DOI https://doi.org/10.15407/csc.2020.06.055
UDC 004.9

Applications

0.S, BULGAKOVA, PhD Ehg. Sciences, Associate Professor of the Information
Technologies department, V.O. Sukhomlynsky Mykolaiv National University,

Nikolska str., 24, Mykolaiv, 54000, Ukraine,
sashabulgakova2@gmail.com

V.V. ZOSIMOY, Doctor of Science, Head of the Department of Information
Technologies, V.O. Sukhomlynsky Mykolaiv National University,

Nikolska str., 24, Mykolaiv, 54000, UKraine,
zosimovvv@gmail.com

P.D, POPRAVKIN, Master's student, specialty 122 Computer Science,

V.O. Sukhomlynsky Mykolaiv National University,
Nikolska str., 24, Mykolaiv, 54000, Ukraine,
pavel.popravkin.dm@gmail.com

STORING JWT TOKEN IN LOCAL VARIABLES

The article discusses the problem of storing structured information over the Internet (JSON format) in local storage and pieces of
information transmitted to the browser from the site visited by the user (cookies), and a method is proposed for storing the JSON
web key in a local variable inside the closure (functions that refer to into independent variables). Based on user authorization, the
interaction of the JSON web key with the server is shown, and the solution to the main problems of authorization and storage of

the token JWT (JSON Web Token).

Keywords: JWT, token saving, local variable, Cookie, LocalStorage, CSRF attack, XSS attac.

Introduction

JWT (JSON Web Token) is a standard based on
the JSON format that allows you to create access
tokens, with the help of tokens that are usually au-
thenticated in client-server applications [1]. When
using JWT tokens, the question arises as to how to
safely store tokens in the frontend part of the pro-
gram. This issue must be resolved immediately after
the token is generated on the server and transferred
to the client part of the program. Because improper
storage of tokens often leads to loss of confidential
user data and hacking.

There are several options for saving the token,
they all have their methods of protection against
attacks but remain vulnerable to the basic CSRF

(Cross-Site Request Forgery — SRF) and XSS
(Cross-Site Scripting — XSS) attacks. The article
aims to show the possibility of using a local variable
as a repository of JWT tokens to reduce the risk of
system breakage due to CSRF and XSS attacks

Problems of Saving a JWT Token

The JSON web token is typically used to transmit
data for authentication in client-server applica-
tions. Tokens are created by the server, signed with
a secret key, and transmitted to the client, who then
uses the token to confirm his identity [1].

The JSON web token defines a special structure
of information that is sent over the network. This
structure is presented in two forms — serialized

ISSN 2706-8145, Control systems and computers, 2020, N2 6 55

0.S. Bulgakova, V.V. Zosimov, P.D. Popravkin

Server

1. POST /users/login with
username and password

D —————

3. Returns the JWT
to the Browser
-—

4. Sends the JWT on the
Authorization Header

_—

6. Sends response

to the client

2. Creates a JWT with a secret

5. Check JWT signature.
Get user information from the JWT

Fig. 1. Authentication mechanism

and deserialized. The first is used directly to trans-
mit data with requests and responses. On the other
hand, to read and write information in a token, you
need to deserialize it.

In the non-serialized form, the JSON web token
consists of a header and a payload, which are ordi-
nary JSON objects.

Example [1, 2]: {“alg”: “HS256”} {“sub”:
“user123”, “productlds”}

The JSON web token in serialized form is a
string of the following format: eyJhbGciOiJub251-
In0.eyJzdWIiOiJ 1c2VyMTIzliwicHJvZHVjdElk-
cyl6WzEsM119.

The serialized form is usually saved in cookies
or local browser storage (LocalStorage/Session
Storage). Each method has drawbacks that can be
eliminated by storing the token in a local variable
inside the circuit.

Local Storage/Session Storage is a dangerous
method because it is vulnerable to XSS attacks. A
big danger arises if you connect scripts from third-
party CDN (Content Delivery Network — CDN).
Also, a common problem is the lack of guarantee
that the connected scripts do not send data from
storage on the server-side. Moreover, if Local
Storage is available between tabs in the browser,
then Session Storage is only available in one tab,
and opening a site in a new tab will only trigger a
new round of authorization.

Cookie — simply storing an access token in a
cookie often threatens a CSRF attack. Moreover,
it does not protect against XSS attacks.

