КОМПЛЕКСООБРАЗОВАНИЕ НИТРАТОВ ЖЕЛЕЗА (III) И ХРОМА (III) С БЕНЗИМИДАЗОЛОМ И ЕГО ЗАМЕЩЕННЫМИ В ДИМЕТИЛСУЛЬФОКСИДЕ

В. И. Дулова, Л. Ф. Петраш

В данной работе спектрофотометрически изучено комплексообразование в диметилсульфоксиде нитратов железа (III) и хрома (III) с бензимидазолом и его замещенными. При исследовании применяли трехводные нитраты железа ($Fe(NO_3)_3 \cdot 3H_2O$) и хрома ($Cr(NO_3)_3 \cdot 3H_2O$), полученные из шестиводных нитратов марки «ч. д. а.» длительным выдерживанием над P_2O_5 и свежепрокаленным сульфатом магния. Состав гидратов солей проверяли трилонометрически.

Бензимидазол синтезировали по методике, приведенной в работе [1]. 1-Метил, 1-этил и 1-бутил бензимидазолы получали действием соответствующих галоидных алкилов на бензимидазол [2]. Лиганды очищали перекристаллизацией из органических растворителей или перегонкой. Спектрофотометрические измерения проводили на установке СФ-26 при температуре $25\pm1^\circ$. При введении лигандов в растворы нитратов железа и хрома наблюдалось увеличение оптической плотности растворов. Измерения для расчета состава и констант устойчивости комплексов проводили при длинах волн, которым соответствовало наибольшее приращение оптической плотности. Для определения состава комплексов применяли метод сдвига равновесия [3] с учетом требований, указанных в [4], и метод пересечения кривых [3]. Со всеми лигандами наблюдалось образование комплексов состава 1:1 и 1:2. Константы устойчивости рассчитывали методами К. Б. Яцимирского — Л. И. Бударина [3] и пересечения кривых [3].

Согласно [5], в растворах нитратов железа (III) и хрома (III) нитрат-ионы находятся во внешней сфере. Электропроводность растворов нитратов при добавлении лигандов не изменяется Это свидетель-

Характеристики комплексообразования в диметилсульфоксиде нитратов железа (III) и хрома (III) с бензимидазолом и его замещенными

Лиганд	Kiycr	Kzycr	K1.K2ycT	lgKycr	$-\lg_{C}\Gamma$	AlgKycr	AlgKycr IgKycr
Fe(NO ₃) ₃ ·3H ₂ O							
Бензимида- зол 1-Метилбен-	134,2±1,9	331,5±9,2	$(444,9\pm6,5)\cdot10^2$	4,65	2,52	0,73	0,16
зимидазол	$106,3\pm3,0$	$321,4 \pm 12,8$	$(341,6\pm4,1)\cdot10^2$	4,53	2,62	0,56	0,12
1-Этилбен- зимидазол 1-Бутилбен-	$69,8 \pm 3,8$	$298,8 \pm 7,5$	$(208,6\pm7,2)\cdot10^2$	4,32	2,44	0,45	0,10
З имидазол	$98,6 \pm 4,6$	$310,1\pm2,6$	$(305,8\pm12,6)\cdot10^2$	4,49	2,17	0,79	0,18
$Cr(NO_3)_3 \cdot 3H_2O$							
Бензимида- зол 1-Метилбен	6,5±0,3	16,2±0,6	$105,3 \pm 1,1$	2,02	2,52	0,83	0,41
зимидазол	$6,5\pm0,2$	$16,8 \pm 0,5$	$109,2 \pm 0,2$	2,04	2,62	0,73	0,36
1-Этнлбен- зимидазол 1-Бутилбен-	3,6±0,2	14,7±0,5	$52,9 \pm 0,9$	1,72	2,44	0,62	0,36
зимидазол	$3,0 \pm 0,2$	14,8±1,0	$44,4\pm0,8$	1,65	2,17	0,88	0,53

ствует о том, что образование комплексов происходит с вытеснением лигандом молекул растворителя из внутренней сферы сольватов. Определения проводили при концентрациях нитрата железа $1 \cdot 10^{-3}$ и $5 \cdot 10^{-4}$ моль/л, а нитрата хрома — $2 \cdot 10^{-2}$ и $1 \cdot 10^{-2}$ моль/л. Средние значения констант устойчивости, полученные из 3-4 определений, с доверительными интервалами при коэффициенте надежности 0,95 приведены в таблице.

