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New efficient conditions are obtained sufficient for the solvability as well as unique solvability of a nonlocal
boundary-value problem for nonlinear functional differential equations.

Ompumano HO8L epeKMUBHI yMOBU PO3B’AIHOCMI, A MAKONC €OUHOL PO36°AZHOCMI HEAOKAAbHUX 2Da-
HUYHUX 3A0a4 0A5 HeAITHIUHUX (PYHKUIOHAAbHO-OUpeDeHYIaNbHUX PIBHAHD.

1. Introduction and notation. On the interval [a,b], we consider the functional differential
equation

u'(t) = Fu)(t), M

where F' : C([a,b];R) — L([a,b];R) is a continuous (in general) nonlinear operator. As usual,
by a solution of this equation we understand an absolutely continuous function u : [a,b] — R
satisfying the equality (1) almost everywhere on [a, b]. Along with the equation (1), we consider
the nonlocal boundary condition

h(u) = ¢(u), )

where h : C([a,b];R) — R is a (non-zero) linear bounded functional and ¢ : C([a,b];R) — R
is a continuous (in general) nonlinear functional.

The question on the solvability of various types of initial and boundary-value problems for
functional differential equations and their systems is a classical topic in the theory of differential
equations (see, e.g., [1 —11] and references therein). There is a lot of interesting general results
but only a few efficient conditions is known, namely, in the case where the boundary condition
considered is nonlocal. In [12], we studied the question on the unique solvability of the problem
(1), (2) in the linear case, i.e., in the case where the operator F is linear and ¢ = Const. We
found out that it is very useful to consider the boundary condition (2) as a nonlocal perturbation
of the two-point condition

u(a) - Au(b) = @ (u) 3)

* Published results were acquired using the subsidization of the Ministry of Education, Youth and Sports of the
Czech Republic, research plan MSM 0021630518 “Simulation modelling of mechatronic systems”.

© Z. Oplustil, 2008
ISSN 1562-3076. Heainitini koausanns, 2008, m. 11, N©3 365



366 Z. OPLUSTIL

with A € R. In this paper, the results stated in [3] concerning the problem (1), (3) are gen-
eralized, and new efficient conditions are thus found sufficient for the solvability and unique
solvability of the problem (1), (2).

The following notation is used in the sequel.

1. R is the set of all real numbers, R, = [0, 4o0].

2. C([a,b]; R) is the Banach space of continuous functions v : [a,b] — R with the norm
[vllc = max {|v(t)| : ¢ € [a,b]}.

3.C([a,b);Ry) = {u € C([a,b];R) : u(t) > 0 for t € [a,b]}.

4. L([a,b]; R) is the Banach space of Lebesgue integrable functions p : [a,b] — R with the

norm |pl|L, = / 1p(s)] ds.

5.L([a,b];R}) = {p € L([a,b];R) : p(t) > 0 foralmostall ¢ € [a,b]}.
6. L, is the set of linear operators £ : C([a,b];R) — L([a, b]; R) for which there is a function
n € L([a,b]; Ry ) such that

[(v)(t)] < n(t)||v]lc forae. t e a,b] andall v e C([a,b];R).

7. P, is the set of operators ¢ € L, transforming the set C([a, b]; R4 ) into the set L([a, b]; Ry).

8. F is the set of linear bounded functionals » : C([a,b;R) — R.

9. PF,; is the set of functionals h € F,;, transforming the set C([a, b]; R ) into the set R, .

10. B, = {u € C([a,b;R) : (=1)""h(u)sgn ((2 — i)u(a) + (i — 1)u(b)) < c}, where
heFyceRi=12

11. K(Ja,b] x A; B), where A, B C R, is the set of function f : [a,b] x A — B satisfying the
Carathéodory conditions, i.e., f(-,x) : [a,b] — Bis a measurable function forallz € A, f(¢,-) :
A — B is a continuous function for almost every ¢ € [a,b], and for every » > 0 there exists
¢r € L([a,b];R) such that

|f(t,x)] < qr(t) forae. t€a,b] andall z € A, || <7
2. Main results. As it was said above, the boundary condition (2) is considered as a non-local
perturbation of the two-point condition (3). Therefore, we assume in the sequel that the linear
functional h appearing in (2) is defined by the formula
h(v) = u(a) — Av(b) — ho(v) + hi(v) for v € C([a,b];R), 4)

