- 11. *Паховчишин С. В., Гриценко В. Ф.* Влияние pH среды и электролитов на структурообразование тиксотропных дисперсий аэросила.— Укр. хим. журн., 1977, 43, № 5, с. 495—500.
- c. 495—500.

 12. Carrol D., Starkey C. H. Reactivity of clay mineral with acids and alcalis.—Clay and Clay minerals, 1971, 19, N 5, p. 321—333.

Институт коллоидной химии и химии воды им. А. В. Думанского АН УССР

Поступила 1 февраля 1982 г.

УДК 541.12.038.2

КОРРЕЛЯЦИЯ ПРЕДЕЛЬНЫХ КОЭФФИЦИЕНТОВ АКТИВНОСТИ СЛОЖНЫХ ЭФИРОВ И КЕТОНОВ С ХАРАКТЕРИСТИКАМИ РАСТВОРИТЕЛЕЙ

Р. Г. Макитра, Л. И. Мельдер, Я. Н. Пириг, А. В. Эббер

Для определения предельных коэффициентов активности веществ в растворах в зависимости от свойств растворителя и априорного прогнозирования коэффициентов распределения между несмешивающимися растворителями и водой используются различные теоретические [1, 2] и полуэмпирические [3, 4] подходы. Например, для описания растворов неэлектролитов без специфического взаимодействия использовали теорию регулярных растворов [5, 6], которая наиболее применима в углеводородных системах.

В случае растворов с полярными компонентами и сложным характером межмолекулярных взаимодействий для корреляции коэффициентов активности (или коэффициентов распределения) со свойствами растворителей распространение получили полуэмпирические, так называемые экстратермодинамические зависимости, охватывающие различные виды взаимодействия в растворах. Они основаны на принципе линейности свободных энергий и имеют вид полипараметрических линейных уравнений.

Таблица 1 Свойства растворителей

· _ · _ · _ · _ · _ · _ · _ · _ · _ · _	<u> </u>				
Растворитель	$\frac{n^2-1}{n^2+2}$	$\frac{\varepsilon-1}{2\varepsilon+1}$	δ^2	В	E
н-Гексан	0,2989	0,185	0,054	0	0
н-Гептан	0,2358	0,191	0,056	0	0
н-Октан	0,2411	0,194	0,057	0	0
н-Гексадекан	0,2596	0,206	0,102	0	0
Циклогексан	0,2563	0,203	0,068	0	0
CC1 ₄	0,2742	0,225	0,076	0	0
Хлороформ	0,2653	0,359	0,088	14	3,3
Дихлорэтан	0,2661	0,431	0,108	40	0
Хлоргексан	0,2528	0,405	0,071	59*	0
Хлорбензол	0,3064	0,377	0,087	38	0
Бромбензол	0,3232	0,373	0,096	40	0
Бензол	0,2946	0,231	0,085	48	2,1
Толуол	0,2926	0,238	0,080	58	1,3 /
о-Ксилол	0,2968	0,265	0,081	68	1,0
м-Ксилол	0,2921	0,239	0,077	68	1,0
п-Ксилол	0,2920	0,229	0,077	68	1,0
Этилбензол	0,2921	0,238	0,078	58	1,0
Кумол	0,2399	0,239	0,074	56	1,2
Мезитилен	0,2938	0,231	0,077	77	0,8

Величина для н-бутилхлорида.

Установлено, что коэффициенты распределения K фенолов [7], карбонильных соединений [8], карбоновых кислот [9] между фазами органического растворителя и воды, а также предельные коэффициенты активности $\lg \gamma^{\sim}$ углеводородов C_4 — C_5 в различных растворителях [10] удовлетворительно коррелируют со свойствами растворителей посредством линейного пятипараметрового уравнения, учитывающего способность растворителя к неспецифической и специфической сольватации:

$$\lg K(\gamma^{\sim}) = a_0 + a_1 \frac{n^2 - 1}{n^2 + 2} + a_2 \frac{\varepsilon - 1}{2\varepsilon + 1} + a_3 \delta^2 + a_4 B + a_5 E,$$

где n и ε — соответственно показатель преломления и диэлектрическая проницаемость растворителей; B и E — их нуклеофильность (основность) и электрофильность (кислотность) согласно [11, 12]; δ — параметр растворимости, характеризующей плотность энергии когезии вещества, который рассчитывают по уравнению

$$\delta = V \overline{(H^v - RT)/v},$$

где H^v — мольная энтальпия испарения; v — мольный объем.

