УДК 546.215:546.226-325:546,227:547.21

КИНЕТИКА И СУБСТРАТНАЯ СЕЛЕКТИВНОСТЬ ОКИСЛЕНИЯ НАСЫЩЕННЫХ УГЛЕВОДОРОДОВ СЕРНОКИСЛОТНЫМИ РАСТВОРАМИ (NH4)2S2O8 И H2O2

Е. С. Рудаков, А. И. Луцык, С. Ю. Суйков

Изучение кинетики и субстратной селективности первой стадии окисления насыщенных углеводородов (RH) в системах M^n — среда дает информацию о строении непосредственного реагента, атакующего С—Н связь. Эгот подход был применен более чем к 25 системам M^n — среда, где M^n — различные металлокомплексы, окислители и электрофилы [1—4]. В настоящей работе приведены результаты исследования кинетики окисления алканов растворами (NH₄)₂S₂O₈ и H₂O₂ в 88—96 %-ной серной кислоте (см. [2]).

В водных растворах пероксидисульфат и перекись водорода окисляют углеводороды по радикальному механизму. Непосредственными реагентами служат радикалы SO_4 [3] и ${}^{\circ}OH$ [4] соответственно, образующиеся при расщеплении перекисных связей. В кислотных средах окислительная функция реагентов $S_2O_8^{-2}$ и H_2O_2 возрастает, и становится возможным молекулярное окисление. В результате взаимодействия RH и растворов H_2O_2 — CF_3COOH с последующей обработкой водой образуются спирты [5]. Предполагают, что непосредственным реагентом, гидроксилирующим алканы, является кислота CF_3COOOH . Связевая селективность при 293 K для изопентана, определенная по выходу изомерных спиртов, $1^0: 2^0: 3^0=1: 16: 530$.

Окисление изобутана в сверхкислотных (FSO₃H—SbF₅—SO₂ClF) и кислотных (HSO₃F, HF, 96 %-ная H_2 SO₄) растворах перекиси водорода при 195—253 K ведет к диметилметоксикарбокатиону (CH₃)₂C=

 $\stackrel{+}{\rm CCH_3}$ и продуктам его дальнейших превращений — $\rm CH_3OH$, (CH₃)₂CO, CH₃COOH, димеру перекиси ацетона [6]. Считают, что непосредственным реагентом служит катион HO+, образующийся при протонировании H₂O₂, и реакция протекает путем электрофильной атаки HO+ на C—H связь (но не на C—C связь):

$$(CH_3)_3 C-H \xrightarrow{H0^+} (CH_3)_3 C \xrightarrow{H} \int_{(CH_3)_3}^{+} (CH_3)_3 C \xrightarrow{H_2 \xrightarrow{L_2}} (CH_3)_2 C = 0CV_4 \xrightarrow{-npodyxm}.$$
 (1)

Кинетика окисления алканов в этих системах ранее не изучалась. В данной работе кинетику исследовали по убыли RH в растворах $(NH_4)_2S_2O_8$ или H_2O_2 в концентрированной серной кислоте в условиях, когда $[RH] \ll [Ox]$. Использовали кинетический распределительный метод (КРМ) и метод шприц-реактора (МШР) [4]. Константы скорости k из полученных КРМ наблюдаемых значений $k_{\text{набл}}$ находили по уравнению $[2]: k=k_{\text{набл}}(1+\alpha\lambda)$, где $\lambda=V_r/V_p$ — отношение объемов газа и раствора в реакторе; $\alpha=c_r/c_p$ — коэффициент распределения RH между газом и раствором. Величины α определяли прямым методом [7] или из зависимости $k_{\text{набл}}$ — λ . Воспроизводимость констант скорости — в среднем $\pm 15~\%$.

Использованные реактивы были квалификации «х. ч.», персульфат аммония дополнительно перекристаллизован, серная кислота прозрачная от 200 нм. Приготовленные растворы при 293—298 К не дают ЭПР-сигналы и достаточно стабильны— активность сразу после при-

готовления и спустя 2-3 ч совпадает, а за сутки снижается не более чем на 15~%.

