УДК 546.07 13'682:541.65:54-162

СИНТЕЗ И СПЕКТРЫ КОМБИНАЦИОННОГО РАССЕЯНИЯ МОНОГАЛОГЕНИДОВ ИНДИЯ

С. В. Волков, В. Ф. Козин, И. А. Шека, Н. И. Буряк

Строение внешней электронной оболочки индия 5_s^25p свидетельствует о возможных двух степенях окисления: In^+ и In^{3+} . Наиболее устойчив в водных растворах In^{3+} . Одновалентный индий обладает сильными восстановительными свойствами, окисляется в водных растворах и вступает в реакции диспропорционирования. Концентрация ионов In^+ в системе In^0 — In^+ — In^{3+} в водных растворах мала и составляет $(1,4-3,0)\cdot 10^{-4}$ г ион/л.

В расплавах солей равновесие реакции $2In^0+InX_3=3InX$ (где X-Cl, Br, I) практически полностью смещено вправо. При взаимодействии InX_3 с металлическим индием при определенных условиях возможно образование комплексных соединений $In[InX_4]$. Соединения одновалентного индия, взаимодействуя с расплавами солей других металлов, могут образовывать комплексы различного состава и строения. Поэтому знание структуры монохлорида индия необходимо для эффективного и целенаправленного использования его при разработке состава электролитов для рафинирования индия в различных средах, а также для разных процессов химической технологии [1].

В настоящей статье описаны синтез моногалогенидов индия и их идентификация в твердом состоянии путем снятия спектров комбинационного рассеяния (СКР). Обсуждение СКР моногалогенидов индия проведено с использованием теоретико-группового анализа.

Для синтеза моногалогенидов индия была разработана установка, состоящая из коаксиально расположенных кварцевых цилиндров, нижняя часть между которыми заполнялась слоями галогенида аммония и расплавленного металлического индия. Для снижения температуры синтеза в начальный момент через расплавленный индий пропускали со скоростью 20 мл/мин галоиды (Cl₂, Br₂, I₂), которые активировали реакцию образования моногалогенидов индия.

В исследованиях применяли металлический индий марки ИН-000 и галогениды аммония квалификации «ос. ч.». При температуре 220—370° протекают следующие реакции:

$$2 In^0 + X_2 = 2 InX;$$
 (1)

$$2NH_4X + 3X_2 = 8HX + N_2; (2)$$

$$NH_4X = HX + NH_2; (3)$$

$$NH_3 + 3/2X_2 = 3HX + 1/2N_2;$$
 (4)

$$In^{0} + HX = In X + 1/2H_{2}. (5)$$

Выше 220° галогениды аммония разлагаются по реакциям (3)— (5) на N_2 , NH_3 и HX. Галогеноводороды взаимодействуют с расплавленным индием по реакции (5) с образованием моногалогенидов индия. После синтеза моногалогениды индия выдерживали в контакте с металлическим индием в течение 1 ч при температуре плавления данного моногалогенида для удаления следов NH_4X током аргона. Контроль за степенью чистоты полученных моногалогенидов индия осуществляли методом химического анализа. Содержание галогенов и индия в моногалогенидах индия составляло:

Найдено, мас. %: In 76,35; Cl 23,59. InCl. Вычислено, мас. %: In 76,33; Cl 23,58.

Найдено, мас. %: In 58,93; Br 41,00. InBr. Вычислено, мас. %: In 58,96; Br 41,03.

Найдено, мас. %: In 47,50; I 52,47. InI. Вычислено, мас. %: In 47,49; I 52,50.

Для определения оптимальных условий синтеза моногалогенидов индия провели серию опытов при температуре 220—370°. Как видно из таблицы, время синтеза зависит от природы моногалогенида индия и возрастает в ряду InCl—InBr—InI. Оптимальная температура синтеза InCl 230°, InBr 250, InI 350. Выход моногалогенидов индия 94,2—94,9 %.

Полученные моногалогениды индия исследовали методом СКР. Спектры твердых образцов снимали в стандартных кюветах на приборе ДФ-24 с использованием возбуждающей линии 6328 Å гелий-неонового (Не—Ne) и линии 6470 Å криптонового (Кr) лазеров. Строение моногалогенидов индия ранее не исследовалось методом СКР [1], хотя последний позволяет получить во многих случаях однозначные сведения о составе и структуре подобных соединений. Это объясняется, по-видимому, тем, что моногалогениды индия окрашены, неустойчивы на воздухе и чувствительны к свету.

Структура монокристаллов моногалогенидов индия была исследована рентгенографически [1], однако в технологии рафинирования индия в процессе очистки его от электроположительных примесей в легкоплавких электролитах получают поликристаллы моногалогенидов индия, строение которых неизвестно. Рентгеноструктурные исследования монокристаллов моногалогенидов In (I) свидетельствуют об окружении индия шестью атомами галогена [1]: в кубической решетке для InCl и в ромбической — для InBr и InI [2]. Наблюдаются также отступления от таких типов структур, связанные с образованием других модификаций моногалогенидов In (I).