В настоящем сообщении показана применимость данного уравнения для описания корреляционной зависимости между свойствами растворителей (в том числе полярных галогенпроизводных углеводородов) и значениями предельных коэффициентов активности сложных эфиров и кетонов в этих растворителях. Были обработаны данные о предельных коэффициентах активности [13, 14] в 18 растворителях,

Таблица 2 Величины $\ln \gamma^{\sim}$ сложных эфиров в растворителях

	Сложный эфир												
Раствори- тель	Метил- ацетат	Этилаце- тат	Пропил- ацетат	Бутил- ацетат	Амилаце- тат	Метил- пропионат	Метил- валерат	Метил- капроат					
н-Гексан	1,405	1,294	1,545	1,133	1,100	1,368	1,158	0,983					
<i>н</i> -Гептан	1,548	1,372	1,444	1,155	1,100	1,285	1,138	0,898					
<i>н</i> -1 ептан <i>н</i> -Октан	•	1,283	1,350	0,992	1,143	•	,	0,837					
	1,269	1,200	1,550	0,992	1,101	1,274	1,069	0,937					
н-Гекса-	1,294	1,119	0,965	0,903	0,827	1,064	0,790	0,716					
декан Цикло-	1,294	1,113	0,500	0,303	0,021	1,004	0,730	0,710					
гексан	1,799	1,564	1,287	1,188	0,974	1,460	1,188	0,990					
CCI ₄	0,633	0,280	0,272	0,175	-0.005	0,341	0,163	0,018					
Хлоро-	0,000	0,200	0,2.2	0,110	0,000	0,011	0,100	0,010					
форм	-1,127	-1,508	-1,774	-1,528	-1,516	-1,330	-1,298	-1,222					
Дихлор-	1,121	-,	•	,,,,	1,010	.,	1,200	-,					
этан	-0,523	-0,444	-0,166	-0,193	-0,219	-0,203	-0,092	-0,099					
Хлор-	•				•	•	·	•					
гексан	0,438	0,189	0,244	0,203		0,392	0,315						
Хлор-	•												
бензол	0,147	-0,166	0,009	-0,117	-0,292	0,090	-0,060						
Бром-													
бензол	0,357	-0,110	0,348	0,120	-0,090		—	-					
Бензол	0,212	0,134	0,053	-0,062	-0,223	0,161	0,041	-0,025					
Толуол	0,424	0,164	0,216	0,127	-0,189	0,203	0,166	-0,051					
о-Кси-													
лол	0,447	0,205	0,313	0,189	-0,516	_							
м-Кси-			0.010										
лол	0,479	0,212	0,313	0,253	0,030	0,500	0,152	0,009					
п-Кси-		0.00-	0.215	0.150	0.051	0 465	0.007	0.000					
лол	0,470	0,262	0,315	0,159	-0,051	0,405	0,087	-0,002					
Этил-	0.410	0.100	0,189	0.100	0.000	0.242	0.100						
бензол	0,412	0,186	•	0,122	0,009	0,343	0,186						
Кумол	0,389	0,198	0,322	0,200	0,009	0,400	0,226	0,000					

Таблица 3 Коэффициенты полипараметровых уравнений, описывающих зависимость $\ln \gamma^{\sim}$ сложных эфиров от свойств растворителей

