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This article examines three-layer plates rectangular in plan and shallow shells of sym- 
metrical construction subjected to bending by a transverse distributed load. The load- 
carrying capacity of the plates and shells is evaluated by means of a generalized strength 
criterion. We solve the problem of finding the optimum law of variation in the thickness 
of the external layers of these structure. The resulting thickness distribution keeps the 
structures as far as possible from the limiting stress state. 

Formulation of the Problem. As the theoretical model we take a three-layer packet of 
symmetrical construction with a lightweight filler. We assume that the broken line hy- 
pothesis is valid for the entire packet. 

Let m = (mi)( i=l, 5) be a vector function, the components of which represent displace- 
ments of points of the middle surface of the bearing (external and internal) layers of the 
shell (Fig. i). Here ~, = u,, m= = v,, m, = u=, m~ = v=. We assume that the deflection in 
the direction of the axis is the same for all layers and m5 = w. In the case of the plates, 
considering the symmetrical construction of the packet, we take m, =--m~ and ~= =-~ [i]. 

We will examine a symmetrical bilinear form: 

�9 . ~, ~ + -~, (~;~ + ~, (o', o-) = t' / r~--~7:[ ~'~' ~ '  r , .  + "~'~, ~;~ + ~#;~-t-~;~;) + ~ + 
o 

! 

Here, e i and e~ are strain components generated by the vectors o'and ~"[i]; t(x,, x=), 
h(xt, x=) are functions of point (x,, x=)6Q; ~ = [a,., bt] • [a=, b=] is a projection of the 
middle surface of the shell; Et and Es are Young's moduli; G,= is the shear modulus; ~,, and 
~2 are Poisson's ratios of the orthotroplc bearing layers (E,v= = E=~,) Ga, and Ga= are 

! 
the shear moduli of the filler. Here -~ t(x,, x=) + h(xt, x=) = const. 

! 

We form the energy space H~ [2], closing in the norm lloIIH(s)=at((o, o) 2 a set of smooth 
functions o satisfying conditions of shell support such that ~ = 0 follows from the equation 
at(o, ~) = 0. 

As in [2], we will call the generalized solution of the problem of the stress--strain 
state of a three-layer shell of variable thickness the function (o(xt, x=) 6 H(Q), for which 

aa(o, of)= (go'dQ, Vo'6H(f,~), (I) 
n 

where g is the intensity of the external load. 

Considering the function t(x,, xa) as a control, we determine the permissible set of 
controls: 

v o --= {tit 6 ~'~ (~), Iltllw~,,n~c~, p~2,  f l< t< t= ,  

(t) = I t~ < c2, o, (t, o (t)) ~< i, i = i .... , m}, 
O 

(2) 
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Fig. i. Element of a three-layer shell. 

where Ct, C2, tt, and ta are positive constants; W~(fl) is a Sobolev space; the value of the 
functional ~(t) is equal to the volume of the material of the bearing part of the shell; 
~.(t, m(t)) is a functional representing the chosen strength criterion and characte[izing 
t~e stress state of the structure in the neighborhood of the point (xj(i)) (j = i, 3). It 
is determined through the solution m(t) of problem (i). Here, we assume that the set U d is 
not empty. 

We introduce the object function 

(t) = sup ~ (t, ~ (t)). 
i 

The problem of finding a structure of maximum strength is formulated in accordance with the 
formulation of an infinite problem of optimum control: find the function t*(x,, Xa) for 
which 

t * 6 U  d, ~ ( t * ) = i n f ~ ( t ) .  ( 3 )  
t~u d 

The physical meaning of problem (3) consists of selecting the optimum law of change in the 
thickness of the bearing layers of the structure in question. With such a law, the stress 
state at the point liable to the greatest stress (accounted for in the form of the safety 
factor) will be as mild as possible. In other words, the resulting thickness distribution 
will correspond to a shell (plate) which is maximally unloaded in accordance with the chosen 
strength criteria. This in turn makes it possible to additionally load the structure and 
thereby increase its load-carrying capacity. 