Вводимые в серную кислоту реагенты $(NH_4)_2S_2O_8$ и H_2O_2 являются основаниями, заметно меняющими при концентрациях c>0,01 моль/кг кислотность и состав среды. Экстраполяцию констант скорости к $c\to 0$ проводили по уравнению $\ln(k/k^0)=Bc$, выполнение которого иллюстрируют следующие данные (окисление метилциклогексана в растворе $(NH_4)_2S_2O_8$ в 93 %-ной H_2SO_4 , 298 K, добавки $(NH_4)_2SO_4$):

$$[(NH_4)_2SO_4]$$
, моль κ_Γ^{-1} . 0 0,039 0,131 0,282 k , 10^{-3} моль $^{-1}$ κ_Γ c $^{-1}$ 2,91 2,58 1,95 1,20 $-\Delta \ln k/\Delta c$ 3,13 3,06 3,14

Было принято, что $B_{\rm H_2O_2}=B_{\rm H_2O}=-0.6$. Величина B=-2.1 для $({\rm NH_4})_2{\rm S}_2{\rm O}_8$ найдена из экспериментальных значений $\Delta \ln k/\Delta c$ с учетом равновесия

$$(NH_4)_2SO_4 + H_2SO_4 + H_2O_2 \gtrsim (NH_4)_2S_2O_8 + 2H_2O.$$
 (2)

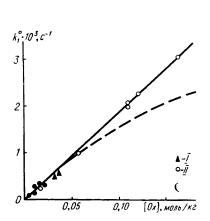
Кинетика поглощения алканов растворами H_2O_2 — H_2SO_4 и $(NH_4)_2S_2O_8$ — H_2SO_4 имеет в изученной области первый порядок по углеводороду вплоть до глубины превращения 99 % и первый порядок по окислителю (рис. 1):

$$-d[RH]/d\tau = k_1[RH] = k_2^0[RH][Ox],$$
 (3)

где [Ox] — исходная концентрация H_2O_2 или $S_2O_8^{-2}$.

Значения k_2^0 , экстраполированные к $[Ox] \rightarrow 0$, для растворов H_2O_2 и $(NH_4)_2S_2O_8$ в одних и тех же условиях равны (табл. 1).

Таблица 1 Константы скорости окисления насыщенных углеводородов сернокислотными растворами H_2O_2 и $(NH_4)_2S_2O_8$


Углеводород	Метод	Т, К		<i>k</i> ₂ , 10 ⁻³ моль ⁻¹ ⋅кг⋅с ⁻¹		
			[H ₂ SO ₄], Mac. %	(NH ₄) ₂ S ₂ O ₈	H ₂ O ₂	
Циклогексан	мшр	293,6	94,7	23	20	
Циклогексан- d_{12}	»	293,6	94,7	6,0	6,3	
Циклопентан	»	293,6	94,7	11	11	
н-Гексан	KPM	298,1	94,9	20	19	
Метилциклогексан	»	298,1	93,0	48	44	
Циклогексан	»	298,1	93,0	21	22	
Изопентац	»	298,1	91,3	22	21	

Окисление алканов в системе $S_2O_8^{-2}$ — H_2O катализируется ионами Ag^+ [3], а в системе H_2O_2 — H_2O — ионами Fe^{II} [4]. Мы нашли, что в системах $S_2O_8^{-2}$ (или H_2O_2) — 93 %-ная H_2SO_4 при 298 K добавки ионов Ag^+ при концентрации $[Ag^+]$ < [Ох] не сказываются на реакции, а добавки $FeSO_4$ повышают скорость не более чем в 1,3 раза (табл. 2). Однако этот эффект паходится в пределах точности измерений.

Изученные реакции — кислотнокаталитические. Увеличение концентрации серной кислоты в интервале 88—96 мас. % ведет к экспоненциальному росту скорости (рис. 2), при этом выполняется уравнение Гаммета $\log k_2{}^0 = {\rm const} - mH_0$ с величиной параметра $m = 0.8 \pm 0.1$ для циклогексана, изопентана и n-гексана.

Для пропана, изобутана, циклогексана и метилциклогексана энергии активации, измеренные распределительным методом в 93—95 %-ной серной кислоте при $280-388~\mathrm{K}$, в пределах экспериментальных ошибок одинаковы и равны $56\pm8~\mathrm{kДж/моль}$.

Используемые методы КРМ и МШР позволяют наряду с константами скорости k находить отношения $k\left(R_1H\right)/k\left(R_2H\right)$ при одновременном (конкурентном) окислении двух субстратов. При изучении субстратной селективности конкурентный вариант обычно предпочтительнее, так как позволяет исключить влияние различных случайных факторов [4]. Однако в наших системах было зафиксировано отличие констант скорости, измеренных в неконкурентных и конкурентных условиях. Во втором случае константы скорости менее реакционноспособного углеводорода завышены в среднем на 30 %, тогда как константы

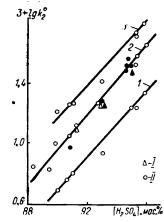


Рис. 1. Зависимость константы скорости k_1^0 окисления циклогексана сернокислотными растворами H_2O_2 (I) и (NH_4) $_2S_2O_8$ (II) от концентрации окислителя при 298,1 К. Зачерненные точки МШР, светлые — КРМ. [H_2SO_4] = 93 мас. %. Пунктир — зависимость без учета экстраполяции k_1 к $c \rightarrow 0$.