Сложный эфир	Количество точек	a ₀	a ₁	a ₂	a_3	a_4	$a_{\mathbf{s}}$	R	s
Метилацетат (R =0,948; s =0,270)*	17	2,505 2,939 2,632	2,204 0 0	-5,404 -5,686 -6,393	-8,038 -6,478 0	-0,004 0 0	-0,455 $-0,477$ $-0,494$	0,968 0,962 0,957	0,223 0,222 0,239
Этилацетат (R=0,953; s=0,271)	17	2,848 2,550 2,045	-1,553 0 0	-3,171 $-2,967$ $-4,043$	-8,153 -10,38 0	-0,012 $-0,013$ $-0,014$	-0,071 0 0	0,964 0,958 0,935	0,196 0,195 0,240
Пропилацетат (R =0,957; s =0,262)	17	2,844 2,793 2,472	-0,275 0 0	-5,245 $-5,276$ $-6,012$	-6,447 $-6,756$ 0	-0,601 0 0	-0,599 -0,603 -0,620	0,986 0,985 0,980	0,161 0,148 0,174
Бутилацетат (R =0,958; s =0,217)	17	2,479 2,173 2,022	1,592 0 0	-4,742 -4,747 -5,095	-1,707 $-3,195$ 0	0,001 0 0	0,505 0,509 0,518	0,985 0,983 0,982	0,139 0,138 0,140
Амилацетат (R =0,949; s = 0,276)	16	2,616 2,060 2,004	-2,389 0 0	-4,782 -5,170 -5,623	0,691 0 0	-0,005 0,006 0	-0,474 $-0,469$ $-0,530$	0,985 0,983 0,958	0,156 0,152 0,235
Метилпропионат ($R=0.949$; $s=0.276$)	15	2,080 2,686 2,396	0,963 0 0	-5,220 -5.118 -5,708	-5,291 -5,912 0	0,001 0 0	-0,489 -0,487 -0,505	0,974 0,974 0,968	0,208 0,190 0,207
Метилвалерат (R =0,952; s =0,237)	15	2,744 2,883 1,883	-2,721 $-4,096$ 0	-3,886 -4,267 -4,538	-3,987 0 0	-0,001 0 0	-0,441 $-0,447$ $-0,482$	0,980 0,977 0,966	0,163 0,156 0,189
Метилкапроат (<i>R</i> =0,942; <i>s</i> =0,280)	12	1,289 1,666 1,629	1,978 0 0	-3,414 -3,869 -4,072	2,890 0 0	-0,005 -0,004 0	-0,420 -0,408 -0,448	0,988 0,986 0,972	0,142 0,128 0,182

^{*}В скобках приведены данные с учетом СС14, количество точек, соответственно, на порядок больше.

для которых в литературе имеются все необходимые параметры специ фической сольватации (табл. 1). При расчете по приведенному уравнению в случае сложных эфиров (табл. 2) общий коэффициент корреляции R достигает удовлетворительной величины 0,94—0,96. Во всех случаях от прямой регрессии больше всего отклоняются значения γ ° в CCl₄. С исключением этого растворителя величина R повышается до 0,97—0,99. В табл. 3 приведены коэффициенты регрессии соответствующих уравнений, общие коэффициенты корреляции R и среднеквадратичные ошибки s. Все сольватационные взаимодействия, а также самоассоциация растворителя понижают величину γ °, на что указывают отрицательные знаки при соответствующих членах уравнения регрессии.

Рассмотрев влияние отдельных параметров, поочередно исключая их, согласно [15], установили, что величины $\ln \gamma^{\sim}$ определяются только двумя характеристиками растворителя: электрофильностью и полярностью (табл. 3). Остальные параметры малозначимы, и их исключение почти не понижает величины общего коэффициента корреля ции R. Таким образом, в рассмотренных растворах происходит специфическая электрофильная сольватация молекул сложных эфиров, чтс находится в соответствии с их электронодонорным характером. Одновременно с ростом полярности растворителей усиливается роль неспецифической сольватации. Значение нуклеофильной сольватации сложного эфира растворителями ничтожно. То же относится и к поляризуемости растворителей. Малозначима также роль их самоассоциации. Установленным закономерностям подчиняются семь из восьми рассмотренных сложных эфиров. Определенные отклонения отмечают. ся только для этилацетата, где наряду с фактором поляризуемости относительно малозначимым оказывается влияние электрофильной сольватации.