where A > 0 and hg, hy € PFy,. Moreover, the following assumptions are used:
(Hy) F : C(la,b];R) — L([a,b]; R) is a continuous operator such that the relation

sup {|F(v)()] - v € C(la, b R), vl < r} € L([a, b R+)

is satisfied for every r > 0.
(H2) ¢ : C([a,b];R) — R is a continuous functional such that the condition

sup {|¢(v)] 1 v € C([a, biR), [l]lc < 7} < 400

holds for every r > 0.
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NEW SOLVABILITY CONDITIONS FOR A NONLOCAL BOUNDARY-VALUE PROBLEM FOR NONLINEAR... 367

Before formulation of the main results we introduce the following notation. Having A > 0
and h € Fy,, we put

a(\h) = (1 —h(l))min{l,i}, )

B(A, k) = (A= h(1)) min {1, i} : (6)

Moreover, for any functional A given by the formula (4), we define the function wy(-;h) by
setting

(z+ ho(1)) (1= ho(1)) /1 1— )
/I—Ohg(l)—xo - (G0 +57)

if A<1, (1-X+hi(1)z < (1—h(1)(1—ho(1)),

( -+ ho(1)) (1 — ho(1))
T ho(l) —z — (M) +1-2X)

if A<1, (1=X+hi(1)z > (1—h(1))(1 - ho(1)),

wo(x;h) =

(x4+A—=14ho(1))(1— ho(1))
1-— ho(l) — AT

it A>1, A(Dz < (1—h(1))(1—ho(1)),

—hi(1)

(24252 + Jho(D) (L= ho(D)) 4
1—ho(1) — Az — )

it A>1, Az > (1—h(1))(1— ho(1)).

\

In this section, we formulate all the results, the proofs are postponed till Section 5 below.

Theorem 1. Let ¢ € R, the assumptions (Hy) and (Hs) be satisfied, and let the functional h
be defined by the formula (4), where A > 0 and hy, h1 € PF,, are such that

h(1) > 0, (7)
ho(1) <1, hi(1) <A (8)
Let, moreover, the condition
p(v)sgno(a) < ¢ for v e C([a,b];R) )
be fulfilled and there exist
lo, b1 € Py (10)

such that, on the set B} ([a, b]; R), the inequality

(F(v)(t) — Lo(v)(t) +€1(v)(t))sgnv(t) < q(t,|lvllc) forae t € |a,b] (11)
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368 Z. OPLUSTIL

holds, where the function ¢ € K ([a,b] x Ry;Ry) satisfies

b

1
lim — = 0.
miglmx/Q(s,w) ds =0 (12)
If, in addition,
(D)l < a(A, ho), (13)

an(lfa()]:h) < (D] < 2v/alh o)~ ol - bDmin {11} (14

then the problem (1), (2) has at least one solution.

Theorem 2. Let ¢ € R, the assumptions (Hy) and (Hz) be satisfied, and let the functional h
be defined by the formula (4), where A > 0 and ho,h1 € PFy, satisfy the relations (7) and (8).
Let moreover, the condition
e(v)sgno(b) > —c¢  for v € C([a,b];R)
be fulfilled and there exist ly, (1 € Py, such that, on the set B; ([a, b]; R), the inequality
(F)(t) — bo(v)(®) + 1 (0) ()sgnv(t) = —q(t, [ollc)  forae. ¢ € [a,b]

holds, where the function q € K ([a,b] x Ry;R}) satisfies (12). If; in addition,

(Wl < B R (15)
and
a(A, ho) B
Bk — ), - = e@i<
. 1
< 2/~ Tz - mo(min {13 h )

then the problem (1), (2) has at least one solution.
Now we establish theorems concerning the unique solvability of the problem (1), (2).