В связи с этим ближайшее окружение индия в поликристаллах моногалогенидов индия может быть представлено в основном следующими точечными группами симметрии [3, 4]: $\Gamma_{O_h} = A_{1g} + E_g + 2T_{1u} + T_{2g} + T_{2u}$; $\Gamma_{D_{4h}} = A_{1g} + B_{1g} + A_{2u} + B_{2g} + B_{2u} + 2E_u$; $\Gamma_{D_{3h}} = 2A_1 + 2A_2 + 4E$; $\Gamma_{C_{4v}} = 3A_1 + 2B_1 + B_2 + 3E$; $\Gamma_{D_{2h}} = A_{1g} + B_{1g} + B_{1u} + B_{2u} + B_{3u}$.

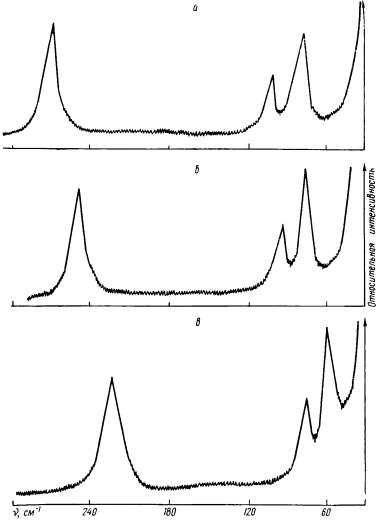
Колебания типа A_{1g} , E_g , T_{2g} для октаэдрической симметрии (O_h) , A_{1g} , B_{1g} , B_{2g} для тетрагонально искаженной октаэдрической (D_{4h}) , A_{1g} , B_{1g} для ромбической симметрии (D_{2h}) , шесть из восьми нормальных колебаний для тригональной бипирамиды (D_{3h}) и все девять колебаний для тетрагональной пирамиды (C_{4v}) активны в СКР. Теоретико-групповой анализ и полученные СКР поликристаллов моногалогенидов индия (рис. 1) свидетельствуют о том, что симметрия исследуемых соединений не может относиться к точечным группам D_{2h} , C_{4v} , D_{3h} , а скорее характеризует O_h или D_{4h} , поскольку в СКР фиксируются три линии,

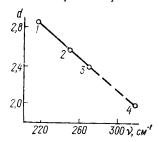
Влияние условий эксперимента на выход моногалогенидов индия

Моногало- генид индия	Среда	Навеска In°, г	Время синтеза, мин	7. °C	Прореа- гировано, In°, г	Выделено моногалоге- нида индия, г	Выход, %
InCl	NH₄Cl	18,9	17 15 14	225 230 240	17,95 17,94 17,93	23,47 23,49 23,47	94,5 94,9 94,8
InBr	NH₄Br	28,6	23 21 19	220 250 260	26,91 26,93 26,89	45,66 45,70 45,65	94,1 94,2 94,0
InI	NH ₄ I	31,8	28 25 22	351 360 370	29,94 29,97 29,93	63,05 63,10 63,02	94,1 94,2 94,0

разрешенные правилами отбора для активных линий комбинационного рассеяния для точечных групп, в том числе одна линия СКР поляризованная.

Кристалл InCl. Типичный СКР поликристалла InCl содержит три линии: 270, 102 и 85 см⁻¹, характеризующие окружение In (I) шестью атомами хлора в октаэдрической симметрии (рис. 1, a). Для нее в СКР активны три колебания: $v(\text{In}-\text{Cl})-v_1(A_{1g})$, $v(\text{Cl}-\text{In}-\text{Cl})-v_2(E_g)$, $\delta(\text{Cl}-\text{In}-\text{Cl})-v_5(T_{2g})$, в том числе одно поляризованное [3]. Это со-




Рис. 1. Спектры комбинационного рассеяния кристаллов моногалогенидов индия: a — InCl; b — InBr; b — InI.

гласуется с данными рентгеноструктурного анализа монокристалла InCl, для которого установлена пространственная группа P23, представляющая слегка деформированную структуру NaCl [2, 5]. Поляризованная линия СКР 270 см $^{-1}$ относится к полносимметричному колебанию типа $A_{1g}(v_1)$. Для координационных соединений In (I) в хлоридных растворах значение v_1 равно 252 см $^{-1}$ [6]. Слабая линия СКР 102 см $^{-1}$ относится к деформационному колебанию δ (Cl—In—Cl) типа $T_{2g}(v_5)$, а линия 85 см $^{-1}$ — к симметричному колебанию типа $E_g(v_2)$.