Таблица 4 Величины In γ^{\sim} кетонов в растворителях

Рас творитель	Кетон									
	Ацетон	Бутанон	Пентанон-2	Гексанон-2	Гентанон-2	Пинаколин				
Гексан	2,251	1,757		1,589	1,481	1,138				
Гептан		1,594	1,504	1,564	1,395	1,086				
Октан	2,271	1,607	1,468	1,497	1,429	1,109				
Гексадекан	1,763	1,346	1,165	1,103	1,251	0,934				
Циклогексан	2,498	1,930	1,638	1,549	1,479	1,165				
CCl ₄	1,444	0,744	0,581	0,564	0,586					
Хлоргексан	0,774	0,316	0,169	0,292		0,006				
Хлорбензол	0,393	0,018	-0,283	-0,117	0,130	-0,157				
Бензол	0,698	0,243	0,111	0,147	0,173	_				
Толуол	0,812	0,436	0,139	0,252	0,098	0,204				
м-Ксилол		0,527	0,235	0,305	0,192	0,231				
<i>n</i> -Ксилол	1,207	0,479	0,249	0,267	0,203	0,191				
Этилбензол	0,962	0,417	0,266	0,303	0,309	0,202				
Кумол	0,998	0,551	0,164	0,327	0,348	0,247				
Мезитилен		0,572	0,245	0,416	0,366	0,319				

Определяющее влияние на величины активностей полярности и электрофильности растворителей подтверждается при обработке данных по γ^{\sim} для кстонов (табл. 4). При корреляции величин $\ln \gamma^{\sim}$ со свойствами растворителей по пятипараметровому уравнению во всех случаях параметры поляризуемости, плотности энергии когезии и основности растворителей оказываются малозначимыми (табл. 5). Коэффициенты корреляции двухпараметровых зависимостей $\ln \gamma^{\sim}$ от по-

Таблица 5 Коэффициенты полипараметровых уравнений, описывающих зависимость $\ln \gamma^{\sim}$ кетонов от свойств растворителей

Кетон	Количество точек	a_0	a_1	$a_{\mathbf{z}}$	a_3	a,	a ₅	R	s
Ацетон (R=0,960; s=0,266)*	11	4,738	-2,957	<u></u> 5,911	-9,309	-0,005	-0,383	0,972	0,243
		4,395	0	7,550	-10,86	0	-0,600	0,965	0,230
		3,747	0	-8,096	0	0	0,661	0,947	0,282
Бутанон (R=0,951; s=0,241)	14	4,324	7,097	-5,006	-2,224	-0,002	0,320	0,972	0,172
		4,462	-8,031	-5,348	0	0	-0,363	0,970	0,157
		2,703	0	-6,624	0	0	0,538	0,924	0,248
Пентанон-2 (R =0,945; s =0,258)	13	3,595	-2,949	4,780	6,988	-0,008	-0,309	0,973	0,197
,		2,485	0	-5,399	0	-0,009	-0,393	0,955	0,221
		2,796	0	-7,382	0	0	-0,663	0,926	0,282
Гексанон-2 (R=0,958; s=0,216)	14	3,612	-3,312	-4,246	-7,821	0,006	-0,303	0,984	0,141
•		2,440	Ó	-5,108	Ó	-0,007	-0,411	0,960	0,200
		2,719	0	6,805	0	0	-0,643	0,940	0,244
Гептанон-2 (R =0,965; s =0,200)	13	2,932	-0,891	-6,218	-1,363	-0,009	-0,282	0,993	0,095
		2,705	Ó	-6,637	0	-0,009	-0,297	0,993	0,088
		3,024	0	-8,860	0	Ó	-0,585	0,961	0,201
Пинаколин**	13	2,778	-2,709	-4,791	-1,459	0,002	-0,386	0,989	0,094
		2,948	-3,453	-5,245	Ó	Ó	-0,471	0,988	0,087
		2,206	Ó	-5,814	0	0	-0,563	0,977	0,120

 $[\]bullet$ В скобках приведены данные с учетом ССl $_4$, количество точек, соответственно, на порядок больше; ** для ССl $_4$ данных нет.

лярности и электрофильности растворителей несколько меньше, чем для сложных эфиров, возможно потому, что для кетонов имеются данные по меньшему числу растворителей.

1. Статистические методы расчета коэффициента термодинамической активности в разбавленных растворах неэлектролитов / Г. Г. Девятых, В. М. Степанов, М. Я. Широбоков, С. В. Яньков.— В кн.: Гидриды, галиды и металлорганические соединения особой чистоты. М.: Наука, 1976, с. 5—32.

2. Кузнецова Е. М. О возможности теоретического описания экстракции неполярными

- 2. Ngshequae 2. М. О возможности теоретического описания эксгранции неполярными растворителями.— Журн. физ. химии, 1974, 48, № 11, с. 2865—2868.