As was done in [3], the existence of a solution to problem (3) can be proven. 

Numerical Realization of the Direct and Optimum Problems. Let the following subdivi- 
sions be prescribed on the segments [ak, b k] (k = i, 2) 

A h = a k = x k < x h <  , . . . ,  < x  ~=bh .  l 
We will designate h~ = x~ x t - l  o - k , where I <i ~< N~; hA = max hl; =~ = E hL Assuming =k = 0, 

for 0 .~< i ~ N k we note the following obvious relation: i t=l 

x~=ah+~. (4) 

We i n t r o d u c e  i n t o  t h e  r e g i o n  fl = [ a t ,  b t ]  x [ a 2 ,  b 2 ]  a g r i d  ~ = &t x A2 d i v i d i n g  ~ i n t o  
rectangular cells, from among which we pick out 

fltJ = {(xa, x~)lxxE[al ,  bl] N [x~ -~, x]+q ,  

i = 0 . . . . .  Nx; 

x, E [a~, bd N [x~-', x~+q, ] = o . . . . .  N,}. 

In the region ~, considering (4), we assign the fundamental splines: 

Zi~ = 

I 

at  

0 at 

(x .  x2) E fll~; 

(5) 
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] 
where ~i -~- [ ~ j  ; 62 = 6, + i; [a] is the integral part of the number a. 

We use functions (5) to form an N-dimensional space of controls HN(~)~ Wo*(~): 

Hu (f~) = [ tu (x. x~) I 
Nt N2 

tN (xx, X2)= ~-a X~" t i jTi j t .v,,  .v,2_), 
/ = 0  1=0 

(6) 

1 
N = ( N , +  I ) ( N , + I )  I o 

The geometric sense of the coefficients tij is given by the relation 

li I = IN (~,  x~). (7) 

Regarding HN(~) as a space of controls, we can approximate ~-dimensional optimization 
problem (3) by a sequence of flnite-dimensional problems: for each fixed number N we find 
the function 

(8) u �9 (t~v) = inf O) (tu). g,  C u d , 
tNEU d 

Here, the allowable set is represented in the form 

tx ~ ttj <~ t2, ~h (tu, N (tN)) ~ I, 

N, N: ] , . . . , m  , 

~=o j=o o ( 9 )  

where ~N(t N) is the approximate solution of problem (i) found by the Ritz method, and it can 
in turn be approximated by means of bicubic polynomial splines [4]. 

It should be noted that the functions tN(X, , x~) from (6) are ambiguously determined by 
specification of the coefficients tij , which can be considered components of an N-dimensional 
vector. This fact allowed us to examine problem (8) as a nonlinear programming problem, 
which was solved by the methods of penalty functions and coordinate descent [5]. 

In the problems examined below, the load-carrying capacity of the plates was evaluated 
by means of a generalized strength criterion [6] which can be represented in the form of a 
functional 

l 

~h (tN) = A l a n  + A2~2 + "~ [A3o~t + A4o~2 + Asa11~ ,  + ~ m , ( 1 0 )  

where A i (i = i, 6) are constants expressed through the physical constants of the material 
and characterizing its strength in compression, tension, and shear. 

Considering the nonlinearity of the stresses ~pq in (i0) with respect to t, it can be 
shown that the greatest value of ~k(t) is reached on one of the surfaces bounding the bear- 
ing layers of the plate: xs = --t-h, xs =--h, xs = h, xs = h + t. 

In approximating the thickness of the plate t(x,, xa) by means of the functions 
TiJ(x,, x2) from (5) the segments [ak, bk] (k = i, 2) were subdivided into an odd number of 
intervals N k. Here, the nodes of the subdivision (4) were chosen so that the lengths of 
the corresponding intervals satisfied the relations 

h~ ~ = h~,o, h~ i-z >>hk,o, i == 1 . . . . .  nh; ( 1 1 )  

N h + 1 

nh ~ 2 - -  

In the calculations we assumed that the constant hk, o is equal to 

t,2i--I 1 rain ,,k �9 
h#,o  --~ ~ I ~<i.<nk 
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Fig. 2. Comparison of the load-carrying 
capacity of an optimum plate (i) and a 
plate of constant thickness (2). 