The new approach to saving the token allows
to protect yourself from the two most common
types of attacks and organize a better security al-
gorithm.

Variety of Attacks

XSS (cross-site scripting) — a type of attack on a
web system that implements malicious code on a
specific page of the site and interacts with a remote
attacker’s server when the user opens the page.

Local memory is vulnerable to XSS attacks be-
cause it is very easy to work with using JavaScript.
Therefore, an attacker can access the token and
use it to their advantage. However, although the
HttpOnly cookie is inaccessible with JavaScript,
this does not mean that the token using the cookie
is protected from XSS attacks [3].

If an attacker can run his JavaScript code in
this application, it means that the hacker can sim-
ply send a request from this server, and the token
will be included in this request automatically. This
scheme is simply not so convenient for the attac-
ker, as the attacker cannot read the contents of the
token. Also, with this scheme, hackers may find it
more profitable to attack the server using the vic-
tim’s computer rather than their own [4].

Cross-site request forgery (CSRF) is an attack
that forces an end-user to perform unwanted ac-
tions on a web application in which the application
is currently authenticated. An attacker fraudulently
forces a user of a web application to perform ac-

56 ISSN 2706-8145, CHcreMH KepyBaHHA Ta KOMI'toTepH, 2020, N° 6

Storing JWT Token in Local Variables

tions to select an attacker. If the victim is a regular
user, a successful CSRF attack can force the user
to make requests for status changes, such as money
transfers, email changes, etc. If the victim is an ad-
ministrator account, the CSRF can compromise
the entire web application.

An attack with forged cross-site requests consists
of two main parts. The first is to trick the victim
into opening a link or loading a page. This is usu-
ally done through social engineering and malicious
links. The second part is sending a processed, legi-
timate form of a request from the victim’s browser
to the website. The request is sent with the values
selected by the attacker, including any cookies that
the victim has linked to this website. This way, the
website knows that this victim can perform certain
actions on the website. Any request sent with these
HTTP credentials or cookies will be considered le-
gitimate, even if the victim submits the request at
the attacker’s command [5].

When a website is requested, the victim’s
browser checks to see, if it has any cookies related
to the source of that website that needs to be sent
with the HTTP request. If so, these cookies are
included in all requests sent to this website. The
cookie value usually contains authentication data,
and such cookies represent the user’s session. This
is done to provide the user with a convenient ope-
ration, so it does not require re-authentication
for each page visited. If the website approves the
session cookie and believes that the user’s ses-
sion is still valid, the attacker can use CSRF to
send requests as if they were sent by the victim.
The website cannot distinguish between requests
sent by an attacker and requests sent by a victim,
because requests are always sent from the victim’s
browser with their cookie. The CSRF attack sim-
ply takes advantage of the fact that the browser
automatically sends a cookie to the website with
each request.

Forgery of cross-site requests will be effective only
if the victim is authenticated. This means that the
victim must log in for a successful attack. Because
CSREF attacks are used to bypass the authentication
process, there may be some elements that are not
affected by these attacks, or even these elements are
not protected from them. For example, a site ac-

cepts requests to change your email address:
POST/email / change HTTP / 1.1

Host: site.com

Content-Type: application/x-www-form-urlen-
coded

Content-Length: 50

Cookie: session = abcdefghijklmnopqrstu

email = myemail.example.com

In this situation, a POST request is sent to
https://site.com/email/change. In this case, ses-
sion cookies will be automatically included in this
request.

You can protect against this threat by using the
SameSite attribute in the response header and anti-
CSRF tokens. But this process also has some limi-
tations [6].

Token Storage in a Local Variable

Advantages over storing the token in LocalStorage
and cookies. Storing a token in a local variable in-
side a circuit has data protection advantages over
storing a token in LocalStorage and a cookie.
First, the system becomes completely protected
from typical CSRF and XSS attacks. A token in
memory cannot be received during an XSS attack
because the token is not stored in LocalStorage
and SessionStorage, there is also protection
against CSRF attacks. After all, each token can-
not be sent automatically with cookies because the
token is stored in memory and its sending occurs
as a header in each request to the server.

As soon as the page opens, a new session begins,
after which you can get a token and save it in a local
variable inside the circuit.

