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Studies devoted to the calculation and experimental investigation of the stability of 
multilayered shells [1-3] have examined shells consistinK of alternating stiff and flexible 
layers. The stability of multilayered shells connected to each other only by frictional 
forces was not studied. It is possible to evaluate the stability of multilayered cylindri- 
cal steel shells by following the general method expounded in [I] and schematizing the con- 
tact approach and sllp of the layers by means of very fine flexible interlayers. In this 
case, the flexible interlayers should have the same elastic moduli in the annular and radial 
directions, and the elastic constants of the interlayers -- including the shear modulus -- 
should depend on the contact pressure. An exact solution obtained in this manner is very 
complicated and requires the use of a computer. 

Thus, the experimental results presented below are analyzed by means of engineering 
estimates that have not been rigorously substantiated but are attractive in their simplicity 
and illustrative character. 

The critical pressure was determined for two multiple-layered coiled shells with an in- 
side diameter of 300 mm made by winding 26 layers of l-mm-thick steel 10G2Sl about a central 
course of steel 20 that was 4 mm thick. The end of the coiled strip of steel 10G2SI was 
lap-welded to the underlying layer. Both shells were 320 mm long, but one of them was made 
of two multilayered shells 150 mm long welded to each other over the entire thickness of the 
wall with an annular weld 20 mm wide. 

The test shell i, assembled with coupling bolts 2 with end pieces 3, was placed inside 
a high-pressure vessel 4 (Fig. i). The shell was made hermetic with rubber seals 5. 

The inside cavity of the shell was connected to the atmosphere by means of control pipe 
6. The outlet of the pipe was made hermetic with end piece 7 which compressed stuffing-box 
packing 8. 

The external pressure on the shell I was created by water pumped into the vessel 4. 
When the shells lost stability, we heard a sharp metallic bang, and water burst through the 
control pipe. Pressure in the vessel was monitored with manometer 9. 

The multilayered shell without an annular weld lost stability at a pressure of 58 MPa, 
while the shell with an annular weld became unstable at a pressure of 80.0 MPa. The shells 
are shown in Fig. 2 after loss of stability. It can be seen that the outer shell does not 
lose stability after loss of stability in the structure as a whole when it contains an 
annular weld, and the stability of the structure is determined by the short multilayered 
course. 

Proceeding on the basis of the fact that all of the layers of the multilayered shell 
lose their stabi~lity at the same time, for an engineering estimate of the result obtained 
we will assume that the upper critical pressure qu for the entire shell is equal to the sum 
of the critical pressures qui of each layer: 

qu = ~ qu," 
t=l 

where i is the number of the layer; n is the number of layers. 
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Fig. 2. Shells without annular weld (a) and 
with annular weld (b) after loss of stability. 

We will determine the upper critical pressure of each layer for shells of moderate 
length, for which in the case of the condition 

0,8<I /R<2 

the critical pressure is equal to [4, 5] 

Rt R~.12(1--~2) + m4(m 2-1) ' 

where c i is the elastic modulus of the i-th layer, MPa; ~ is the Poisson's ratio; h i is the 
thickness of the i-th layer, mm; R i is the mean radius of the i-th layer, mm; m is the num- 
ber of complete waves about the circumference; r = ~Ri/L; L is the length of the shell, mm. 

Henceforth, to simplify the calculations we will assume that the radii of all layers 
are equal to the mean radius of the multilayered shell R. The left side of Tables i and 2 
shows results of calculation of the critical pressures for shells of different thicknesses 
with a length L = 320 mm or L = 150 mm and different numbers of waves m. 

The upper critical pressure for each layer is determined as the minimum value for all 
possible values of m. It is evident from the tabular data that the number of waves corres- 
ponding to the critical pressure is different for layers of different thickness and that it 
decreases with an increase in layer thickness. If there were no friction between the layers, 
then during bending of the shell that would normally lead to instability each layer would 
work individually, and the upper critical pressure would be determined from the formula 

h (m ~ -  1) r' h~ 
I _ _  E l ~ l  " 

qu-" --R R~.12(1__~2) ~ m4(mZ_l  ) �9 

Results of calculations using this formula are shown in column l on the right side of 
the tables. It can be seen that loss of stability occurs with a smaller number of waves 
than in the case of a layer of thickness h i = i nln but with a greater number of waves 
than in the case of a layer of thickness h, = 4 mm. Here, the theoretical critical pressure 
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TABLE i. Theoretical Upper Critical Pressures qu, MPa, for Shells of Length L = 320 
mm 

No. of I 
complete I 
waves m I 

3 
4 
5 
6 
7 
8 

Note: 

13,6 
2,34 
0,687 
0,343 
0.281 

56,3 
13,2 
8,91 

to-~ 
13,44 
17,38 

Thickness of laver h, mm 

71,90 
19,42 
15.80 

26,04 
33.84 

88,50 
27,54 
25,68 

44,80 

106,4 
37.97 

52.60 

123,6 
51,09 

78,16 

410 
74,0 
26,8 
19,3 

412 
77.9 
32.9 
2 8 , 2  

4 l  .5 

414 417 
81.8 87,5 
39,1 48,4 
3z.2 

57.6 

Design variants 

III IV V 

421 
95,4 
61.2 

The upper critical pressures are underlined here and in Table 2. 

