метров распада ГПТБ, определенные химическим и хемилюминесцентным методами, сопоставимы.

Таким образом, полученные данные позволяют заключить, что хемилюминесцентный метод может использоваться для расчета кинетических характеристик разложения гидропероксидов в присутствии координационных соединений с учетом промежуточного комплексообразования.

1. Врецена Н. Б., Никипанчук М. В., Черняк Б. И. Закономерности жидкофазного окис-1. Врецена П. В., Пикипинчук М. В., Черняк В. И. Закономерности мидиофизиото мило-ления нонена-1 в присутствии координационных цианидов молибдена (0, II, IV).— Укр. хим. журн., 1981, 47, № 3, с. 282—285. 2. Врецена Н. Б., Никипанчук М. В., Черняк Б. И. О взаимодействии цианистых комп-

лексов молибдена с гидроперекисью третичного бутила. — Координац. химия, 1979, 5,

№ 2, с. 202—206.
3. *Шляпинтох В. Я.* Хемилюминесцентные методы исследования медленных химических процессов.— М.: Наука, 1966.— 300 с. 4. Эмануэль Н. М., Майзус З. К., Скибида И. П. Гомогенный катализ.— Фрунзе: Илим,

1971.— 131 c.

5. Фарберов М. И., Бондаренко А. В., Стожков Г. А. Эпоксидирование олефинов органическими гидроперекисями. В кн.: Теория и практика жидкофазного окисления. М.: Наука, 1974, с. 273.

Львовский политехнический институт

Поступила 9 февраля 1982 г.

УДК 542.61.3/.5

ЭКСТРАКЦИОННО-АТОМНО-АБСОРБЦИОННОЕ определение свинца в морской воде С ПОМОЩЬЮ АТОМИЗАТОРА ПЕЧЬ — ПЛАМЯ

А. Н. Захария, Л. Е. Долгушина, Н. Л. Оленович

Для создания научно-обоснованных критериев выбора района дампинга и изучения поведения материалов сбросов в морской среде необходимо располагать высоконадежными методами определения элементовтоксикантов, в частности свинца. Часто для этих целей используют непламенный вариант атомно-абсорбционного метода после предварительного концентрирования и отделения определяемых элементов от макрокомпонентов основы [1—4]. Известно, что наиболее существенное влияние на величину абсорбционности А атомов свинца оказывает присутствие в анализируемых растворах сульфат- и хлорид-ионов [5, 6]. Практический интерес в данном случае представляет атомизатор печь-пламя, обладающий рядом преимуществ перед не всегда доступными коммерческими вариантами печей типа HGA и CRA. К ним относят его универсальность, простоту изготовления и эксплуатации, низкие пределы обнаружения, а также меньшую подверженность результатов анализа отмеченным выше помехам.

Цель исследования состояла в обосновании условий и разработке высоконадежного и экспрессного экстракционно-атомно-абсорбционного метода определения свинца в морской воде, основанного на применении атомизатора печь-пламя. Работу проводили на спектрометре «Сатурн», источником первичного излучения служила спектральная лампа с полым катодом ЛСП-1, аналитическая линия свинца 283,3 нм, ширина щели монохроматора 0,2 мм, постоянная времени 0,5 с, поддиапазон измерений 1:1. Абсорбционность атомов свинца (интегральные значения Q_A) регистрировали на самопишущем приборе КСП-4 с дополнительным реохордом; время пробега шкалы 0,5 с. Конструкция атомизатора печь — пламя аналогична предложенной в работе [7]. Печи

(длина 50, диаметр 6 мм) изготавливали из графитовых стержней марки «ос. ч.» 7—4 с помощью соответствующих стальных фрез.

Анализируемые растворы (20—100 мкл) при помощи градуированной микропипетки вносили в углубление в средней части печи, высущивали ($T=110-120^\circ$, $\tau=30$ с), прокаливали ($T=400-450^\circ$, $\tau=20$ с) и атомизировали при конечной температуре печи 2300° в течение 7 с, что соответствует мощности ее нагрева 0,9 кВА. Температуру поверхности печи контролировали Pt—Ir-термопарой и эталонным оптическим пирометром Θ 0 Π -66 с точностью $\pm 25^\circ$.

Таблица 1 Основные параметры процесса получения аналитического концентрата, содержащего свинец (n=5, P=0.95)

Номер пробы	Объем воды, л	Введено Рь, мкг	Найдено Рb $(\overline{C}\pm\delta)$, мкг	<i>S</i> ,	K _H	K ₀₆
1	2	0,25	$0,23 \pm 0,03$	0,12	0,92	400
2	2	1,00	$0,93\pm0,14$	0,12	0,93	400
3	2	2,5	$2,37\pm0,29$	0,10	0,96	400
4	1	5,0	$4,83 \pm 0,60$	0,10	0,97	200
5	1	10,0	$9,65 \pm 1,32$	0,11	0,96	200
6	1	50,0	$47,1 \pm 4,7$	0,08	0,94	200
7	0,5	100,0	$96,7 \pm 7,2$	0,06	0,97	100

