
UDC 517 . 9

INSTABILITY OF SOLUTIONS FOR CERTAIN NONLINEAR VECTOR
DIFFERENTIAL EQUATIONS OF FOURTH ORDER

НЕСТIЙКIСТЬ РОЗВ’ЯЗКIВ ДЕЯКИХ НЕЛIНIЙНИХ
ВЕКТОРНИХ РIВНЯНЬ ЧЕТВЕРТОГО ПОРЯДКУ

C. Tunç

Yüzüncü Yil Univ.

65080, Van – Turkey

e-mail: cemtunc@yahoo.com

The main purpose of this paper is to give a result with an explanatory example which deals directly with
the instability of the trivial solution of a certain nonlinear vector differential equation of fourth order. The
result which will be established here improves and includes a well-known instability result in the literature
established for a scalar nonlinear differential equation of fourth order.

Отримано результат iз пояснювальним прикладом про нестiйкiсть тривiального розв’язку де-
якого нелiнiйного векторного диференцiального рiвняння четвертого порядку, що покращує
вiдомий результат про нестiйкiсть для скалярного диференцiального рiвняння четвертого по-
рядку.

1. Introduction. As is well-known, the area of differential equations is an old but durable subject

that remains alive and useful to a wide variety of engineers, scientists, and mathematicians.

The principles of differential equations are largely about the qualitative theory of ordinary

differential equations. Qualitative theory refers to the study of the behavior of solutions, for

example the investigation of stability, instability, boundedness of solutions and etc., without

determining explicit formulas for the solutions. It originated with Poincare at the beginning of

the twentieth century and has been the most important theme of ordinary differential equati-

ons in that century. During this period, very little attention is paid to techniques for finding

analytic formulas for solutions. That is to say, there are actually very few equations (beyond

linear equations with constant-coefficient and even there are difficulties if the order of the

equation or system is high) for which we can do this. Therefore, it is very important to interpret

qualitative behavior of solutions when there is no analytical expression for the solutions of any

differential equation under investigation. So far, in the relevant literature, some methods have

been improved to obtain information about qualitative behaviors of solutions of differential

equations without solving them. Among them the Lyapunov’s [1] second (or direct) method is

most well-known. Namely, Lyapunov’s second (or direct) method is one of the basic tools for

investigating the qualitative behavior of solutions; stability, instability, boundedness, existence

of periodic solutions and etc. of nonlinear differential equations of higher order. During the

past fifty year, by using Lyapunov’s [1] second (or direct) method, throughout hundreds of the

papers, qualitative behaviors of solutions, stability, instability, boundedness, existence of peri-

odic solutions and etc. for various ordinary scalar or vector nonlinear differential equations of

second-, third-, fourth-, fifth-, sixth-, seventh- and eighth-order have been investigated extensi-

vely in the relevant literature. However, we will not discuss details of these works here. Now,
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we consider the constant-coefficient fourth order scalar differential equation

x(4) + a1
...
x + a2ẍ+ a3ẋ+ a4x = 0. (1)

As we know from the qualitative theory of ordinary differential equations that the trivial soluti-

on of the equation (1) is unstable if the associated (auxiliary) equation

ψ(r) = r4 + a1r
3 + a2r

2 + a3r + a4 = 0 (2)

has at the least one root with a positive real part. Naturally, the existence of such a root depends

on (though not always on all of) the coefficients a1, a2, a3 and a4 of equation (2). The correspon-

ding auxiliary equation (2) of equation (1) has no purely imaginary roots r = iλ (λ 6= 0) if

X1 ≡ λ4 − a2λ
2 + a4 6= 0

or if

X2 ≡ a1λ
2 − a3 6= 0.

Note that X1 may be rearranged in the form

X1 =

(

λ2 −
1

2
a2

)2

+ a4 −
1

2
a2

2

so that X1 6= 0 holds if, for example, a4 >
1

4
a2

2. It is also easy to see that X2 6= 0 will hold if

a1a3 < 0, a4 6= 0,

where the condition on a4 here being necessary in order to ensure that λ 6= 0. It should also be

noted that it was shown in Ezeilo [2] that the existence of the relation a4 >
1

4
a2

2 between the

coefficients a2 and a4 of the equation (1) is a sufficient condition that guarantees that the trivial

solution x = 0 of the equation (1) is unstable. The above preamble is merely intended to give

a background to the assumptions which play a dominant role in our treatment here and to give

some indication of how these assumptions stand with respect to the Routh – Hurwitz criteria.