Для характеристики протоноакцепторных свойств лигандов находили концентрацию каждого из них, при которой наблюдается точка перехода индикатора нейтрального красного. Они были определены на основании спектрофотометрических измерений растворов лигандов с переменной концентрацией при постоянной концентрации индикатора (концентрация индикатора $1 \cdot 10^{-5}$ моль/л). Применяли кислую форму индикатора. Значения отрицательных логарифмов этих концентраций приведены в таблице. Устойчивость исследуемых комплексов находится в прямолинейной зависимости от $-\lg C_{\rm L}$. Выведено корреляционное уравнение между $\lg K_{\text{vcr}}$ и $-\lg C_{\text{L}}$.

Поскольку железо и хром, как д-элементы, способны к двойственному взаимодействию с бензимидазолами (о-донорному и п-дативному), для разделения этих взаимодействий нами были использованы корреляционные уравнения между $\lg K_{\text{vcr}}$ и — $\lg C_{\text{L}}$ для комплексов нитратов железа и хрома в диметилсульфоксиде с первичными аминами и пиперидином, приведенные в работе [5]. Константы устойчивости комплексов с первичными аминами определяли при тех же концентрациях, что и для комплексов с бензимидазолами.

При комплексообразовании нитрата железа и нитрата хрома с первичными аминами возможно только о-донорное взаимодействие. Различие в устойчивости комплексов с бензимидазолами и с первичными аминами ($\Delta \lg K$) при одинаковых протоноакцепторных свойствах этих лигандов характеризует влияние π-дативного взаимодействия на устой- $\Delta \lg K = \lg K_{\text{бензимилазола}}$ чивость комплексов с бензимидазолами: $-\lg K_{\text{амина}}$. Отношение $\Delta \lg K/\lg K$ характеризует участие π -дативного взаимодействия в комплексообразовании.

В таблице приведены константы устойчивости, $\lg K$, $-\lg C_L$, $\Delta\lg K$; $\Delta \lg K/\lg K$ для бензимидазола и его 1-замещенных. Сравнение этих данных свидетельствует о том, что л-дативное взаимодействие в комплексообразовании со всеми лигандами невелико и различается мало. Однако при комплексообразовании нитрата хрома (III) с бензимидазолами участие π-дативного взаимодействия больше, чем при комплексообразовании нитрата железа (III) с теми же лигандами. Это можно объяснить устойчивостью d-электронного уровня $Fe^{3+}(d^5)$, в результате чего переход *d*-электронов железа на разрыхляющие *p*-орбитали лиганда затруднен.

- 1. Синтез органических препаратов. Сб. 2/Под ред. М. Блэтт.— М.: Изд-во иностр. лит., 1949.—654 с.
- 2. Гарновский А. Д. Очерки по химии азолов. Ростов н/Д: Изд-во Рост. vи-та,
- 3. Булатов М. И., Калинкин И. П. Практическое руководство по фотоколориметрическим и спектрофотометрическим методам анализа. — 2-е изд. Л.: Химия, 1968. — 382 c.
- 3.62 С.
 4. Лебедев И. А. Об определении состава комплексных ионов методом сдвига равновесия. Журн. пеорган. химии, 1974, 19. № 5, с. 1175—1178.
 5. Качанов А. А., Дулова В. И., Захаров И. Н. Комплексообразование нитратов трехвалентных железа и хрома с пиридином и его замещенными в диметилсульфоксиде. Координац. химия, 1982, 8, № 3, с. 324—327.

Днепропетровский химико-технологический институт

Поступила 30 июня 1982 г.