Theorem 3. Let the assumptions (Hy) and (Ha) be satisfied and a functional h be defined by
the formula (4), where X > 0 and hg, h1 € PF,y, satisfy the relations (7) and (8). Let, moreover,
the condition

(go(v) — cp(w))sgn(v(a) - w(a)) <0 for wv,we C([a,b;R)
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NEW SOLVABILITY CONDITIONS FOR A NONLOCAL BOUNDARY-VALUE PROBLEM FOR NONLINEAR... 369

be fulfilled and there exist ly,l1 € Py such that, on the set B} ([a,b]; R) with ¢ = |¢(0)|, the
inequality

(F(v)(t) — F(w)(t) — Lo(v — w)(t) + l1(v — w)(t))sgn (v(t) —w(t)) <0 forae tE€ [a,b]

holds. If, in addition, the conditions (13) and (14) are fulfilled then the problem (1), (2) is
uniquely solvable.

Theorem 4. Let the assumptions (H1) and (Hs) be satisfied and the functional h be defined by
the formula (4), where A > 0 and ho, h1 € PF,y, satisfy the relations (7) and (8). Let, moreover,
the condition

(¢(v) — p(w))sgn(v(b) —w(b)) >0 for v,w e C([a,b];R)

be fulfilled and there exist ly,ly € Py, such that, on the set B2 ([a,b]; R) with ¢ = |¢(0)|, the
inequality

(F(v)(t) — F(w)(t) — lo(v — w)(t) + €1 (v — w)(t))sgn(v(t) —w(t)) > 0 forae t € [a,b]

holds. If, in addition, the conditions (15) and (16) are fulfilled then the problem (1), (2) is
uniquely solvable.

Remark 1. Let the functional » be defined by the formula (4), where A > 0 and hg, h; €
€ PF,. Define the operator ¢ : L([a, b]; R) — L([a,b];R) by setting

P(2)(t) = z(a+b—1), t€lab],
for an arbitrary z € L([a, b]; R). Let w be the restriction of ¢ to the space C([a, b]; R), and

F(z)(t) S —p(F(w(2))(t) forae. tela,b] andall ze C([a,b];R),

R@ﬁaw—%4m+§m@@»—§m@@»1m 2 € C(la, b:R),
a1

P(z) = Y o(w(z)) for z e C([a,b];R).

It is not difficult to verify that if « is a solution to the problem (1), (2) then the function v dt w(u)
is a solution to the problem

V() = F)(t),  h(v) = @(v), (17)

and vice versa, if v is a solution to the problem (17) then the function u & w(v) is a solution to
the problem (1), (2).

Therefore, using the above transformation, we can immediately derive conditions for the
solvability and unique solvability of the problem (1), (2) in the case where i(1) < 0 (we do not
formulate them here in detail).
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370 Z. OPLUSTIL

3. An example. As an example, on the interval [0, 1], we consider the integro-differential
equation

u

) ds — gu(Ou()eCO) 1 gy(t)ult)” (18)

1
u'(t) = dcos(2nt) /
0

subjected to the nonlocal boundary condition

A
=
I
[
£
—~
—_
~—
+
o
O\H

sin(27s)u(s) ds — u(0)e"/? + arctg <;> ) (19)

where d,k € Ry, v € [0,1], 1,92 € L([0,1];R), and 7,w : [0,1] — [0, 1] are measurable
functions.
Theorem 1 yields the following corollary.

Corollary 1. Let the function g, be nonnegative on [0, 1] and the numbers d and k satisfy

d<7r—k:

k< ,
- 2 2

(20)
and

W—(k—i—?)<d<2\/7r(7r—k:—2d)—];. @1)

Then the problem (18), (19) has at least one solution.

4. Auxiliary propositions. The main results are proved using a lemma on a priory estimate
stated in [6] by Kiguradze and Ptza. This lemma can be formulated as follows.