In an XSS attack, an attacker will also not be
able to retrieve the token from an open browser
window through LocalStorage, because we do not
store this information there. This also applies to
CSREF attacks.

In the future, each request must add a token di-
rectly to the header and avoid other repositories in

ISSN 2706-8145, Control systems and computers, 2020, N2 6 57

0.S. Bulgakova, V.V. Zosimov, P.D. Popravkin

App

Auth server

. : - Generate JWT token
[Login request] /login ™| &refreshtoken
I I
. . @ Db
[Store jwt_token in memory]
1 Set-Cookie" refresh_token 8
I
. jwt_token
@ i jwt_token_expriry
I
Start countdown to silent
refresh based on
jwi_token_expiry

Fig. 2. User login scheme via update token

its path that have unprotected areas in the security
system.

Problems of Providing Access
to the User and Their Solution

There are 2 main issues that app users will face
sooner:

1. Due to the short expiration time of the
JWT, the user will log out every 15 minutes.

2. If the user closes this application and re-
opens it, he will need to log in again. Their session
is not saved because the system does not store the
JWT token on the client-side.

To solve the problem, most JWT providers pro-
vide an update token (). The update token has 2
properties:

1. It can be used to call an API (for example
an update token) to obtain a new JWT token before
the previous JWT expires.

2. It can be safely stored between sessions on
the client.

This token is issued as part of the authentication
process along with the JWT. The authentication

58

server must store this update token and associate it
with a specific user in its database so that the user
can process the updated JWT logic.

On the client, before the expiration of the previ-
ous JWT token, you need to connect the applica-
tion to create the endpoint update token and get a
new JWT.

The update token is sent by the client authen-
tication server as an HttpOnly cookie and is auto-
matically sent by the browser with the update to-
ken when the API is called. Because Javascript on
the client-side cannot read or steal the HttpOnly
cookie, this solution is better for mitigating the ef-
fects of XSS than saving it as a regular cookie or in
a local repository.

This is safe from CSRF attacks because, even if
a form submission attack can trigger an update to-
ken, an attacker cannot obtain the new value of the
JWT token that is returned.

Note that although this method is not resistant
to severe XSS attacks, it is recommended that you
use the HttpOnly cookie to store session-related
information in combination with conventional
XSS mitigation methods. However, storing this ses-

ISSN 2706-8145, CucreMHn KepyBaHHA Ta KoMI'totepH, 2020, N° 6

Storing JWT Token in Local Variables

App

4 h

Silent refresh workflow

f—\
Call refresh_token
—

e

Store the new taken
and restart countdown
to next refresh

—
new_jwt_token

\)

Success: @

Set-Cookie': new_refresh_token

Auth server

®

@ Cookie: refresh_token

[refresh_token

Get refresh_token
from cookie
Db
Verify refresh_token -
against database

¥

Generate JWT and
refresh token

new_jwt_token_expriry

Fig. 3. Silent update scheme

sion indirectly through the update token prevents
direct CSRF — a vulnerability that could occur
with the JWT token.

The new “login” process will now look like this:
Nothing special changes, except that the update
token is sent with the JWT, Fig. 2.

The sequence of user login through the update
token will be carried out in 5 steps:

1. The user logs in using an API call.

2. The server generates a JWT token and an
update token

3. The server sets an HttpOnly cookie with
an update token. The JWT and the JWT expiration
date are returned to the client as a JSON payload.

4. JWT is stored in memory.

5. The countdown to a future silent update is
triggered based on the JWT expiration date.

The update now looks like this: (Fig. 3):

1. The update token is the endpoint of the
call.

2. The server reads the httpOnly cookie, and
if a valid update token is found, the server returns

anew JWT and its expiration date to the client and
sets a new update token cookie via the Set-Cookie
header.

Suppose a user has logged out of the current ses-
sion and closed the browser tab. Now, when the
user logs into the application again, the system
looks like this (Fig. 4):

1. If there is no JWT in memory, the silent
update workflow starts.

2. Ifthe update token is still valid (or has not
been revoked), a new JWT is sent.

This creates an opportunity to maintain the au-
thority of the client inadvertently at the end of the
access token.