Рис. 2. Влияние концентрации серной кислоты на скорость окисления n-гексана (1), циклогексана (2) и изопентана (3) растворами H_2O_2 (1) и (NH_4) $_2S_2O_8$ (11) при 298 К. Зачерненые точки — МШР, светлые — КРМ.

скорости более активного компонента сохраняются (табл. 3). Так, для циклогексана в неконкурентных условиях $k_2^0 \cdot 10^3 = 23$, в паре с более активным циклогептаном $k_2^0 \cdot 10^3 = 29$; для циклогексана- d_{12} — соответственно 6,0 и 8,0, а μ -гептана — 13 и 17. Те же углеводороды в присутствии менее активного партнера в пределах возможных ошибок дают константы скорости, совпадающие с результатами прямых измерений. Хотя наблюдаемый эффект небольшой (около 30 %), тем не менее он является систематическим.

T аблица 2 Влияние добавок сульфатов Ag^I и Fe^{II} на скорость окисления циклогексана растворами $(NH_4)_2S_2O_8$ и H_2O_2 в 93 %-ной H_2SO_4 при 298 K*

Окислитель	Добавка	Метод	$rac{k_2^0 ext{c}$ добавкой k_2^0 без добавки	
$(NH_4)_2S_2O_8(0,17)$	$Ag_2SO_4 (0,004)$	КРМ	1,0	
*	$Ag_2SO_4 (0.030)$	»	1,0	
H_2O_2 (0,37)	$Ag_2SO_4 (0,004)$	»	1,0	
$(NH_4)_2S_2O_8$ (0,010)	FeSO ₄ (0,0012)	мШР	1,3	

^{*} В скобках указаны концентрации в моль/кг.

При $[H_2SO_4]$ < 88 % константы скорости воспроизводятся хуже и разброс достигает 50 % и более. В этой же области сказывается влияние на кинетику материала реактора и введение в реактор стекловаты. По-видимому, при снижении концентрации H_2SO_4 ниже 88 % быстро

Эффекты повышения констант скорости ($k_2^0 \cdot 10^3$ моль $^{-1} \cdot \mathrm{Kr} \cdot \mathrm{c}^{-1}$) окисления менее реакционноспособного углеводорода пероксидисульфатом при конкурентном окислении двух субстратов ($[H_2\mathrm{SO}_4]=95,1$ мас. %, 294 K, МШР)

Углеводород		Конкурентные условия		
	Нексикурентные условия (один субстрат)	Более активный партнер	Менее активный партнер	
Циклогексан	23; 21; 25 cp. 23±2	29 (циклогептан)	22; 25; 19; 20 (цикло пентан); ср. 22±2	
Циклогексан- d_{12}	5,4; 6,5; 6,2; cp. 6,0±0,4	7,8; 7,7; 8,4; 8,1 (циклопентан); cp. 8,0±0,3	` <u>-</u>	
н-Пентан	6,5	11 (н-гептан)	7,8 (пропан); 7,9 (<i>н</i> -бутан)	
<i>н-</i> Гептан	13	17 (изобутан)	13 (циклопентан)	

растет вклад радикального пути реакции. Этот вывод согласуется с радикальным механизмом окисления алканов водными растворами пероксидисульфата и перекиси водорода при невысокой кислотности [3, 4] и с данными о быстром разложении растворов пероксидисульфата в $15-30\ \%$ -ной H_2SO_4 с выделением O_2 и O_3 [8].

В области $[H_2SO_4] > 88 \%$ окисление алканов в основном протекает по молекулярному (нерадикальному) пути. На это указывают достаточная стабильность сернокислотных растворов во времени, первый порядок по алкану и окислителю, воспроизводимость констант скорости в разных условиях в пределах 15 %, отсутствие заметного влияния ионов Ag^+ и Fe^{+2} . Вклад радикального маршрута в этих условиях составляет, вероятно, не более 30 %, если судить по влиянию добавок Fe^{+2} и рассмотренному выше эффекту повышения скорости малоактивного углеводорода в конкурентных условиях.