Свинец концентрировали из морской воды экстракцией в виде диэтилдитиокарбамината в четыреххлористом углероде и последующей реэкстракцией 2 М раствором НСІ. Применяли раствор соляной кислоты, приготовленный насыщением бидистиллированной воды газообразным НСІ. Раствор диэтилдитиокарбамината натрия (ДДК) очищали экстракцией хлороформом. К морской воде (объемом 1—2 л) в делительной воронке прибавляли 10—15 мл 1%-ного раствора ДДК и трижды экстрагировали ССІ₄ (по 30 мл на одну экстракцию) в течение 10— 15 мин. Экстракты объединяли в делительной воронке на 100 мл и свинец реэкстрагировали в течение 5—10 мин 2 М НСІ (объем 5 мл).

Принимая во внимание разнообразие и сложность состава морской воды, уточняли основные параметры процесса получения аналитических концентратов. К ним относятся коэффициент извлечения примеси $K_{\rm u}$, представляющий долю примеси, перешедшую в концентрат из исходного объема анализируемой пробы, и коэффициент обогащения $K_{\rm o6}$, представленный соотношением объема исходной пробы к конечному объему концентрата. Таким образом, $K_{\rm m} = C/C_{\rm o}$, где C — содержание примеси в концентрате, мг, а $C_{\rm o}$ — в исходной пробе; $K_{\rm o6} = W/w$, тде W — объем исходной пробы, w — объем концентрата, мл. Для установления этих параметров по методике, предложенной в работе [8], готовили синтетическую морскую воду, содержащую известные добавки свинца (от 0,5 до 100 мкг·л⁻¹). Значения $K_{\rm u}$ и $K_{\rm o6}$ в полученных концентратах находили эмиссионным спектральным методом после упаривания реэкстракта на угольном порошке [9]. Мы установили, что независимо от содержания свинца в морской воде величина $K_{\rm u}$ составляет 0,92—0,97 при $K_{\rm o6} = 100$ —400 (табл. 1).

Выбор оптимальных условий атомно-абсорбционных измерений при работе с атомизатором печь—пламя осуществляли, исходя из того, что эффективная толщина n_1 поглощающего слоя атомов элемента в любой точке пламени по его высоте h над поверхностью печи может быть аппроксимирована выражением [10]

$$n_1 = \frac{0.280 \cdot n_0}{\sqrt{DVh}},\tag{1}$$

где n_0 — скорость испарения атомов элемента с поверхности печи, см·с⁻¹; D — коэффициент диффузии, см²·с⁻¹; V_0 — скорость частиц газов пламени, см·с⁻¹, равная U/S, где U — общий расход газов пламени в единицу времени, см³·с⁻¹; S — суммарная площадь отверстий в насадке к газовой горелке Меккера, составляющая в данном случае 0,251 см².

Из рис. 1 и 2 следует, что при заданной мощности нагрева печи (0.9 kBA) оптимальная высота h спектрометрируемой зоны пламени

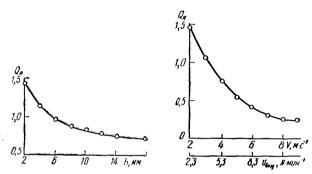


Рис. 1. Зависимость абсорбционности атомов $Q_{\mathbf{A}}$ свинца от высоты h просвечиваемой зоны пламени над поверхностью печи.

Рис. 2. Зависимость абсорбционности атомов $Q_{\mathbf{A}}$ свинца от скорости V частиц газов-пламени.

над ее поверхностью составляет 2,0—2,5 мм, а скорость частиц газов пламени V=2,0 м·с⁻¹, что соответствует расходу ацетилена 0,7 и воздуха — 2,3 л·мин⁻¹. Точность измерений $Q_{\rm A}$ при этом характеризуется величиной относительного стандартного отклонения S_r 0,06—0,14, а нижняя граница определяемых концентраций свинца составляет $2,0\cdot10^{-9}$ г, что соответствует 50 нг·л⁻¹.

Таблица 2 Результаты экстракционно-атомно-абсорбционного определения свинца в морской воде ($n=5,\ P=0.95$)

Номер пробы	Найдено атомно-абсорбционным методом $(\widetilde{C}\pm\delta)$, мкг.л $^{-1}$	Sr	Найдено эмиссионным методом $(\widetilde{C}^{\pm}\delta)$, мкг \cdot л $^{-1}$	Sr
14	$0,050\pm0,009$	0,14	$0,053 \pm 0,009$	0,14
39	$0,082 \pm 0,11$	0,11	0.087 ± 0.016	0,15
41	$0,127\pm0,014$	0,09	$0,132\pm0,021$	0,13
28	$0,287 \pm 0,036$	0,10	$0,\!279 \pm 0,\!045$	0,13
34	$0,594 \pm 0,052$	0,07	$0,605 \pm 0,083$	0,11
21	$1,61 \pm 0,24$	0,12	$1,55 \pm 0,21$	0,11
3	$0,983 \pm 0,146$	0,12	$0,972 \pm 0,121$	0,10
51	$1,96 \pm 0,17$	0,07	$2,04 \pm 0,30$	0,12
64	$2,39 \pm 0,18$	0,06	$2,29 \pm 0,26$	0,09
53	$2,61 \pm 0,29$	0,09	$2,57 \pm 0,38$	0,12

Проверку надежности результатов определения свинца в морской воде, взятой в различных районах Мирового океана, проверяли сопоставлением полученных данных с данными эмиссионного спектрального анализа (табл. 2). Отмечена хорошая сходимость результатов двух методов.