Conclusion

The article proposed an option to save the JWT
token, which allows you to protect yourself from
typical attacks on the server using the access to-
ken. The token cannot be obtained during XSS and
CSREF attacks, as mentioned in the article, unlike

ISSN 2706-8145, Control systems and computers, 2020, N2 6 59

0.S. Bulgakova, V.V. Zosimov, P.D. Popravkin

[Mew session]

Try silent refresh

Failure

/ /v{ Store jwt_token in memory

[Redirect User to Login Suscess

Suoc:ess

Start countdown to silent
refresh based on
jwi_token_expiry

Fig. 4. Workflow diagram when the user has closed the tab

when the token is stored in LocalStorage or cookie,
because it is stored in memory, and its absence in
local storage gives an advantage in data storage be-
cause confidential keys are no longer public. Each
time an attacker tries to obtain confidential data
through an access token, he will spend more time
searching for and retrieving the token than other
methods of storing the access token, so this method
can be considered better than storing the token in
LocalStorage or a cookie.

Always remember that JWT is better not to use
unnecessarily, it has many patterns to consider.
An error can result in the loss of sensitive data. It
should also be noted that storing a JWT token in a
local variable does not fully guarantee the vulner-
ability of this system to attacks, with this method
you can exclude several variants of attacks from the
list, and complicate the hacking of our system.

Data security should be a top priority when cre-
ating systems with confidential information.

60 ISSN 2706-8145, CHCcTeMH KepyBaHHs Ta KOMITIOTepH, 2020, N° 6

Storing JWT Token in Local Variables

REFERENCES

1. COURSE on Udacity “Scalable Microservices with Kubernetes by Google”. [online] Available at:
<https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615> [Accessed 11 Nov. 2020].

2. JSON Web Tokens. [online] Available at: <jwt.io> [Accessed 11 Nov. 2020].

3. Cross Site Scripting (XSS) Software Attack. [online] Available at: <https:/ /owasp.org/www-community/attacks/
xss/> [Accessed 11 Nov. 2020].

4. Cross Site Scripting Prevention Cheat Sheet. [online] Available at: <https://cheatsheetseries.owasp.org/cheat-
sheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html> [Accessed 11 Nov. 2020].

5. Password stealing from HTTPS login page and CSRF protection bypass with reflected XSS. [online] Available at:
<https://medium.com/@MichaelKoczwara/password-stealing-from-https-login-page-and-csrf-bypass-with-
reflected-xss-76f56ebc4516> [Accessed 11 Nov. 2020].

6. Cross-Site Request Forgery Prevention Cheat Sheet. [online] Available at: <https://cheatsheetseries.owasp.org/
cheatsheets/Cross-Site_ Request Forgery Prevention_Cheat_Sheet.html> [Accessed 11 Nov. 2020].

Received 27.10.2020

JIITEPATYPA

1. COURSE on Udacity “Scalable Microservices with Kubernetes by Google”. URL: https://www.udacity.com/
course/scalable-microservices-with-kubernetes--ud615

2. JSON Web Tokens. URL: jwt.io
3. Cross Site Scripting (XSS) Software Attack. URL: https://owasp.org/www-community/ attacks/xss/

4. Cross Site Scripting Prevention Cheat Sheet. URL: https://cheatsheetseries.owasp. org/cheatsheets/Cross_Site
Scripting_ Prevention_Cheat_Sheet.html

5. Password stealing from HTTPS login page and CSRF protection bypass with reflected XSS. URL: https://me-
dium.com/@MichaelKoczwara/password-stealing-from-https-login-page-and-csrf-bypass-with-reflected-xss-
76f56ebc4516

6. Cross-Site Request Forgery Prevention Cheat Sheet. URL https://cheatsheetseries. owasp.org/cheatsheets/
Cross-Site_ Request_Forgery Prevention Cheat Sheet.html

Hapniiinuia 27.10.2020

ISSN 2706-8145, Control systems and computers, 2020, N° 6 61

0.S. Bulgakova, V.V. Zosimov, P.D. Popravkin

0.C. byseakosa, KaHOIUIAT TEXHIYHUX HAyK, JOLEHT, MUKOIaiBChKUIA
HalioHaabHU# yHiBepcuteT iMeHi B.O. CyXxoMIMHCBHKOTO,