Lemma 1 ([6], Corollary 2). Let there exist a positive number p and an operator { € Ly
such that homogeneous problem

W(t) = u)(t),  h(u) =0 (22)

has only the trivial solution, and, for every § €)0,1[, an arbitrary function v € C(|a,b];R)
satisfying the relations

W () = Lu)(t) + S[F(u)(t) — (u)(t)] forae t€lab], hlu)=dpu)  (23)
admits the estimate
[ullc < p. (24)
Then the problem (1), (2) has at least one solution.
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Definition 1. Let ¢ € {1,2}, h € F,,. We say that an operator { € L, belongs to the set
U;(h), if there exists r > 0 such that, for arbitrary ¢* € L([a,b];R}) and ¢ € R, every function

u € C([a,b];R) satisfying the inequalities

(—l)iHh(u)sgn((Z —i)u(a) + (i — Du(d)) < ¢, (25)
(—1)¢+t (u’(t) - E(u)(t)) sgnu(t) < ¢*(t) forae t € [a,b] (26)

admits the estimate
ulle < r(e+lg*llz)- (27)

Lemma 2. Leti € {1,2}, c € Ry, the assumptions (Hy) and (Hs) be satisfied, and
(1) o(v)sgn((2 — i)v(a) + (i — Lv(b)) < ¢ forv € C([a,b];R). (28)
Let, moreover, there exist { € U;(h) such that, on the set B, ([a, b]; R), the inequality
(—D)FHE@)(E) — Uv)(t))sgno(t) < q(t,[lvllc) forae t€ [a,b] (29)

is fulfilled. Then the problem (1), (2) has at least one solution.

Proof. First note that, due to the condition ¢ € U;(h), the homogeneous problem (22) has
only the trivial solution.
Let r be the number appearing in Definition 1. According to (12), there exists p > 2rc such
that
1 / 1
m/q(s,x) < % for x > p.

a

Now assume that a function v € C([a, b]; R) satisfies (23) for some § € ]0, 1[. Then, according
to (28), u satisfies inequality (25), i.e., u € B} ([a,b]; R). By (29), we obtain that inequality (26)
is fulfilled with ¢* = ¢(-, ||u||c). Hence, by virtue of the condition ¢ € U;(\) and the definition
of the number p, we get the estimate (24).

Since p depends neither on u nor on 4, it follows from Lemma 1 that the problem (1), (2)
has at least one solution.

Lemma 3. Leti € {1,2}, the assumptions (H,) and (H2) be satisfied, and let the relation

(=1 (p(ur) — p(uz))sgn((2 — i) (u1(a) — uz(a)) + (i — 1)(ur(b) —ua(b)) <0 (30)

hold for every ui,us € C([a,b];R). Let, moreover, there exist { € U;(\) such that, on the set
Bt .([a,b]; R) with ¢ = |p(0)|, the inequality

(=) H(F () () = F(uz)(t) — €(ur —u2)(t))sgn (ur(t) — ua(t)) <0 (31)
is fulfilled for a.e. t € [a,b]. Then the problem (1), (2) is uniquely solvable.
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372 Z. OPLUSTIL

Proof. 1t follows from the condition (30) that the inequality (28) is fulfilled, where ¢
= |¢(0)|. Using (31), we get that, on the set B} _([a, b]; R), the inequality (29) holds, where ¢
= |F'(0)|. Consequently, all the assumptions of Lemma 2 are fulfilled, and thus the problem (1),
(2) has at least one solution. It remains to show that problem (1), (2) has at most one solution.

Let uy, ug be arbitrary solutions of the problem (1), (2). Put u(t) = wui(t) — ua(t) fort €
€ [a,b]. Then, by virtue of (30) and (31), we get u,us € Bi _([a,b]; R) and

(—1)""h(u)sgn ((2 = i)u(a) + (i — Du(b)) <0,

(=)™ (W (t) — L(u)(t)) sgnu(t) < 0 forae. t € [a,b].

The last relations, together with the assumption ¢ € U;(\), result in v = 0. Consequently,
up = us.

Lemma 4. Let the functional h be defined by the formula (4), where A\ > 0 and hg,h, €
€ PFy, satisfy the conditions (7) and (8). Let, moreover, the operator ¢ admit the representation
= by — {1, where by and {1 are such that the conditions (10), (13), and (14) hold. Then ¢ belongs
to the set Uy (h).

