f(x); \quad f(0) = 0,$$

где f(x) — произвольная непрерывная функция x.

Тогда искомые граничные условия записываются в виде:

$$c_{i} = c\left(0, t\right) - \frac{DA_{0}}{Q} \frac{\partial c}{\partial x} \bigg|_{x=0}; \tag{5}$$

$$\frac{\partial c}{\partial x}\Big|_{\mathbf{x}=t} = 0.$$
 (6)

Решение уравнения (4) с краевыми условиями (5) и (6) имеет вид:

$$c(x,t) = \Phi_x c_i(t), \tag{7}$$

где

$$\Phi_{x} = \left(1 + \frac{Bx}{A_{0}}\right)^{v} \left[-R_{1}I_{v} \left(\sqrt{\frac{ka}{D\epsilon}} \left(x + \frac{A_{0}}{B}\right) \right) + R_{2}K_{v} \left(\sqrt{\frac{ka}{D\epsilon}} \left(x + \frac{A_{0}}{B}\right) \right) \right].$$
(8)

Концентрация на вершине ПОЭ

$$c_0(t) = \Phi c_i(t), \tag{9}$$

где

$$\Phi = \sqrt{\frac{ka}{D\epsilon}} \left(1 + \frac{BL}{A_0} \right)^{\nu} \beta^{-1} \left(K_{\nu} \frac{\partial I_{\nu}}{\partial \lambda} - I_{\nu} \frac{\partial K_{\nu}}{\partial \lambda} \right)_{\lambda = \lambda_0}. \tag{10}$$

Выражение (7) определяет концентрацию в любой момент времени и на любой высоте ПОЭ, а выражение (9) — в любой момент времени на вершине ПОЭ, причем (7) и (9), равно как и токовые зависимости (15)—(17), описывают процесс электролиза как с рециркуляцией электролита, так и без нее. В уравнениях (8) и (10) введены следующие обозначения:

$$\lambda = \sqrt{\frac{ka}{D\epsilon}} \left(x + \frac{A_0}{B} \right), \quad \lambda_0 = \lambda(L), \quad \lambda_i = \lambda(0);$$
 (11)

$$v = \frac{1}{2} \left(1 + \frac{Q}{D \varepsilon B} \right), \tag{12}$$

 $I_{v}(\lambda)$ и $K_{v}(\lambda)$ — модифицированные функции Бесселя и Ханкеля порядка v;

$$R_{1} = \beta^{-1} \left[\left(L + \frac{A_{0}}{B} \right)^{-1} v K_{v} (\lambda_{0}) + \sqrt{\frac{ka}{D\epsilon}} \frac{\partial K_{v}}{\partial \lambda} \Big|_{\lambda = \lambda_{0}} \right];$$

$$R_{2} = \beta^{-1} \left[\left(L + \frac{A_{0}}{B} \right)^{-1} v I_{v} (\lambda_{0}) + \sqrt{\frac{ka}{D\epsilon}} \frac{\partial I_{v}}{\partial \lambda} \Big|_{\lambda = \lambda_{0}} \right]; \quad \beta = \left(\frac{DvB}{Q} - 1 \right) \times V \left(L + \frac{A_{0}}{B} \right)^{-1} \left[I_{v} (\lambda_{i}) K_{v} (\lambda_{0}) - I_{v} (\lambda_{0}) K_{v} (\lambda_{i}) \right] + \frac{kaA_{0}}{\epsilon Q} \left[\frac{\partial K_{v}}{\partial \lambda} \Big|_{\lambda = \lambda_{0}} \right] \times \left[\frac{\partial I_{v}}{\partial \lambda} \Big|_{\lambda = \lambda_{i}} - \frac{\partial K_{v}}{\partial \lambda} \Big|_{\lambda = \lambda_{i}} \frac{\partial I_{v}}{\partial \lambda} \Big|_{\lambda = \lambda_{0}} \right] + \left(\frac{DvB}{Q} - 1 \right) \sqrt{\frac{ka}{D\epsilon}} \times \left[I_{v} (\lambda_{i}) \frac{\partial K_{v}}{\partial \lambda} \Big|_{\lambda = \lambda_{0}} - K_{v} (\lambda_{i}) \frac{\partial I_{v}}{\partial \lambda} \Big|_{\lambda = \lambda_{0}} \right] + \frac{DA_{0}v}{Q} \left(L + \frac{A_{0}}{B} \right)^{-1} \sqrt{\frac{ka}{D\epsilon}} \times \left[K_{v} (\lambda_{0}) \frac{\partial I_{\lambda}}{\partial \lambda} \Big|_{\lambda = \lambda_{i}} - I_{v} (\lambda_{0}) \frac{\partial K_{v}}{\partial \lambda} \Big|_{\lambda = \lambda_{i}} \right]. \quad (13)$$