Совпадение в пределах опытных ошибок констант скорости окисления углеводородов сернокислотными растворами H_2O_2 и $S_2O_8^{-2}$ в одинаковых условиях (см. табл. 1, рис. 1) указывает на наличие в изученных условиях быстрых равновесий между H_2O_2 и $S_2O_8^{-2}$:

$$H_2O_2 = \frac{H_2SO_4}{H_2O} > H_2SO_5 = \frac{H_2SO_4}{H_2O} > H_2S_2O_8.$$
 (4)

Согласно [8], в 88—96 %-ной H_2SO_4 пероксидисульфат находится в виде равновесной смеси перекиси водорода и пероксимоносерной кислоты, причем концентрация H_2SO_5 в 10 раз выше, чем H_2O_2 и $H_2S_2O_8$.

Значительное отличие субстратной селективности окисления углеводородов персульфатом в концентрированной серной кислоте и в водных растворах, где реакция протекает с участием радикалов SO_4 и OH (табл. 5), также свидетельствует о том, что эти частицы не являются непосредственными реагентами в изученных системах.

Для реакций окисления углеводородов системами M^n — H_2SO_4 ранее был предложен механизм [1, 9], включающий отщепление протона

Таблица 4 Константы скорости окисления насыщенных углеводородов сернокислотными растворами пероксидисульфата аммония (неконкурентные условия)

	$k_2^0 \cdot 10^3$,	$k_2^0 ({ m RH})/k_2^0 (\mu_{ m -C_6 H_{12}})$		
Углеводород	моль—1. _{КГ} .с—1 ([H ₂ SO ₄]—95,1 %; 293,6 K; МШР)	[H ₂ SO ₄]=95,1 %; 293,6 K; МШР	[H ₂ SO ₄]=93 %; 298, 1 K; KPM**	
Пропан (C ₃ H ₈)	1,2	0,05	_	
H -Бутан (H -С ₄ H_{10})	6,0	0,25		
μ -Пентан (μ -С ₅ H_{12})	6,5	0,30	0,5	
μ -Гексан (μ -С ₆ H_{14})	11	0,49	0,5	
н-Гептан (н-С ₇ Н ₁₆)	13	0,57		
μ -Октан (μ -С $_8$ Н $_{18}$)	_	-	0,8	
Циклопентан (μ -C ₅ H ₁₀)	$11\pm1*$	0,46	0,6	
Циклогексан (μ -C ₆ H ₁₂)	$23\pm2*$	1,0	1,0	
Циклогептан (u - C_7H_{14})	73	3,1	-	
Изобутан (<i>i-</i> С ₄ Н ₁₀)	22	0,95	-	
Изопентан (i - C_5H_{12})	19	0,82	1,4	
3-Метилпентан (<i>i</i> -C ₆ H ₁₄)			2,1	
Изооктан (<i>i</i> -C ₈ H ₁₈)	$13 \pm 2*$	0,55	0,4	
Метилциклопентан (Ме-ц-С ₅ Н ₉)			2,1	
Метилциклогексан (Ме- μ - C_6H_{11})	70	3,0	2,4	
Этилциклогексан (Еt-ц-С ₆ H ₁₁)	100	4,3	_	

^{*} Среднее значение по нескольким измерениям; ** предварительные данные [2] уточнены с учетом значений α, приведенных в [7].

аблица 5 Селективность окисления насыщенных углеводородов пероксидисульфатом аммония в серной кислоте и радикальными реагентами

Реагент	н-С ₄ Н ₁₀	<u>i-C₄H₁₀</u> н-С ₄ H ₁₀	$\frac{\mu - C_6 H_{12}}{\mu - C_5 H_{10}}$	4-C7H14 14-C6H12	$\frac{\text{Me-} \mu - \text{C}_{8}\text{H}_{11}}{\mu - \text{C}_{8}\text{H}_{12}}$	<u>ц-С₆Н₁₂</u> ц-С ₆ D ₁₂
$(NH_4)_2S_2O_8-H_2SO_4$	5,0	3,7	2,2	3,1	3,0	3,8
·OH [4]	1,3	0,9	1,1	1,3	1,2	1,2
SO ₄ [3]	1,8	1,3	1,7	1,5	1,3	1,9