54001, m. Muxkodnais, Bys. Hikoabcbka, 24, YkpaiHa,
sashabulgakova2@gmail.com

B.B. 3ocimos, TOKTOp. TEXHIYHUX HayK, TOLIEHT, 3aBidyBay Kadeapu,
MukonaiBcbKuii HallioHaabHMiA yHiBepcuTteT iMeHi B.O. CyXOMIMHCBHKOTO,
54001, m. Muxkomnais, Bys. Hikonbscbka, 24, YkpaiHa,
zosimovvv@gmail.com

I1.J1. Ilonpaskin, CTyneHT MaricTpatypu crietianbHocTi 122 KoM 1oTepHi HayKu,
MukonaiBcbKUii HallioHanbHUI YHiBepcuTeT iMeHi B.O. CyxoMIMHCBKOTO,
54001, m. Muxkomnais, ByJ. Hikonbcbka, 24, YkpaiHa,
pavel.popravkin.dm@gmail.com

3BEPITAHHS JWT TOKEHA Y JIOKAJIbHIN 3MIHHIN

Beryn. [Ipu poGorti 3 ayreHTHdiKalli€elo B iHbOpMaLiifHUX cuUcTeMax, 3aCHOBAaHMWX Ha BUKOPUCTAaHHI CepBepiB
Ta 6a3 manux (KiieHT-cepBepHUX), BUHUKAE MpoOjeMa 30epiraHHs CTpyKTypOBaHOI iHdopMallii yepe3 Mepexky
IaTepuer (popmar JSON) y kiieHTCBKil (ppoHTeHO-4yacTuHi) mporpami. Cepsep dacto 3a3Hae CSRF (Cross-Site
Request Forgery) Ta XSS (Cross-Site Scripting) atak uepe3 HenpaBuJibHe 30epiranHs JSON BeO-kioua. € aexijibka
BapiaHTiB 30epeXeHHsI CTPYKTYpOBaHOi1 iH(opMallii, BCi BOHM MalOTh CBOI METOAM 3aXMCTY Bill aTak, ajie BCEe OIHO
3aJIMIIAI0THCS Bpa3iuBuMu Tiepen 6azoBumu CSRF ta XSS atakamu.

Mera crarTi — Tmokazatu TpobJjieMy 30epiraHHsi CTPyKTypoBaHOI iH(opmalii yepe3 mepexy I[HTepHer
(dbopmar JSON) y noxkanbHoMy cxoBullli (LocalStorage) Ta dparmeHTiB iHdOpMaIlii, 1110 TIepeaatoThCsl y Opay3ep
i3 caiiTy, sIKuii BiaBimaB KopucTyBad (¢aitiax cookie), Ta 3ampomoHyBaTh MeTond 30epexeHHs JSON BeO-Kioua
y JIOKaJbHill 3MiHHIi BcepeauHi 3amMuKaHHS ((YHKIII, 110 MOCHJIAIOTHCS Ha He3aJeXHi 3MiHHi); Ha OCHOBI
aBTOpM3allii KOpUCTyBaya MokasaTu B3aeMoito JSON BeO-KItoua i3 cepBepoM, Ta MOAO0JaHHS OCHOBHUX MPOOIeM
aBTopu3allii Ta 306epexeHHst TokeHy (JSON Web Token — JWT).

Metoau. CyucTeMHMIA ITiIXia, aHai3.

PesyabraTu. 3niiicHeHO TOpiBHSIHHS BapiaHTiB 30epexxeHHs JSON BeO-Kitoua. 3icTaBieHO MPUKIIaAN HAsIBHOCTI
ToKeHa B 30Hi pu3uky CSRF ta XSS arak. OnucaHo aaroputMm hOpMyBaHHS CUCTeMU 0€3MeKU 3 BUKOPUCTAaHHSIM
JSON Be6-KiI04a, 30€pekeHOro B JIOKaIbHIM 3MiHHil BcepearHi 3aMUKaHHSI.