Для рециркулирующего электролита можно указать еще одно соотношение, связывающее $c_0(t)$ и $c_i(t)$: $\frac{d}{dt}c_i=\frac{1}{\tau}(c_0-c_i)$.

Подставив в последнее равенство c_0 из (9), получим

$$c_i/c_i^0 = \exp[-N(1-\Phi)],$$
 (14)

где N — число циклов электролиза [4].

Для получения токовых зависимостей воспользуемся несколько видоизмененным исходным уравнением из [1]:

$$I = zFka\int_{0}^{x} A(x) c(x, t) dx.$$

Подставив сюда c(x, t) из (7), получили

$$I = zFDeB\lambda_0^{-\nu}c_i(t)\left[R_2\int_{\lambda_i}^{\lambda}\lambda^{\nu+1}K_{\nu}(\lambda)\,d\lambda - R_1\int_{\lambda_i}^{\lambda}\lambda^{\nu+1}I_{\nu}(\lambda)\,d\lambda\right]. \tag{15}$$

Выражение (15) описывает в наиболее общем виде изменение локального тока во времени и по высоте ПОЭ. Пусть $\lambda_i \ll 1$. В этом случае мы можем заменить нижний предел интегрирования в(15) на ноль. Тогда

$$I(x,t) = zFDB\varepsilon\lambda_0^{-\nu}c_i(t) \left[-R_1\lambda^{\nu+1}I_{\nu+1}(\lambda) + R_2(-\lambda^{\nu+1}K_{\nu+1}(\lambda) + 2^{\nu}\Gamma(\nu+1)) \right];$$

$$I_L(t) = zFDB\varepsilon\lambda_0^{-\nu}c_i(t) \left[-R_1\lambda_0^{\nu+1}I_{\nu+1}(\lambda_0) + R_2(-\lambda_0^{\nu+1}K_{\nu+1}(\lambda_0) + 2^{\nu}\Gamma(\nu+1)) \right],$$

$$(17)$$

где $\Gamma(v)$ — гамма-функция.

Аналогичные по смыслу выражения получили для рециркулирующего электролита, подставив c_i из (14) в выражения (16) и (17):

$$I(x, N) = B^{1+\nu} A_0^{-\nu} z F k a \left(\frac{D \varepsilon}{k a}\right)^{1+\frac{\nu}{2}} c_i^0 \exp\left[-N(1-\Phi)\right] \{-R_1 \lambda^{\nu+1} I_{\nu+1}(\lambda) + R_2 \left(-\lambda^{\nu+1} K_{\nu+1}(\lambda) + 2^{\nu} \Gamma(\nu+1)\right)\};$$
(18)

$$I_{L}(N) = B^{1+\nu} A_{0}^{-\nu} z F k a \left(\frac{D\varepsilon}{ka}\right)^{1+\frac{\nu}{2}} c_{i}^{0} \exp\left[-N\left(1-\Phi\right)\right] \left\{-R_{1} \lambda_{0}^{\nu+1} I_{\nu+1}\left(\lambda_{0}\right) + R_{2}\left(-\lambda_{0}^{\nu+1} K_{\nu+1}\left(\lambda_{0}\right) + 2^{\nu} \Gamma\left(\nu+1\right)\right)\right\}.$$