-...~ 

Fig. 3. Form of the optimum plate. 

Also, the coefficients tij (7) were subject to the following conditions: 

tH:-= ti+li = tii+l = ti+li+l = OH, 
(12) 

i =  0, 2 . . . . .  N l - - 1 ;  ] ~ 0 ,  2 . . . . .  N 2 - - 1 ,  

where Oij are positive constants. 

Equations (II) and (12) correspond to the fact that controls tN(xt , x2) from the allow- 
able set U N (9) are continuous functions which are close to being piecewise-constant. The d 
proposed approximation for the thickness of the plate makes it possible to diminish the 
dimensionality of flnite-dimensional problem (8) (to reduce the number of optimization 
parameters tij) and to thereby reduce computer operating time. 

As an example, we solved problem (8) on finding the optimum law of change in the thick- 
ness of a plate which is square in plan (with a side c = bk -- ak, k = i, 2). The plate is 
freely supported at its contour and is bent by a uniformly distributed pressure of intensity 
go. Also, for comparison we solved auxiliary problem (I) on the stress state of a plate of 
constant thickness for the same boundary conditions, geometric dimensions, and external 
load. Here, the intensity of the pressure was chosen so that the value of functional (I0) 
at the most heavily stressed point in a plate of constant thickness reached the limiting value, 
i.e., SUP ~k = i. Solving problem (8), in accordance with (9) we assumed ~(t N) = C2 = 

l~k~m 

V, where V is the volume of the material of the bearing part of the constant-thickness 
plate. This is evidence of the fact that the optimum plate was found from among a set of 
plates of equal weight in the case of constant thickness, with the stress state reaching 
the limiting value in the plate. Here, the weight of the filler was not considered. 

X 
We introduce the dimensionless coordinate li~-T!~ ([~1.2) In these coordinates, a 

rectangle ~ -- the plan of the plate being examined -- is given by the inequalities 0 ~Zi~ 
i. As indicated above, with fixed values of Zx and Z2 the greatest value of the functional 
(I0) is reached at one of four points xa =-h-- t, -~; h; h + t (Fig. I). Calculations 
showed that, in accordance with the chosen strength criterion, the most heavily stressed 
zone in the plate of constant thickness is the section 72 = 0.5. 
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Figure 2 shows distribution curves of dimensionless values of the function @*(Z,) = 
max @(Z,, 0.5, xs), where the functional @ is determined by Eq. (i0). Due to the symmetry 
Xs 

of the geometric dimensions (square plate), the boundary, conditions, and the external load, 
the results are shown for one-fourth of the plate, i.e., for 0 ~<. Z,~ 0.5. It is apparent 
from the graphs that the maximum value of @*(11) is reduced by 15% in the optimum plate 
compared to the plate of constant thickness. 

The accuracy of the solution of problem (I) on the stress state of a plate was checked 
by comparing the solution for different numbers of coordinate functions. Thus, the graphs 
shown in Fig. 2 were obtained from the solution ~ = (u, v, w) approximated by 104 coordinate 
functions. Here, we took 20 functions for tangential displacements u, vand 64 functions for 
the deflection w. The stress state found from the refined solution differs no more than 3% 
from the above solution with a twofold increase in the number of dimensions. 

Figure 3 shows the form of 1/8 of the resulting optimum plate. The law of thickness 
change shown in the figure was obtained by varying nine parameters @iJ (see (12)). 

In conclusion, we note that the solution of problem (I) is linearly dependent on the in- 
tensity of the load g, and the maximum value of @*(Z,) for the optimum plate found is 15% 
lower than for the constant-thickness plate. It follows from the foregoing that the optimum 
plate, having the same weight as the constant-thlckness plate, has a load-carrying capacity 
15% greater than the constant-thickness plate. 

Taking into account the multiple extreme character of problem (8) and increasing the 
number of optimization parameters, it would be possible to find an optimum plate design 
with an even greater load-carrying capacity. 
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