чествах, соизмеримых с золотом, и даже при <100-кратном избытке не мешают определению золота. Мешают сильные окислители, вызывающие ХЛ силоксена.

Таким образом, разработанный метод обладает высокой чувствительностью и достаточной избирательностью. Преимуществом его по

Таблица 2 Определение золота в растворе

Введено Аи, мкг	Найдено Au, x (n=4), мкг	Стандартное от- клонение S-, мкг	Доверительный интервал Δx (P =0,95)	Относительная ошибка, %
0,019	0,021	0,003	0,005	14
0,098	0,091	0,004	0,006	7

сравнению с люминольной реакцией [8] является несколько более низкий предел обнаружения и то, что реакция ведется в кислой среде, когда отсутствуют различные побочные процессы, например гидролиз, затрудняющие проведение ХЛ реакций.

- 1 .Kautsky H. Über einige ungesättigte Siliciumverbindungen. Z. anorg. und allg. Chem., 1921, 117, N 3, S. 209—242.
- 2. Volumetric determination of sulfate by titration of excess lead nitrate with potassium chromate using siloxene indicator / F. Kenny, R. B. Kurtz, J. Beck.—Anal. Chem., 1957, **29**, p. 543—546.
- 3. Бабко А. К., Дубовенко Л. И., Луковская Н. М. Хемилюминесцентный анализ.— К.: Техніка, 1966.—250 с. 4. Калиниченко И. Е., Игольников В. Е. Прибор для хемилюминесцентного анализа.— Укр. хим. журн., 1973, 39, № 6, с. 614—616. 5. Бабко А. К., Григоренко Ф. Ф., Дубовенко Л. И. Хемилюминесценция при реакции

- силоксена с различными окислителями.— Там же, 1968, 34, № 10, с. 1055—1059.
 6. Пилипенко А. Т., Рябушко О. П., Мацибура Г. С. Взаимодействие золота (III) с тиокстоном Михлера.— Журн. аналит. химии, 1979, 34, № 6, с. 1088—1094.
 7. Доерфель К. Статистика в аналитической химии.— М.: Мир, 1969.—248 с.
- 8. *Луковская Н. М., Богословская Т. А.* Хемилюминесцентное определение микроколичеств золота.— Укр. хим. журн., 1975, **41**, № 3, с. 268—273.

Киевский государственный университет им. Т. Г. Шевченко

Поступила 14.03.83

УДК 543.064

ОПРЕДЕЛЕНИЕ МИКРОПРИМЕСЕЙ ЦИНКА В СУЛЬФАТЕ МЕДИ С ПРИМЕНЕНИЕМ КОНЦЕНТРИРОВАНИЯ СООСАЖДЕНИЕМ С ГИДРАТИРОВАННЫМ ДИОКСИДОМ МАРГАНЦА

В. Т. Чуйко, В. М. Шпикула, Н. В. Царева

Определение примесей цинка в солях меди связано с существенными трудностями. С помощью наиболее чувствительного из числа фотометрических методов — дитизонового — можно определить не менее 10 мкг цинка в присутствии 10 г меди [1]. Для повышения чувствительности этого метода мы применили концентрирование цинка из аммиачных растворов солей меди соосаждением с гидратированным диоксидом марганца.

При выборе условий концентрирования использовали радиометрический метод определения цинка. Навеску соли меди растворяли, объем раствора доводили до 1 л и переводили медь в аммиачный комплекс прибавлением аммиака, избытком которого доводили рН до 9,6—9,8. К полученному раствору добавляли 1 г сульфата марганца в растворе и образовавшийся осадок гидратированного диоксида марганца отделяли фильтрованием. Так повторяли три раза. В очищенный таким образом раствор соли меди вводили радиоизотоп Zn^{65} и снова 1 г сульфата марганца. Результаты определения Zn в зависимости от концентрации $CuSO_4$ приведены ниже:

Как следует из представленных данных, практически полное соосаждение цинка происходит при содержании около 5 г сульфата меди в 1 л раствора, однако с увеличением концентрации меди оно уменьшается, что можно объяснить следующим образом. Цинк и медь сорбируются гидратированным диоксидом марганца по ионообменному механизму [2]. Но константа нестойкости аммиаката меди значительно меньше, чем цинка [3], поэтому ионы цинка преимущественно удерживаются осадком. С увеличением содержания меди концентрация ее акваионов повышается, что и приводит, вследствие конкурирующего их действия, к уменьшению соосаждения цинка при данном количестве осадка диоксида марганца.