Now, the objective of this paper is to study the instability of the trivial solution X = 0 of

nonlinear vector differential equations of the form

X(4) + Ψ(Ẍ)
...
X +G

(

X, Ẋ, Ẍ,
...
X

)

Ẍ + Θ(Ẋ) + F (X) = 0, (3)

in which X ∈ R
n; Ψ and G are continuous (n × n)-symmetric matrix-valued functions for the

variables indicated explicitly; Θ : R
n → R

n, F : R
n → R

n and Θ(0) = F (0) = 0, and it is

also supposed that the functions Θ and F are continuous for allX, Ẋ ∈ R
n, respectively. In this

case, the equation (3) can be rewritten as

Ẋ = Y, Ẏ = Z, Ż = W,
(4)

Ẇ = −Ψ(Z)W −G(X,Y,Z,W )Z − Θ(Y ) − F (X),
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which was obtained by taking Ẋ = Y, Ẍ = Z,
...
X = W in the equation (3). Now, let J(Ψ(Z)Z|Z),

JΘ(Y ) and JF (X), respectively, denote the linear operators from the matrix Ψ(Z) and vectors

Θ(Y ) and F (X) to the matrices

J(Ψ(Z)Z|Z) =

(

∂

∂zj

n
∑

k=1

ψikzk

)

= Ψ(Z) +

(

n
∑

k=1

∂ψik

∂zj
zk

)

,

JΘ(Y ) =

(

∂θi

∂yj

)

, JF (X) =

(

∂fi

∂xj

)

, i, j = 1, 2, . . . , n,

where (x1, x2, . . . , xn), (y1, y2, . . . , yn), (z1, z2, . . . , zn), (ψik), (θ1, θ2, . . . , θn) and (f1, f2, . . . , fn)
are components ofX, Y, Z,Ψ,Θ and F, respectively. Furthermore, it is also assumed throughout

this paper that F (X) and Θ(Ẋ) are gradient vector fields and the matrices JF (X), JΘ(Y ) and

J(Ψ(Z)Z|Z) exist and are symmetric and continuous.

It is also worth mentioning that although a substantial amount of results have been publi-

shed with regard to stability of certain nonlinear differential equations of fourth order, comparati-

vely only a few results have been published which deal directly with the instability of solutions

of certain differential equations of fourth order. In particular, one can refer to the book of

Reissig et al. [3] as a survey for some papers published on the stability of solutions of certain

differential equations of fourth order and the papers of Ezeilo [2, 4, 5], Lu and Liao [6], Sadek

[7], Skrapek [8], Tiryaki [9], Tunç [10 – 12], C. Tunç and E. Tunç [13] and references cited there

for some investigations performed on the instability of solutions of certain fourth order linear

and nonlinear differential equations. Now, to the best of our knowledge, so far in the relevant

literature, the papers performed on the instability of solutions scalar differential equations of

fourth order can be summarized as follows. First, in 1978, Ezeilo [2] has carried out a work on

the instability of the trivial solution of the fourth-order scalar differential equation

x(4) + a1
...
x + a2ẍ+ a3ẋ+ f(x) = 0.

In 1979, Ezeilo [4] also extended his aforementioned instability result in [2] to a much more

general scalar differential equation given by

x(4) + a1
...
x + h(x, ẋ, ẍ,

...
x) ẍ+ g(x) ẋ+ f(x) = 0.

Later, in 1988, Tiryaki [9] interested in a fourth-order nonlinear scalar differential equation of

the form

x(4) + ψ(ẍ)
...
x + φ(ẋ)ẍ+ θ(ẋ) + f(x) = 0. (5)

Under specified conditions imposed on the functions ψ, φ, θ and f, he established sufficient

conditions that guarantee the instability of the trivial solution of the equation (5). After that,

in 1980, Skrapek [8] considered fourth-order scalar differential equations of the form

x(4) + f(x, ẋ, ẍ,
...
x) = 0.