$$(19)$$

Зависимость относительной концентрации от t/τ

<i>t</i> /τ	$^{c}i/c_{i}^{0}$ по формулам			
	(14)	(8) [2]	(15) [2]	(20)
0	<u> </u>	1	1	1
0,2	0.8623	0,8505	0.8507	0.8399
0,4	0,7434	0,7234	0,7236	0,7054
0,6	0.6411	0,6153	0,6155	0,592
0,8	0,5528	0,5233	0,5236	0,497
1,0	0,4766	0,4451	0,4454	0,4179
1,2	0,4110	0,3786	0,3789	0,351
1,4	0,3547	0.3220	0,3223	0,294
1,6	0,3055	0,2738	0,2741	0,247
1,8	0,2634	0,2329	0,2332	0,208
2,0	0,2271	0,1981	0,1984	0,174
3,0	0,1083	0,0882	0,0883	0,073
4,0	0,0516	0,0392	$0.0^{\circ}95$	0,030
5,0	0,0246	0,0175	0 0175	0,012
10,0	0,0006	0,0003	0,0003	0,000

Формула (14) описывает в рамках стационарной ДМ зависимость относительной концентрации ионов вещества, восстанавливающегося на псевдоожиженном катоде, от числа циклов электролиза. В работе [2] получено уравнение (8) аналогичного смысла в рамках стационарной ДМ для постоянного поперечного сечения ПОЭ. Левеншпиль и Сиода ввели в уравнение стационарной МИВ (17) [1] поправки на отклонение от принудительного течения и получили уравнение (15) [2]. Все три уравнения при малых высотах ПОЭ L должны давать приблизительно одинаковые результаты. Можно показать, что в рамках стационарной МИВ выражение для относительной концентрации аналогично (14) с той лишь разницей, что Φ определяется иной зависимостью:

$$\Phi = \exp\left[-\frac{kaL}{Q}\left(A_0 + \frac{B}{2}L\right)\right]. \tag{20}$$

Численные расчеты по уравнениям (14), (8) [2], (15) [2], а также (20) (стационарная МИВ) представлены в таблице при значениях параметров из [2]. Для расчета Ф в (10) использовали асимптотические разложения модифицированных функций Бесселя и Ханкеля и их производных по аргументу при больших значениях порядка [5]. Из таблицы видно, что уравнения (14), (8) [2], (15) [2] отличаются незначительно. Отсюда можно сделать вывод о корректности стационарной ДМ (14). И, наконец, сравнение стационарной ДМ (14) со стационарной МИВ (20) показывает, что ошибка, вносимая применением теории поршневого течения (МИВ), невелика.

- 1. Walker A. T. S., Wragg A. A. The modelling of concentration-time relationships in recirculating electrochemical reactor systems.— Electrochem. Acta, 1977, 22, N 10, p. 1129-1133
- p. 1129--1133.
 2. Mustoe L. H., Wragg A. A. Concentration-time behavior in a recirculating electrochemical reactor system using a disperced plugflow model.—J. Appl. Electochem., 1978, 8, N 5, p. 467-473.
- 3. Бондарь А. Г. Математическое моделирование в химической технологии.— Кнев: Вища школа, 1975.—280 с.
- 4. Шваб Н. А., Городыский А. В. Электрохимическое разделение металлов при помощи псевдоожиженного электрода. 1. Расчет количества ступеней электролиза.— Укр. хим. журн., 1980, 46, № 6, с. 563—564.
- 5. *Справочник* по специальным функциям / Под ред. М. Абрамовича и И. Стиган.— М.: Наука, 1979.—830 с.

Институт общей и неорганической химии АН УССР, Киев

Поступила 15.12.82

УДК 511.135.52+541.138.2;546.621

АНОДНОЕ РАСТВОРЕНИЕ АЛЮМИНИЯ В СПИРТОВЫХ РАСТВОРАХ LICI

Л. Ф. Козин, С. Н. Нагибин

Известны различные соединения одновалентного алюминия, устойчивые главным образом при высоких температурах [1]. Существует метод рафинирования алюминия путем образования и отгонки летучих галондных соединений Al (1) [2, 3]. В литературе накоплен экспериментальный материал, свидетельствующий о том, что понизация алюминия в органических растворителях и водных растворах протекает через образование одновалентных ионов Al+ [4—14]. Установлено, что эффективная валентность ионов алюминия при ионизации металла в уксусной кислоте равна 2,4 [4], а в спиртовых растворах $MgClO_4$ и $LiClO_4$ — 1,3 [5]. Алюминиевый анод растворяется в бромидио-нитратном растворе в жидком NH_3 с образованием газообразного N_2 [6],