Proof. Let c € Ry, ¢* € L([a,b];R,), and u € C([a, b]; R) satisfy (25) and (26) with i = 1.
We shall show that (27) holds, where r depends only on ||¢o(1)||z, ||1(1)||z, A, ho(1), and hy(1).
It is clear that

u'(t) = Lo(u)(t) — b1 (u)(t) + q(t) forae. t € [a,b], (32)
where
q(t) = u/'(t) — L(u)(t) forae. t € [a,b]. (33)
From (25) and (26) we get
(u(a) — Au(b) — ho(u) + hi(uw)) sgnu(a) < c (34)
and
q(t)sgnu(t) < g*(t) forae. t € [a,b]. (35)
First suppose that u does not change its sign. Put
M = max {|u(t)| : t € [a,b]}, ™ = min{|u(t)|: t € [a,b]} (36)
and choose t1,t2 € [a, b] such that t; # ¢9 and
u(t)] = M, |u(t2)| = m. (37)
It is clear that M > 0,m > 0, and either

t1 < tg (38)
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or
t1 > to. (39)
Moreover, according to (10), (35), and (36), from (32) we obtain
lu(t)|” < M lo(1)(t) —mb1(1)(t) + ¢*(t) forae. t € [a,b]. (40)

If u(a) = 0 then m = 0 and the integration of (40) from a to t;, on account of (37), yields

M < M7€0(1)(3) ds + 7(]*(8) ds.

By virtue of (13), it follows from the last inequality that
lulle = M < ro(llq*|| +¢),

where
ro = [1—[[€o(1)]IL] ™"

Consequently, the estimate (27) holds with r» = (.
If u(a) # 0 then, according to (34), we obtain

[u(a)] < Alu(b)] + ho([ul) = ha((ul) +c,
and thus
lu(a)] = |u(b)| < ho(lul) = hi(lu]) + u(b)|(A = 1) + ¢ (41)

and

Al 42)

u(@)] ~ [u(®)] < Sholul) = yhr(jul) + fu(@) > +

Let first (38) hold. Then the integration of (40) from « to ¢; and from ¢, to b results in

3~ [u(o)] < T [ fa(1)(s)ds+ [ a(5)ds,

b b
lu(b)| —m < M/Eo(l)(s) ds + /q*(s) ds.
to
Summing two last inequalities, we get

M -+ [u(®)] — |u(a)] < 7T / to(1)(s) ds + / ¢*(s) ds, (43)
J J
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where J = [a,t1] U [t2, b].

Let A < 1. Taking into account (10) and (41), we obtain from (43) that

b b
M —m — ho(Ju]) + h1(Ju]) — [u(®)|(A - ¢ < M/ s)ds +/ *(s)ds.

From the last inequality, according to (36), we get
M(1=ho(1)) =m(A = h1(1)) — ¢ < Mlo()]l + llg" |
Due to (7), the last inequality implies
(M —mm)(1 = ho(1)) < Ml[bo(D)llz + llg"l|z +c. (44)

Let A > 1. From (43), in view of (7), (42), and (36), it follows that

(M —m)(1 = ho(1)) — ¢ < Mlo(D)] + llg"] L,

> =

which, together with (44), yields

mm{ i}W m)(1 —ho(1)) < M|lo(1)|lz + llg*[|z + c.

Now suppose that (39) is fulfilled. Then the integration of (40) from ¢9 to ¢;, on account of
(10) and (36), yields

min{1 %}(M—m)(l —ho(1)) — ¢ < M —m < Moz + lg*]|1-

Therefore, in both cases (38) and (39), the inequality

win {1, 5} 07 m)(1 = ho(1) < DoV + il +e )

holds.
On the other hand, the integration of (40) from a to b, yields

u(®)] = Ju(a)] < M6Vl — Tl ()]l + llg"|.- (46)

Now we shall divide the discussion into the following four cases:
Case (a): X < 1and (1 — X+ h1(1))|lo(1)]|z < (1—h(1))(1 —ho(1)). Using (42) and (36) in
(46), we get
— < M(ho(1) + Mlto(D)][2) + e+ Alg" [l
= ML +hi(1) —A+1
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On the other hand, (45) implies
M(1 = ho(1) = lo(Dlz) < (1 —ho(1)) +c+ g™z (47)
Hence, on account of the first inequality in (14), we have
lulle = M < ri(e+ llg" L)AL + ha(1) = ho(1) — A +2),
where

ri=[(1 = ho(1) = [[o(D) L) A (D] + ha (1) = A+ 1) x
X (=(1 = ho(1))(ho(1) + Albo(D1))] " > 0,
and thus the estimate (27) holds, where r is defined by
r=ri(Al ()L 4+ hi(1) — ho(1) — A+ 2).