He studied hypotheses on the function f for which the zero solution of the above fourth-order

differential equation is unstable. Similarly, in 1993 by help of Lyapunov’s second method, Lu
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and Liao [6] gave some sufficient conditions for the instability of solutions of a general fourth-

order linear scalar differential equation with variable coefficient, at least one of the characteri-

stic roots of which has positive real part. Finally, in 2000, Ezeilo [5] discussed a similar problem

for the scalar differential equations

x(4) + ψ(ẍ)
...
x + g(x, ẋ, ẍ,

...
x) ẍ+ θ(ẋ) + f(x) = 0, (6)

x(4) + a1
...
x + g(x, ẋ, ẍ,

...
x) ẍ+ h(x)ẋ+ f(x, ẋ, ẍ,

...
x) = 0, (7)

and

x(4) + p(
...
x, ẍ) + q(x, ẋ, ẍ,

...
x) ẍ+ a3ẋ+ a4x = 0, (8)

respectively, where a1, a3 and a4 are constants.

Now, with respect to our observations in the literature, so far instability of solutions of nonli-

near vector differential equations of the form (3) was not investigated in the relevant literature,

except for its scalar version, differential equation (6). It should also be clarified that nearly

throughout all of the papers just stated above it was taken into consideration Krasovskii’s cri-

terion (see Krasovskii [14]) as a fundamental criterion through the proofs, and the Lyapunov’s

[1] second (or direct) method has been used as a basic tool to prove the results established there.

In this paper, in view of Krasovskii’s criterion [14], we use the same method to verify our main

result. The motivation for the present paper has been inspired basically by the paper of Ezeilo

[5] and that just mentioned above. It is worth mentioning that all the papers mentioned above

do not contain an example on the topic. However, our main result includes an explanatory

example.

Throughout this paper, the symbol 〈X,Y 〉 is used to denote the usual scalar product in R
n

for given any X, Y in R
n, that is, 〈X,Y 〉 =

n
∑

i=1
xiyi, thus ‖X‖2 = 〈X,X〉. It is also well-known

that a real symmetric matrix A = (aij), i, j = 1, 2, . . . , n, is said to be positive definite if and

only if the quadratic form XT AX is positive definite, where X ∈ R
n and XT denotes the

transpose of X (see Bellman [15]).

2. Main result. Actually, we prove the following theorem.

Theorem. Assume that the functionG and the functions Ψ,Θ and F in equation (3), respecti-

vely, are continuous and continuously differentiable, and there exist constants a1 and a2 such that

the following conditions are satisfied:

Ψ, G, JΘ and JF are symmetric such that
∂ψij

∂zk
=
∂ψik

∂zj
, i, j, k = 1, 2, . . . , n;

F (X) 6= 0 if X 6= 0, λi(Ψ(Z)) ≥ a1 > 0, λi(G(X,Y,Z,W )) ≤ a2

and

λi(JF (X)) >
1

4
a2

2, i = 1, 2, . . . , n,
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for allX, Y, Z,W ∈ R
n,where λi(JF (X)) and λi(G(X,Y,Z,W )), i = 1, 2 . . . , n, are eigenvalues

of G(X,Y,Z,W ) and JF (X).
Then the trivial solution X = 0 of equation (3) is unstable.

Remark 1. In order to prove the above theorem, it will suffice, see Krasovskii [14], to show

that there exists a continuous Lyapunov function V = V (X,Y,Z,W ) which has the following

Krasovskii properties:

(K1) In every neighborhood of (0, 0, 0, 0) there exists a point (ξ, η, ζ, µ) such that

V (ξ, η, ζ, µ) > 0;

(K2) the time derivative V̇ =
d

dt
V (X,Y,Z,W ) along solution paths of the system (4) is

positive semi-definite;

(K3) the only solution (X,Y,Z,W ) = (X(t), Y (t), Z(t),W (t)) of the system (4) which sati-

sfies V̇ = 0 (t ≥ 0) is the trivial solution (0, 0, 0, 0).

Remark 2. It should be clarified that there is no restriction on the eigenvalues of the matrix

JΘ(Y ) obtained from Θ(Y ).

Remark 3. Our result includes and improves the result of Ezeilo [5], which was established

on the instability of zero solution of equation (6).