BucHoBku. Pe3ynbraTty nociiikeHHSI TOKa3yloTh, 1110 30€peXXeHHs CTPYKTYPOBaHOI iH(DOopMallil Yepe3 Mepexy
[HTEepHeT y JIOKaIbHIiil 3MiHHIN BcepennHi 3aMUKaHHS ((YyHKIIII, 110 TTOCUJIAIOThCSl HA He3allexkHi 3MiHHi) Mae
rnepeBary y 3aXucTi JaHUX Ha BiIMiHY Bijl 30epe>KeHHsI TOKeHa B JIOKaTbHOMY cXoBullli (LocalStorage) Ta hparMeHTIB
iH(opMarlii, 110 IepenalThesa B Opay3ep i3 cailTy, IKHMii BiaBimaB KopucTyBad. I[lo-Tiepire, cucrema cTa€ BIIOBHI
3axuieHolo Bim TumoBux CSRF ta XSS arak. JSON BeO-KiI104 y T1aM’sITi He MOXKHa OTpUMaTH mix yac XSS araku,
TOMY 1110 BiH He 30epira€rbcs y JIOKaJbHOMY CXOBMII; TaKOX HasiBHA 3axuilleHicTh Bim CSRF aTak, OCKiJIbKU
KoxeH JSON BeO-KiI104 He MOXe OyTH BigicIaHMiT aBTOMAaTMYHO i3 (pparMeHTamMu iH(oOpMallii, 1110 TiepeIalThCst
B Opay3ep i3 caiiTy, SK1il BiIBigaB KOPUCTYBad, 00 TOKEH 30epira€ThCsl B MaM’sITi, a 10T0 BiICHJIaHHS BiTOyBa€ThCS
SIK 3aTOJIOBOK y KOXXHOMY 3aruTi 10 cepBepa. Cuctema 3axucty rnpu 30epexkeHHi JSON BeO-KioUa y JOKaJIbHil
3MiHHIl Ma€ THYYKIIITy apXiTeKTypy 3aBASIKM ITOKpaIlleHOMY KOHTPOJIIO Hax cyTHicTIo JSON BeO-KiToua.

Karouogi caosa: JW'T, 36epescennss mokena, rokanvha sminna, Cookie, LocalStorage, CSRF amaka, XSS amaka.

62 ISSN 2706-8145, CucreMHn KepyBaHHA Ta KoMI'totepH, 2020, N° 6

Storing JWT Token in Local Variables

A.C. byarakosa, KaHIMIAT TEXHUYECKUX HAyK, TOLICHT,

HuxkosmaeBckuii HalMOHAIBHBINA yHUBepcuTeT MeHr B.A. CyXOMIIMHCKOTO,
54000, Hukonaes, yi1. Hukonbckas, 24, YkpanHa,
sashabulgakova2@gmail.com

B.B. 30cuMOB, JOKTOp TEXHUYECKUX HAYK, JOLIEHT, 3aBeAyIOIINii Kadeapsl MHPOPMALMOHHBIX TEXHOJIOTHUI,
HukonaeBckuii HaMOHAIBHBINA yHUBepcuTeT nMeH B.A. CyxoOMJIMHCKOTO,

54000, Hukonaes, yi1. Hukonbckas, 24, YkpauHa,

zosimovvv@gmail.com

I1.J1. ITonnpaBKKUH, MarucTpaHT,

HuxkonaeBckuii HalMOHAIbHBIN YHUBEpcUTET UMeHU B.A. CyXxoMiInHCKOTO,
54000, Hukonaes, yia. Hukonbckas, 24, YkpauHa,
pavel.popravkin.dm@gmail.com

XPAHEHUE JWT TOKEHA B JIOKAJIbHOW [TIEPEMEHHOM

Benenne. [1pu pabote ¢ ayreHTHdMKauKMeil B MHOOPMALIMOHHBIX CUCTEMaX, OCHOBAaHHBIX Ha MCIIOJIb30BAaHUM CEpBe-
poB 1 0a3 naHHbIX (KineHT-cepBepHbIX) BO3ZHMKAET MpodeMa XpaHeHUsT CTPYKTYPUPOBAaHHON MH(pOPMALIMK Yepe3 CeTh
Hurepnet (bopmat JSON) B kueHTcko# (bpoHTeHa-yacTn) mporpamme. Cepsep yacto noasepraercss CSRF (Cross-Site
Request Forgery) nu XSS (Cross-Site Scripting) aTakam u3-3a HenpaBuibHOro xpaHeHus JSON BeO kitoua. CylilecTByeT He-
CKOJIBKO BapMaHTOB COXPaHEHUSI CTPYKTYpUPOBAHHOI MH(MOPMALIMK, BCE OHM UMEIOT CBOM METOJIBI 3aIlMTHI OT aTak HO
BCE PaBHO OCTAIOTCA YI3BUMBIMU miepen 6a30BbIMU CSRF n XSS atakamu.