VI 

425 
106,4 
78,5 
94.7 

TABLE 2. Theoretical Upper Critical Pressures qu, MPa, for a Shell of Length L = 150 

No, of Thickness of layer h, mm Design variants 
complete 
waves m I 4 s 6 7 I II III IV V 

5 12,2 55,0 73,3 94,8 119,9 372 378 384 394 407 
6 4,15 25,6 38,7 56,3 79,3 133,5 142,5 151,4 164.9 183,8 
7 1,78 19,4 33,5 53,8 8-1,, 4 65,7 78,0 90,3 108,8 134.6 
8 0,975 20,1 37,2 62.4 97,3 45,4 51,6 78,7 I02,0 135,9 
9 0,687 23,3 44,5 67,6 119,7 41,2 6--1.7 ~ ~ 156,0 

10 0 , 6 0 7  . . . .  4-3,6 6 9 . 0  - -  - -  - -  

I I 0.617 --  - -  49.3 80.2 - -  

is considerably less than the experimental value (19.3 instead of 58 MPa for L = 320 mm and 
41.2 instead of 80 MPa for L = 150 nun). Thus, the frictional forces between the layers can- 
not be ignored. 

It can be suggested that several external layers of the shell work together during bend- 
ing, depending on the amount of external pressure and the tightness of fit of the layers 
achieved during manufacturing. In other words, the frictional forces between several layers 
completely take up the shear stresses created during bending of the shell. Columns II-Vl 
of Table I and II-V of Table 2 show results of calculation of qu for a multilayered shell 
when the thickness of the jointly working layers is 4-8 mm. 

Considering that the lower critical pressure qw is about 0.75 of the upper critical 
pressure [5], we obtain qw = qu vI'0"75 = 78.5"0.75 = 58.8 MPa for a shell of length L = 
320 nan with eight tight external layers. This agrees with the empirical findings. It 
should be noted that, here, m = 5, and the length of the half-wave corresponding to buckling 
is about i00 mm. The same result was obtained experimentally. 

V The lower critical pressure of a short shell 150 m~ long with six tight layers is qw " 
T 

qul .0.75 = 102.0.0.75 = 76.5 MPa, while in the case of seven external tight layers qw = 
quV'0.75 = 134.6'0.75 = I01 MPa. (The experimental value was 80 MPa.) 

It follows from analysis of the experimental results that the tightness of the layers 
and the friction between them are the main factors determining the stability of a multi- 
layered shell. It can also be stated that such a shell can be made appreciably more stable 
by providing it with a thicker outer casing or by welding several outer layers with annular 
welds. 
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STUDY OF THE STRESS--STRAIN STATE OF RIBBED CYLINDRICAL 

SHELLS BY THE FINITE ELEMENTS METHOD 

P. Z. Menabdishvili, M. Ya. Kodner, 
and V. B. Babaev 

UDC 539.3:629.7.036.3 

It is proposed that the finite elements method (FEM) be used in conjunction with the 
"SPRINT" program pack* to design the casings of gas-turbine engines (GTE), which are thin- 
walled shells reinforced by annular stiffening ribs -- rings -- subjected in service to con- 
centrated forces. 

The FEM is an approximate numerical method the accuracy of which depends on the design 
scheme, the density of the grid, and the quality of the finite elements (FE). The denser 
the grid, the more accurate the results obtained. However, such grids increase computer 
operating time and thereby increase machine errors and result in some loss in accuracy. At 
the same time, it is difficult to perform calculations with a large number of elements, and 
a large computer capacity is required. Subdivision into elements is usually done on the 
basis of cumulative experience and is checked in a repeat computation with a denser (or less 
dense) grid. 

The present work reports on numerical experiments conducted with a computer to determine 
the convergence, accuracy, and quality of calculations with different grid densities. For 
the structure shown in Fig. I seven variants of the claculation were performed. 

Planar rectangular elements were used to model the shells and ribs. Half of the shell 
was subdivided into 16 annular elements in the first variant and 48 such elements in the 
seventh variant, there being 16 and 30 elements in these variants in the longitudinal direc- 
tion, respectively (Fig. 2). The number of elements in the seventh variant represented an 
increase in the number of elements compared to the first variant by a factor of 5.4. 

Table i shows the width of the stiffness matrix band, the order of the system, and the 
computing time for all design variants. The computations were performed on an ES 1040 com- 
puter. 

*N. N. Shaposhnikov, V. B. Babaev, G. V. Poltorak, et al., Instructions for the SPRINT Program 
of Calculation of Combined Systems by the M~thod of Finite Elements, TsNllproekt, Moscow 
(1982). 

I 

Fig. i. Longitudinal section and 
loading scheme of shell. 
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