Case (b): X < land (1 —A+hi(1))|[4(1)]lz > (1 —h(1))(1—ho(1)). As above, (45) implies
(47). If we use the estimate (41) in (46), according to (36), we obtain

M(ho(1) + b)) + ¢+ llg*[|z
[l +ha(1) =A+1

m <

From the last inequality, the first inequality in (14), and (47) we get
lulle = M < ra(c+[lg* L) (6] + hi(1) = ho(1) — A +2),
where
re = [(1—=ho(1) = [l(W)[) (1 (D)2 + hi(1) = X+ 1)x
X (—(1 = ho(1) (ho(1) + [a(D)I|L))] > 0.
and thus the estimate (27) holds, where r is defined by
r=r2(N[lo(V)]| 2 + ~1(1) = ho(1) — A +2).

Case (c): A > Land My (1)[[4o(1)]l < (1 =h(1))(1 —ho(1)). From (46), in view of (41), and
(36), it follows that

M(ho(1) + |Vl + X =1) +c+ |l¢*|L

"= ROEO

On the other hand from the (45) we have

M(1— ho(1) = Alo(Dl|) < m(L - ho(1)) + Ale + [lg71)- (48)
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Hence, on account of (14), the relation
lulle = M < rs(c+ llg"lL) (A (D)l + Aha (1) + 1 = ho(1)),
is satisfied, where
r3 = [(1—ho(1)([[er(D)]lz + 71(1) = ho(1) = A+1 = [[lo(1)]) %
X (=AMl (hr (1) + [M)] >0,
and thus the estimate (27) holds, where r is defined by
r = r3(Al[€1(1)||z + Ah1(1) + 1 — ho(1)).

Case (d): X > 1 and Ahy(1)[[4o(1)]| > (1 — h(1))(1 — ho(1)). As above, (45) yields (48). If
we use estimate (42) in (46), according to (36), we obtain

M(ho(1) + M[e1(D)|| + XA = 1) +c+ Alg*|z
A1)z + ha(1) '

m <

From the last inequality and (48), in view of (14), it follows that
lulle = M < raX(e+ lla" L) Al (D)]]L + ha(1) + 1 = ho(1)),
where

ra = [(1— ho(1) = AoVl A2 (V)| + ha(1))x
X (=(Alo(D) 1 + A = 1+ ho(1))(1 = ho(1)))] ™ > 0,
and thus the estimate (27) holds, where 7 is defined by
r = rg A (D)L + hi(1) + 1 — ho(1)).

Therefore, in all cases (a) —(d), the estimate (27) holds.
Now suppose that u changes its sign. Put

M = max{u(t) : t € [a,b]}, m = —min{u(t) : t € [a,b]} (49)
and choose tyz, t,, € [a,b] such that
u(tyr) = M, u(ty,) = —m. (50)
Obviously, M > 0, m > 0, and either

tm <ty (51)
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or
tm >ty (52)
First suppose that (51) holds. It is clear that there exists ay € |t,,, t37[ such that
u(t) >0 for s <t <tpy, wula)=0. (53)
Let
ap = inf{t € [a,t,,] : u(s) <0 for t <s <t,}
Obviously,
u(t) <0 for a; <t<t, and u(a;)=0 if a; >a. (54)
Put
[0, if w(b) >0,
as = inf{t €ltrr,b] :u(s) <0 for t<s<b}, if wulb) <O0.

It is clear that if a3 < b then
u(t) <0 for ag<t<b wulasz)=0. (55)

The integration of (32) from «; to t,,, from «s to t;;, and from ag to b, in view of (10), (35),
(49), (50), and (53) - (55), yields

t m

(a1)+m<m/€0 ds+M/€1 ds+/ “(s) ds, (56)
a1
tar tm tyr
M<M/€0 ds—i—m/% ds+/ *(s)ds, (57)
az
b
u(ag) — u( <m/€0 ds—i—M/fl d5—|—/ *(s) ds. (58)
a3 a3

If u(b) > 0or u(a) > 0 then, according to (34), (49), (54), and the assumption A > 0, we
obtain

u(ar) > —c—mho(1l) — Mhq(1),
and thus from (56) we find

—C — mho(l) — Mhl(l) +m <

< max {1, \} (m7€0( )()ds+M/£1 ds+7 ()ds).