Proof. For the proof of the theorem, we define a Lyapunov function V = V (X,Y,Z,W )
given by

V = a2〈Y,Z〉 + 〈W,Z〉 + 〈F (X), Y 〉 +

1
∫

0

〈Θ(σ Y ), Y 〉 dσ +

1
∫

0

〈Ψ(σ Z)Z,Z〉 dσ. (9)

Observe that V (0, 0, 0, 0) = 0. Indeed, in view of the assumptions of the theorem, we also have

that

V (0, 0, ε, ε) = 〈ε, ε〉 +

1
∫

0

〈Ψ(σε)ε, ε〉 dσ ≥ 〈ε, ε〉 +

1
∫

0

〈a1ε, ε〉 dσ =

= 〈ε, ε〉
1

2
a1〈ε, ε〉 = ‖ε‖2 +

1

2
a1 ‖ε‖

2 > 0

for all arbitrary ε 6= 0, ε ∈ R
n, which verifies the property (K1). Next let (X,Y,Z,W ) =

= (X(t), Y (t), Z(t),W (t)) be an arbitrary solution of the system (4). In view of the function (9)

and the system (4), a straightforward calculation gives that

V̇ =
d

dt
V (X,Y,Z,W ) = a2〈Z,Z〉 + 〈W,W 〉 + a2〈Y,W 〉 − 〈G(X,Y,Z,W )Z,Z〉+

+ 〈JF (X)Y, Y 〉 − 〈Ψ(Z)W,Z〉 − 〈Θ(Y ), Z〉+

+
d

dt

1
∫

0

〈Θ(σ Y ), Y 〉 dσ +
d

dt

1
∫

0

〈Ψ(σ Z)Z,Z〉 dσ. (10)
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Now, recall that

d

dt

1
∫

0

〈Θ(σ Y ), Y 〉 dσ =

1
∫

0

σ〈JΘ(σ Y )Z, Y 〉 dσ +

1
∫

0

〈Θ(σ Y ), Z〉 dσ =

=

1
∫

0

σ
∂

∂σ
〈Θ(σ Y ), Z〉 dσ +

1
∫

0

〈Θ(σ Y ), Z〉 dσ =

= σ 〈Θ(σ Y ), Z〉|10 = 〈Θ(Y ), Z〉 (11)

and

d

dt

1
∫

0

〈Ψ(σ Z)Z,Z〉 dσ =

1
∫

0

〈Ψ(σ Z)Z,W 〉 dσ +

1
∫

0

〈σ J(Ψ(σ Z)Z|σ Z)W,Z〉 dσ =

=

1
∫

0

〈Ψ(σ Z)Z,W 〉 dσ +

1
∫

0

σ〈J(Ψ(σ Z)Z|σ Z)Z,W 〉 dσ =

=

1
∫

0

〈Ψ(σ Z)Z,W 〉 dσ +

1
∫

0

σ
∂

∂σ
〈Ψ(σ Z)Z,W 〉 dσ =

= σ〈Ψ(σ Z)Z,W 〉|10 = 〈Ψ(Z)Z,W 〉. (12)

Collecting the estimates (11) and (12) into (10), we get

V̇ = a2〈Z,Z〉 + 〈W,W 〉 + a2〈Y,W 〉 − 〈G(X,Y,Z,W )Z,Z〉 + 〈JF (X)Y, Y 〉. (13)

In view of the assumption

λi(G(X,Y,Z,W )) ≤ a2

of the theorem, it follows for the terms

a2〈Z,Z〉 − 〈G(X,Y,Z,W )Z,Z〉,

which are contained in (13), that

a2〈Z,Z〉 − 〈G(X,Y,Z,W )Z,Z〉 ≥ a2〈Z,Z〉 − a2〈Z,Z〉 = 0. (14)

Hence, by using (14), we have

V̇ ≥ 〈W,W 〉 + 〈Y, a2W 〉 + 〈JF (X)Y, Y 〉 ≥

≥ 〈W,W 〉 − |a2| ‖Y ‖ ‖W‖ + 〈JF (X)Y, Y 〉. (15)
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In view of (15), the assumption λi(JF (X)) >
1

4
a2

2 of the theorem, we conclude that

V̇ ≥

∥

∥

∥

∥

W +
1

2
a2Y

∥

∥

∥

∥

2

+ 〈JF (X)Y, Y 〉 −
1

4
a2

2〈Y, Y 〉 ≥

≥ 〈JF (X)Y, Y 〉 −
1

4
a2

2〈Y, Y 〉 ≥ 0.

Now, it is clear that

V̇ (0, 0, 0,W ) = 〈W,W 〉 = ‖W‖2 ≥ 0.