от RH лигандом-основанием L в комплексе $LM^nL'_i$ с одновременным внешнесферным переносом электронов на центральный атом-окислитель M^n :

$$R^{n}:$$

$$R^{+} \dots HL \dots M^{n-1}L^{'}$$

$$R^{+} \dots HL \dots M^{n-2}L^{'}_{i}.$$

$$R^{+} \dots HL \dots M^{n-2}L^{'}_{i}.$$

$$R^{+} \dots HL \dots M^{n-2}L^{'}_{i}.$$

Было обнаружено [9], что кинетический изотопный эффект и отношение скоростей реакции циклогексана и циклопентана $\{\mu\text{-}C_6H_{12}/\mu\text{-}C_5H_{10}\}$ являются тестами на структуры мостикового лиганда L. Согласно анализу [9], полученным значениям КИЭ-3,8 и $\{\mu\text{-}C_6H_{12}/\mu\text{-}C_5H_{10}\}=2,2$ соответствует мостиковый лиганд —ОН. Однако линейное переходное состояние этой реакции не согласуется с ее стереоспецифичностью (что показано на примере системы CF₃COOH— H_2O_2 [5]) и с энергетикой элементарного акта. Рассмотренные результаты позволяют предположить, что непосредственным окислителем в изученных реакциях служит кислота H_2SO_5 и что реакция протекает

через циклическое переходное состояние (ЦПС):

$$RH + H2SO5 - \begin{bmatrix} R \cdots & H \cdots & 0 \\ 0 & S & 0 \end{bmatrix} - ROSO3H + H2O,$$
 (6)

в котором мостиковым лигандом служит ОН-группа, а образующаяся связь R ... О вносит небольшой вклад в стабилизацию ЦПС. При этом первым продуктом должен быть алкилсульфат.

- 1. Рудаков Е. С. Первая стадия окисления насыщенных углеводородов металлокомплексами и окислителями в растворах.— Изв. СО АН СССР. Сер. хим. наук, 1980,
- вып. 3, с. 161—171. 2. $Py\partial a \kappa o s$ E. C., $Луцы \kappa$ A. M. Окислительная активация насыщенных углеводородов
- в сернокислотных средах под действием металлокомплексов и окислителей.— Нефтехимия, 1980, 20, № 2, с. 163—179.

 3. Рудаков Е. С., Волкова Л. К. Селективность и механизм взаимодействия алканов с окислительными системами (NH₄)₂S₂O₈ и (NH₄)₂S₂O₈ Ag+ в водных растворах. Докл. АН СССР, 1982, 263, № 3, с. 647—649.
- 9ах. Докл. АН СССР, 1962, 205, № 3, с. 647—649.

 4. Кинетика окисления алканов в водных растворах H₂O₂—Fe^{II} Fe^{III} / E. С. Рудаков, Л. К. Волкова, В. П. Третьяков, В. В. Замащиков.— Кинетика и катализ, 1982, 23, № 1, с. 26—33.

 5. Frommer U., Ullrich V. Hydroxylation of aliphatic compound by liver microsomes. III. Model hydroxylation reactions.—Z. Naturforsch., 1971, 268, N 4, p. 322—327.

 6. Olah G. A., Yoneda N., Parker D. C. Oxyfunctionalization of hydrocarbons. 4.
- HSO₃F SbF₅, FSO₃H, H₂SO₄ and HF induced electrophilic oxygenation of alkanes with hydrogen peroxide. J. Amer. Chem. Soc., 1977, 99, N 2, р. 483—488.

 7. Селективность растворения углеводородов в системе вода—серная кислота / Е. С. Рудаков, А. И. Луцык, Н. А. Тищенко и др.—Докл. АН УССР. Сер. Б, 1982,
- № 6, c. 46—48.
- 8. Саука Я. Я., Блум А. Я. Образование озона в системе пероксидисульфат калия —
- серная кислота.— Изв. АН ЛатвССР. Сер. хим., 1966, № 6, с. 611—614. 9. *Рудаков Е. С.* Кинетический изотопный эффект, мостиковый лиганд и механизмы окисления алканов в растворах.— Докл. АН СССР, 1982, 263, № 4, с. 942—945.

Институт физико-органической химии и углехимии АН УССР, Донецк

Поступила 27.10.82

УДК 547.789+547.891.1

СИНТЕЗ ТИАЗОЛОВ ПО ГАНЧУ **ИЗ** 11-БРОМ-10,11-ДИГИДРОДИБЕНЗ[b, f]ТИЕПИН-10-ОНОВ

В. А. Ковтуненко, В. В. Ищенко, А. К. Тылтин, Ф. С. Бабичев

Гетероциклическая система 10,11-дигидродибенз[b, f]тиепина (Ia) лежит в основе обширной группы психотропных препаратов, среди которых наиболее известен нейтролептик «октоклотепин» [1]. Относительно малоизученными производными данной системы являются галогенкетоны (Іб и в). С целью синтеза биологически активных соединений нами исследовано поведение α-галогенкетонов Іб, в в условиях реакции Ганча. В качестве модельного соединения для отработки экспериментальных условий реакции использовали α -бром-(4'-хлорфенил) бензилкетон (II):