(e%1 o1 a1
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Hence,

min{l, i\}(—c— mho(1l) — Mhy(1) +m) <

g7n/fdnwﬂk+A{/&ﬂﬂ$da+/ﬁ%ﬁd& (59)

J

where J = [aq, ] U [as, ).

Letu(b) < 0and u(a) < 0. Multiplying both sides of (58) by A and taking (55) into account,
we get

b

b b
—Au(b) < A (m/fo(l)(s) ds—i—M/El(l)(s) ds+/q*(s) ds) .

a3 a3 a3

Summing the last inequality and (56), according to (34), (49), and (54), we can verify that the
inequality (59) is fulfilled, where J = [aq, t,,] U o, b].

From (57) and (59) we get

M(l - 01) < mA; + Hq*||L + c, (60)

m(a(\ hg) — D1) < M (31 + h1(1) min {1, i}) + ¢z + ¢, (61)

where

tyr

m:/am@@,&:/am@@
a2 J

and

C = /60(1)(3) ds, Dy = /60(1)(8) ds.

(o) J
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Due to (13), it is clear that C; < 1 and D; < «a(\, hg). Consequently, (60) and (61) imply

0 < M(1—Ci)(a(A ho) — D) <

< 4 [M (Bl + min {1, i} mm) +llg*llz +c} + (I’ + )@ ho) — D) <

< 3y (B i {15 ) + (e + 90+ 16 )
(62)
0 < m(a()\, ho) — Dl)(l — 01) <

IN

: 1 * *
(r-+ min {1, 5 F () (s + el +0)+ e+ ol <

IN

may (B min {15 E i) + (e + 0+ m(@) + ]

Obviously,

(1 - Cl)(a(/\,h()) - Dl) > Oé(/\,h()) - (Cl + Dl) > Oé()\, h()) — H&)(l)HL >0

44, <B1+min{1,/1\}h1(1)> < (Al—i—Bl—i—min{l,i}hl(l))Q <

< (Hﬁl(l)HL + min {1, ;\} h1(1)>2 :

By the last inequalities and the second inequality in (14), from (62) we get

and

M < rs(l(Dlz +1)(lg*llz + o),

m < r5([[G(Dlz + 1+ k(1)L + ©),

where

(I141(1)]| + min{1, ,l\}hl(l))2> -1
4 .

rs = (a(k,ho) — M)z -
Consequently, the estimate (27) holds, where r is given by

r=rs(la @)l + 1+ hi(1)).

If (52) holds, the validity of the estimate (27) can be proved analogously.
The lemma is proved.

Lemma 5. Let the functional h be defined by the formula (4), where A\ > 0 and hg,h, €
€ PFy, satisfy the conditions (7) and (8). Let, moreover, the operator ¢ admit the representation
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= by — {1, where ly and ¢y are such that the conditions (10), (15), and (16) hold. Then ¢ belongs
to the set Us(h).

Proof. Let c € Ry, ¢* € L([a,b];R}), and u € C([a, b]; R) satisfy (25) and (26) with i = 2,
1.€.,

h(u)sgnu(b) > —c

and
(u'(t) — €(u)(t)) sgnu(t) > —¢*(t) forae. t € [a,b].

We shall show that (27) holds, where r depends only on ||¢o(1)||z, |[41(1)||z A, ho(1), and hq(1).
Obviously, u satisfies (32), where ¢ is defined by (33). Clearly,

—q(t)sgnu(t) < ¢*(t) forae. t € [a,b] (63)
and
(—u(a) + Au(b) + ho(u) — hi(u)) sgnu(b) < c. (64)
First suppose that v does not change its sign. Define numbers M and m by (36) and choose
t1,t2 € [a,b] such that t; # t5 and (37) is fulfilled. Obviously, M > 0, m > 0, and either (38)
or (39) holds. Moreover, according to (10), (36), and (63), from (32) we get
—lu(t)] < M 61(1)(t) —mby(1)(t) + ¢*(t) forae. t € [a,b]. (65)
If u(b) = 0 then m = 0 and the integration of (32) from ¢; to b, on account of (37), yields

b

77 < M/El(l)(s) ds + /bq*(s) ds.