^{1.} Воробьева С. Е., Гончарова Н. Н. Атомно-абсорбционное определение свинца в различных объектах с использованием импульсных способов атомизации.— В кн.: Геохимические методы поисков. Методы анализа. Иркутск: Сиб. ин-т геохимии, 1977, с. 188—193.

2. *Рябинин А. И., Лазарева Е. А.* Экстракционно-атомно-абсорбционное определениемеди, серебра и кадмия в воде Черного моря.— Журн. аналит. химии, 1978, 33, № 2,

- 3. Орадовский С. Г. Анализ морской воды.— Там же, 1980, 35, № 4, с. 762—774.
 4. Holliday M. C., Hongton C., Ottaway J. M. Direct detection of lead in polluted seawater by carbon-furnace atomic absorption spectrometry.— Anal. chim. acta, 1980, 119, N 1, p. 67—74.
- 5. Iohanssen K., Frech W., Cedergren A. Investigation of reactions involved in flamless atomic absorption procedures. Pt. 4. A study of some factors influencing the determination of lead in sulfate matrices.—Ibid., 1977, 94, N 3, p. 245—249.

 Segar D. A., Gonzalez J. G. Evaluation of atomic absorption with heated grafite ato-

mizer for the direct determination of frace transition metals in sea water.— Ibid., 1972,

58, N 1, p. 7-14.

- 7. Универсальный штатив для использования различных типов электротермически нагреваемых атомизаторов в атомно-абсорбционном анализе / Б. В. Львов, Л. П. Кругликова, Д. А. Кацков, В. И. Манчиков.— Журн. прикл. спектроскопии, 1976, 24, № 2,
- 8. Брусевич С. В. Элементарный состав воды Мирового океана. -- Тр. ин-та океаноло-
- гии АН СССР, 1948, т. 2, с. 340. 9. Захария Н. Ф., Назарова Т. Ф., Щегольков С. В. Определение малых примесей в угольном и графитовом порошке. В кн.: Спектроскопия атомов и молекул. Киев: Наук. думка, 1969, с. 26-31.
- Распределение атомов в поглощающей зоне атомизатора капсула пламя / Л. П. Кругликова, Б. В. Львов, Д. А. Кацков, Л. К. Ползик. В кн.: Последние достижения в области атомно-абсорбционного анализа. Л.: ЛДНТП, 1976, с. 25—29.

государственный университет

Поступила. 26 апреля 1982 г.

УДК 541.128:515.379

КАТАЛИТИЧЕСКОЕ ВЛИЯНИЕ МЕДИ на хемилюминесценцию люминола С ПЕРКАПРИНОВОЙ КИСЛОТОЙ

Я. П. Скоробогатый, В. С. Зинчук, Н. А. Петровская, П. З. Загнийная

Исследованию хемилюминесцентной реакции люминола H₂L с пероксидом водорода в присутствии ионов меди посвящено ряд работ 11-4], но нет единого мнения относительно химизма каталитического действия меди в данной реакции. В связи с этим необходимо было исследовать влияние ионов меди при окислении люминола другими пероксидными соединениями, в частности высшими алифатическими перкислотами. Последние являются более сильными окислителями, чем пероксид водорода, в обычных условиях относительно устойчивы, а в водных растворах разлагаются с измеримой скоростью.

Экспериментально было показано, что максимальный каталитический эффект ионы меди проявляют в хемилюминесцентной реакции люминола с перкаприновой кислотой (ПКК). Данное сообщение посвящено изучению каталитического влияния меди на интенсивность хемилюминесценции в реакции люминол — ПКК — медь и скорость распада перкислоты в условиях возбуждения хемилюминесценции.

В работе применяли реактивы квалификации «ос. ч.», «х. ч.» и «ч. д. а.», которые очищали перекристаллизацией или перегонкой. Все растворы готовили на дважды перегнанной воде. Люминол — препарат фирмы «Хемапол» — очищали двукратной перекристаллизацией из $3\,\mathrm{M}$ раствора НСІ и растворяли в 0,1 М растворе NaOH. Перкаприновую кислоту синтезировали из каприновой кислоты и перекиси водорода в сернокислой среде по методике [5]. Содержание активного вещества в готовом препарате составляло 99—100 %.

Вследствие малой растворимости перкислоты в воде в работе использовали ее свежеприготовленные этанольные растворы. Интенсивность хемилюминесценции в относительных единицах измеряли на