 3. Pierotti G., Deal C., Derr E. Activity coefficients and molecular structure.— Ind. Eng. Chem., 1959, 51, N 1, p. 95—102.

 4. Noel D., Meloan C. Empirical correlations in solvent extraction.— Separ. Sci., 1972,
- 7, N 1, p. 95—102.
- Srebrenik S., Cohen S. Theoretical derivation of partition coeefficient from solubility parameter.— J. Phys. Chem., 1976, 80, N 9, p. 996—999.
 Эббер А. В. Описание равновесия в экстракционных системах с распределяющими-
- ся кислородсодержащими соединеннями без Н-связи: Автореф. дис. ... канд. хим. наук. — Иваново, 1981. —24 с.
- наук.— Иваново, 1981.—24 с.

 7. Макитра Р. Г., Пириг Я. Н. Влияние свойств растворителей на коэффициенты распределения. 4. Применение линейного пятипараметрового уравнения для описания распределения фенолов между водой и органической фазой.— Реакц. способность орган. соединений, 1979, 16, № 2, с. 261—272.

 8. Макитра Р. Г., Пириг Я. Н. Влияние свойств растворителей на коэффициенты распределения. 2. Распределение некоторых карбонильных соединений между водой и органическими растворителями.— Там же, 1978, 15, № 4, с. 547—560.

 9. Макитра Р. Г., Пириг Я. Н., Фильц Д. И. Влияние свойств растворителей на коэффициенты распределения. 5. Извлечение уксусной и пропионовой кислот из водной среды органическими растворителями.— Там же, 1979, 16, № 2, с. 261—262.

 10. Макитра Р. Г., Пириг Я. Н. Применение линейных уравнений, включающих несколько параметров, для характеристики селективности растворителей при экстракции углеводородов.— Нефтехнмия, 1980, 20, № 1, с. 145—154.

 11. Коппель И. А., Паю А. И. Параметры общей основности растворителей.— Реакц.

- 11. Коппель И. А., Паю А. И. Параметры общей основности растворителей.— Реакц. способность орган. соединений, 1974, 11, № 1, с. 121—138.
- 12. Коппель И. А., Паю А. И. Распиренная шкала параметров электрофильности растворителей.— Там же, с. 139—143.
 13. Аарна А. Я., Мэльдер Л. И., Эббер А. В. Использование модифицированной тео-

- Аарна А. Я., Мэльбер Л. И., Эооер А. В. Использование модифицированной теории регулярных растворов для описания растворов кетонов в исполярных растворителях. Жури. прикл. химии, 1980, 53, № 1, с. 156—158.
 Мэльбер Л. И., Эббер А. В. Коэффициенты активности сложных эфиров в гексадекане и воде. Тр. Таллии. политехи. ин-та, 1978, № 449, с. 3—11.
 The influence of the solvent on organic reactivity. Pt. 1. Kinetics and mechanism of the reactions of carboxylic acids with diazodiphenylmethane in donor aprotic solvents/N. B. Chapman, M. R. J. Dack, D. J. Newman, J. Shorter, R. Wilkinson I. Chapman, Trans. 1974, pt. 2. N. 8. p. 962—971. J. Chem. Soc., Perkin Trans., 1974, pt. 2, N 8, p. 962-971.

Институт геологии и геохимии горючих ископаемых АН УССР Таллинский политехнический институт Львовский политехнический институт

Поступила 10 июня 1982 г.

УДК 517:511.1

ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕКОТОРЫХ ТИОСУЛЬФОКИСЛОТ

А. А. Гундорина

Калийные соли тиосульфокислот общей формулы RS_2O_2K (R — органический радикал) используются в качестве исходных веществ в синтезе тиоэфиров, проявляющих биологическую активность на различного рода бактерии [1, 2]. Физико-химические свойства этих соедипений изучены мало, что затрудняет расчеты при разработке аналитических методик, а также практическое использование их в химическом синтезе.

Цель данной работы — изучить кислотно-основные и окислительсвойства некоторых соединений этого ряда: но-восстановительные $CH_3S_2O_2K$ — метантиосульфонат (МТС), $C_2H_5S_2O_2K$ — этантиосульфо-