Ileab crarbm — MokaszaTh MPoOOJIEeMY XpaHEHMSI CTPYKTypUpPOBaHHOI MHGbopMauuu dyepe3 cetb MIHTepHeT (hopmar
JSON) B noKanbHOM XpaHwiuile U hparmeHToB MHbopmauuu (LocalStorage), nepenaBaeMbIX B Opay3ep ¢ caiita, KOTOpPbIit
MOCeTUJI TToJIb30BaTeb ((haityiax cookie) U TIPeMIOKUTh MeTo coxpaHeHust JSON BeO Kiloua B JIOKaJIbHOM TepeMeHHO
BHYTPU 3aMblKaHUs ((YHKIINM, CChIIAIONINECS Ha He3aBUCHUMBbIe TIepeMEeHHbIe; Ha OCHOBE aBTOPU3AllMK TOJb30BaTeIsT
Iokasath B3auMozeiicteue JSON BeO Kiloua ¢ cepBepOM M PellieHNe OCHOBHBIX TTPOOJIeM aBTOPU3allui U COXpaHEHUS
tokeHa (JSON Web Token — JWT).

MeTtoapl. CUCTEMHBII TTOAXO, aHAIU3.

Pesyabrarnl. [IpoBeneHo cpaBHeHMe BapuaHTOB XpaHeHUs1 JSON BeO kitoua u onacHocTbh CSRF u XSS aTak Ha mpen-
cTaBjieHHbIe MeTonbl. OnucaH aropuT™ (GOPMUPOBAHUS CUCTEMbI O€30MACHOCTH C UCIOIb30BaHUEM JSON Beb Kitoua,
COXpaHEHHOM B JIOKAJIbHOI TIePeMEHHOI BHYTPY 3aMbIKaHUSI.

BoiBoapl. Pe3ynbraThl MccaeI0BaHMS TTOKA3bIBAIOT, YTO coxpaHeHue JSON BeO Kiltoua B JIOKaIbHOM TIepeMEHHOM BHY-
TpU 3aMbIKaHUs ((PYHKIIMH, CChLTAIOIIMECS Ha He3aBUCUMBIE TIEpEMEHHBIC) UMEET 00JIee BEICOKYIO CTETICHb 3allIUThI TaH-
HBIX B OTVIMYMU OT XxpaHeHus JSON Beb kitoua B JoKaibHOM xpaHunuile (LocalStorage) u (pparmeHTOB MHGpOpMAIIUH,
rnepeaaBaeMbIX B Opay3ep ¢ caiiTa, KOTOpbIii MOCETH Moib3oBaTeb ((aiinax cookie) . CructeMa CTaHOBUTCS MOJTHOCThIO
3alIMIIEHHOM OoT TUMMYHBIX CSRF 1 XSS atak. JSON BeO K04 B MaMsITU HE MOXET ObITh MoJydeH npu XSS arake, no-
TOMY UTO OH HE COXPaHSIeTCs B JIOKAJIbHOM XpaHWIUIIE, TAKXKe CYIIeCTBYeT 3aluieHHocTh oT CSRF atak, TIOTOMY YTO
Kaxnpii JSON BeO K104 He MOXKET ObITh OTITPABJICH aBTOMATUYECKM ¢ (hparMeHTaMu MH(pOpMaInu, TiepeaBacMbIMK B
Opay3ep ¢ caliTa KOTOPBIi TOCETHII ITOJIb30BaTe b, IOTOMY YTO TOKEH COXpaHSIETCS B MaMSTH U OTIIpaBKa IMTPOMCXOINUT KaK
3aroJIOBOK B KaXKIOM 3ampoce K cepBepy. Cructema 3aiuThl pu coxpaHeHuu JSON Beb Kitoua B TOKAJIbHOM MepeMeHHOI
nmeeT 0oJiee TMOKYIO apXUTEKTYpy OJiaroaapst yJIydllieHUI0 KOHTPOJIsI Haj cylliHOCThio JSON Beb Kittova.

Karoueevie caosa: JWT, coxpanenue mokena, nokanvras nepemennas, Cookie, LocalStorage, CSRF amaxa, XSS amaka.

ISSN 2706-8145, Control systems and computers, 2020, N2 6 63