Степень соосаждения цинка и меди с гидратированным диоксидом марганца, как выяснилось, зависит от рН раствора, величина которого, в свою очередь, определяется концентрацией аммиака. С увеличением рН раствора соосаждение меди уменьшается, а цинка — повышается, достигая предельной величины при рН 9,6—9,8 (табл. 1).

Таблица 1 Соосаждение Zn в зависимости от рН раствера*

1	риствори					
	pН	Масса Мп в осадке, ммоль	Масса Си в осадке, мг	Zn в осад- ке, %		
	8,6**	0,20	3,6	40		
	9,1	0,70	2,0	89		
	9,6	0,97	1,6	96		
	9,8	1,00	1,5	95		

^{*} K 100 мл 0,025 M аммиачного раствора соли меди добавлено 5 мкг Zп; ** для ускорения выделения осадка раствор подогревали до \sim 60°.

Таблица 2 Определение Zn в сульфате меди

Введено Zn, мкг	Найдено Zn, %*
2	97
1	97
5	97
1	95
2	90
0,5	96
2	95
	2 1 5 1 2 0,5

^{*} Среднее из трех определений.

При разработке методики применяли следующие реактивы: соляную кислоту и раствор аммиака, приготовленные изотермической перегонкой в эксикаторе; 20 %-ный раствор тиосульфата, очищенный дитизоном; насыщенный раствор тиомочевины марки «ос. ч.»; 25 %-ный раствор сульфата марганца (рН которого доводили аммиаком до 5,5), очищенный дитизоном; буферный раствор, содержащий 130 г ацетата натрия и 57 мл уксусной кислоты в 1 л и очищенный дитизоном; 0,02 %-и 0,002 %-ный раствор дитизона в четыреххлористом углероде; стандартные растворы цинка в кислоте.

Навеску соли меди $(2-5\ r)$ растворяли в воде, добавляли аммиак до растворения образовавшегося осадка, разбавляли водой до концентрации меди 0,025 моль/л и устанавливали рН 9,6. К полученному раствору добавляли раствор сульфата марганца $(0,15\ r$ MnSO $_4$ на 100 мл 0,025 М раствора соли меди). После энергичного встряхивания в течение 3 мин осадок отделяли центрифугированием и растворяли при нагревании в небольшом количестве соляной кислоты. Объем доводили водой до 15-20 мл, нагревали до кипения и добавляли к нему для отделения соосадившейся меди 2-3 мл 20%-ного раствора тиосульфата. После охлаждения осадок сульфида меди отделяли фильтрованием, промывали $\sim 0,01$ н. раствором соляной кислоты, переводили фильтрат

в делительную воронку и определяли в нем цинк методом экстракционного титрования [4]. Для этого к анализируемому раствору добавляли 10 мл ацетатного буфера, 1 мл раствора тиомочевины и экстрагировали из него цинк раствором дитизона порциями по 1 мл, сильно взбалтывая каждый раз в течение 1 мин до тех пор, пока последняя порция раствора не становилась после экстракции зеленой.

Все операции с параллельными опытами повторяли, но к концу титровали медленно, прибавляя только по 0,3 мл раствора дитизона. Титр раствора дитизона устанавливали по растворам холостого опыта, в которые вводили количества цинка, близкие к определяемым. Результаты определения цинка в искусственных смесях приведены в табл. 2.

- 1. Сендел Е. Колоримстрические методы определения следов мсталлов.-- М.: Мир,
- 1964.—854 с.
 2. Чуйко В. Т. До питання про співосадження домішок металів, що утворюють труднорозчинні гідрооксиди з гідрооксидами металів. Наук. зап. Черкас. пед. ін-ту, 1957, 11, c. 335—342.
- 3. Лурье Ю. Ю. Справочник по аналитической химии.— М.: Химия, 1979.—328 с. 4. Шарло Г. Методы аналитических химии. Количественный анализ неорганических соединений. — М.; Л.: Химия, 1965. — 921 с.

Днепропетровский университет Тернопольский педагогический институт

Поступила 30.12.82