Кристалл InBr. Наблюдаемый СКР синтезированного поликристалла InBr включает также три линии: 250, 92 и 72 см⁻¹ (рис. 1, 6). Этот спектр, как и в случае монохлорида индия, скорее, характеризует октаэдрическое окружение In (I) атомами брома, а не тригонально бипирамидальное или тетрагонально пирамидальное. Тогда, по аналогии с

InCl, наблюдаемую поляризованную линию 250 см-1 следует отнести к полносимметричному валентному колебанию типа $A_{1g}(v_1)$, значение которой для координационных соединений In (I) в бромидных растворах составляет 241 см $^{-1}$ [7]. Линия СКР 92 см $^{-1}$ характеризует деформационное колебание типа $T_{2g}(\nu_5)$, а линия 72 см $^{-1}$ — симметричное колебание типа $E_{g}(\mathbf{v}_{2})$.

Кристалл Inl. Полученный СКР синтезированного поликристалла InI содержит три линии: 216, 64 и 56 см-1 и является аналогом СКР

поликристаллов InCl и InBr (рис. 1, в). Поскольку число линий в СКР InI и их (рис. $1, \beta$) подобны InCl и (см. рис. $1, a, \delta$), то и симметрия окружения

Рис. 2. Зависимость частоты налентных колебаний от длины связей: I - (In - I); 2 - (In - Br); 3 - (In - Br)Cl); 4 - (In - F).

в синтезированном поликристалле InI, видимо, должна быть октаэдрического типа. Наблюдаемая поляризованная линия 216 cm⁻¹ относится полносимметричному колебанию $A_{1g}(v_1)$, линия 64 см^{-1} — к деформационному колебанию $\delta(I - In - I)$ типа $T_{2g}(v_5)$, линия 56 см⁻¹ — к симметричному колебанию типа $E_g(v_2)$. Колебания v₁-связи (In—I) в растворах характеризуются положением $191 \text{ cm}^{-1} [1].$

Поскольку частоты полносимметричных валентных колебаний типа $A_{1g}(\mathbf{v}_1)$ для координационных соединений в модели простого силового поля пропорциональны силовым постоянным связей Ме—Х, значения частот валентных колебаний связей у (Мс—Х) могут быть сопоставлены с длинами связей. Длины связей In—X (где X—Cl, Br, I) равны 2,4 (In—Cl), 2,57 (In—Br) и 2,86 Å (In—I) [8] (значения длин связей In—X приведены для молекулы InX в парах). Полученные нами частоты валентных колебаний связей In-X (216, 250, 270 см $^{-1}$) растут в ряду InI, InBr, InCl, что свидетельствует об увеличении прочности связей в ряду InI, InBr, InCl. Такая же закономерность сохраняется и для координационных соединений In (I) в растворах, но в этом случас прочность связей In - X несколько меньше (191, 241, 252 см⁻¹).

Корреляция частот валентных колебаний связей v_1 (In-X) и их длин (рис. 2) позволяет по одному из параметров предсказать другой, неизвестный. Так, для монофторида индия найдено, что длина связи In—F в парах составляет 1,98 Å [9]. Экстраноляцней может быть получено значение валентного колебания $v_1(In-F)$, которое должно составить 320 см⁻¹.

- 1. Шека И. А., Шека З. А. Галогениды индия и их координационные соединения.— Киев: Наук. думка, 1981.—292 с.
- 2. *Термические* константы вещества: Справочник / Под. ред. В. П. Глушко и др.— М.: Изд-во АН СССР, 1971.—Вып. 5. 531 с.
- 3. Накамото К. Инфракрасные спектры неорганических и координационных соединеинй.— М.: Мир, 1966.—412 с.
- 4. Применение длиноволновой ИК-спектроскопии в химии / А. Финч, П. Гейтс, К. Редклиф Ф. Диксон, Ф. Бектен.— М.: Мир, 1973.—288 с. 5. Berg J. M. Van Den. The crystal structure of the room — temperature modification
- of indium chloride, InCl.—Acta crystallogr., 1966, 20, N 6, p. 905—910.
- 6. Таблас Р. С. Применение спектров комбинационного рассеяния / Под ред. А. Андерсона.— М.: Мир, 1977.—13 с.
- Coordination compounds of indium. 32. Preparation and properties of hexahalogena-todiindate (II) anions / B. Freeland, H. Lawrence, D. G. Tuck, G. Contreras.—Inorg. Chem., 1976, 15, N 9, p. 2144-2146.
- 8. Реми Г. Курс пеорганической химии.— М.: Изд-во иностр. лит., 1963.—Т. 1. 415 с. 9. McBall M. C., Norbury A. II. Physical data for inorganic Chemists.— London: Longman, 1974.—175 p.

Институт общей и неорганической химии All VCCP, Kneb

Поступила 04.02.83