Hence, the above discussion shows that the function V̇ is positive semi-definite. This case veri-

fies the property (K2). Next, let (X(t), Y (t), Z(t),W (t)) be an arbitrary solution of the system

(3). We observe from the previous estimate of V̇ in (13) that V̇ = 0, t ≥ 0, necessarily implies

that Y (t) = 0 for all t ≥ 0 and, therefore, also that X = ξ (a constant vector). In its turn this

implies that

X = ξ, Y = Ẋ, Z = Ẏ = 0, W = Ż = 0 for all t ≥ 0.

The substitution of the estimates X = ξ, Y = Ẋ, Z = Ẏ = 0, W = Ż = 0 for all t ≥ 0 into

the system (4) leads to the result F (ξ) = 0 which, by the assumption of the theorem, implies

(only) that ξ = 0. Thus V̇ = 0, t ≥ 0, implies that

X = Y = Z = W = 0 for all t ≥ 0.

Hence the property of (K3) holds for the function V.

The theorem is thereby established.

Example. As a special case of the system (4), let us choose, for the case n = 4, Ψ, G, Θ and

F that appeared in the system (4) to be the following:

Ψ(Z) =









1 + z2
1 0 0 0

0 1 + z2
2 0 0

0 0 1 + z2
3 0

0 0 0 1 + z2
4









,

G(X,Y,Z,W ) =

















1 − x2
1 − y2

1 − z2
1 − w2

1 0 0 0
0 2 0 0

0 0 2 −
2

1 + x2
3 + z4

3

0

0 0 0
1

2
−

3

2 + y2
4 + z2

4 + w4
4

















,

ISSN 1562-3076. Нелiнiйнi коливання, 2009, т . 12, N◦ 1



INSTABILITY OF SOLUTIONS FOR CERTAIN NONLINEAR VECTOR DIFFERENTIAL . . . 127

Θ(Y ) =





























2y1 + y3
1 + y5

1

y2 +
1

3
y3
2

3y3 +
1

5
y5
3

2y4 +
1

3
y3
4





























,

and

F (X) =





























3x1 +
1

3
x3

1

2x2 +
1

6
x3

2

4x3 + x3
3

5x4 +
1

3
x3

4





























.

Then, clearly, eigenvalues of the matrix Ψ(Z) are

λ1(Ψ(Z)) = 1 + z2
1 , λ2(Ψ(Z)) = 1 + z2

2 , λ3(Ψ(Z)) = 1 + z2
3 , λ4(Ψ(Z)) = 1 + z2

4 .

Trivially,

λi(Ψ(Z)) ≥ 1 = a1 > 0, i = 1, 2, . . . , 4.

Next, observe that

λ1(G(X,Y,Z,W )) = 1 − x2 − y2 − z2 − w2 ≤ 1, λ2(G(X,Y,Z,W )) = 2,

λ3(G(X,Y,Z,W )) = 2 −
2

1 + x2 + z4
≤ 2,

λ4(G(X,Y,Z,W )) =
1

2
−

3

2 + y2 + z2 + w2
≤

1

2
.

Thus, one can choose λi(G(X,Y,Z,W )) ≤ a2 = 2, i = 1, 2, . . . , 4. Similarly, it follows that

JΘ(Y ) is a symmetric matrix, namely,

JΘ(Y ) =









2 + 3y2
1 + 5y4

1 0 0 0
0 1 + y2

2 0 0
0 0 3 + y4

3 0
0 0 0 2 + y2

4









,
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hence it is readily verified that JΘ(Y ) is a symmetric matrix. Now, the derivative of the function

F (X) gives that

JF (X) =

























3 + x2
1 0 0 0

0 2 +
1

2
x2

2 0 0

0 0 4 + 3x2
3 0

0 0 0 5 + x2
4

























.

Hence,

λ1(JF (X)) = 3 + x2
1 ≥ 3 > 0, λ2(JF (X)) = 2 +

1

2
x2

2 ≥ 2 > 0,

λ3(JF (X)) = 4 + 3x2
3 ≥ 4 > 0, λ3(JF (X)) = 5 + 3x2

4 ≥ 5 > 0.

Thus

λi(JF (X)) ≥ 2, i = 1, 2, . . . , 4.

Therefore, it can be concluded from the above discussion that

λi(JF (X)) −
1

4
a2

2 = λi(JF (X)) − 1 > 0, i = 1, 2, . . . , 4.

Thus all the conditions of the theorem are satisfied.
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11. Tunç C. A further instability result for a certain vector differential equation of fourth order // Int. J. Math.
Game Theory Algebra. — 2006. — 15, № 5. — P. 489 – 495.
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