t1
From the last inequality, in view of (15), it follows that
lulle = M < ro(llg"[| + o),

where
ro = [1—[lex(1))c] "

Consequently, the estimate (27) holds with » = rg.
If u(b) # 0 then, according to (64), we obtain

Alu@)] = |u(a)| < ha(lul) = ho(lul) + ¢, (66)
and thus

[u(®)] = lu(@)] < ha(lul) = ho(Jul) + [u(®)[(1 = A) + ¢ (67)
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and
A(lu®)] = |u(a)]) < ha([ul) = ho(lul) + |u(a)[(1 = A) +c. (63)

Let first (39) hold. The integration of (65) from a to ¢t and from ¢; to b, in view of (10) and
(37), results in
ta to

u(a / ds+/ “(s) ds,

b

~Ju(b \<M/£1 ds+/ “(s) ds. (69)

and

Multiplying both sides of (69) by A and summing the last inequalities, in view of (10), (36), and
(66), we get

M (A= hi(1) = max{1L, A}[[6x (1)) < m(L = ho(1)) + ¢ + max{L A}]q"| -
Hence, by virtue of (5) and (6), we obtain
M(Bh) = [6(M)) < me(A ho) + e+ lla]|z- (70)
If (38) is fulfilled then the integration of (65) from ¢; to to, on account of (5), (6), and (7),
yields
FB(\, hy) — mia(A ko) < (3 — m)(A — Ay (1)) min {1, i} <

<M -m < M|[tL(1)]z+ llg* [z

Therefore, in both cases (38) and (39), the inequality (70) holds.
On the other hand, the integration of (65) from a to b implies

u(a)] — [u(d)] < M[ex(V)]lL — Tz + lla™z- (71)
Hence, using (36), (67), and (68) in (71) we get

M1 = BN k) + [6MW)e) + llg*lle + ¢
1+ [[lo(V)[z = a(A; ho) '

IN

m

From the last inequality and (70) we obtain
M(B(A, h1) = (D)) <

T - B + [ + llg* ]l +
- T+ (D — a(A, o)

a(A ho) + g7l + ¢
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Thus, on account of (15) and the first inequality in (16), we have

lulle = M < 1 (c+[lg"[12) (1 + [1(1)]]z).

where
ri = (B ) = [ (T + (D)) — (A ho)] ™ > 0.

Therefore, the estimate (27) holds, where r is defined by
r=r1(1+[[f()lr)-
Now suppose that u changes its sign. Define numbers M and m by (49) and choose ¢y, t,, €

€ [a, b] such that (50) is fulfilled. Obviously, M > 0, m > 0, and either (51) or (52) holds.
First suppose that (51) is fulfilled. It is clear that there exists «; € |t,,, tas[ such that

u(t) <0 for tp, <t <aj, u(ar)=0. (72)
Let
ay = sup{t € [a,b] : u(s) >0 for ty <s <t}
Obviously,
u(t) >0 for ty <t<ap and wu(ag) =0 if s <D (73)
Put
[ a if u(a) <0,
as = sup{t € [a,tn] : u(s) > 0fora < s < t}, ifu(a) > 0.

It is clear that if g > a then
u(t) >0 for a<t<ag ulag)=0. (74)

The integration of (32) from ¢,, to a1, from ¢y to as, and from a to as, in view of (10), (49),
(63) and (72)—(74), yields

m<M/€0 ds—i—m/& d3+/ *(s)ds, (75)
tm tm tm
M — u(as) <M/€1 ds—l—m/EO ds—l—/ *(s)ds, (76)
2%
u(a) —u(ag) < M/El ds+m/£0 ds+/ *(s)ds. (77)
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If u(b) < 0orwu(a) < 0then, according to (49), (64), and (73), we obtain
Au(ag) < mho(l) + Mhi(1) + ¢
Multiplying both sides of (76) by A and taking into account (10) and (78), we get

AM — ¢ —mhy(1) — Mhl(l) <

IN

M tyv tm

and thus

min{l, i} (AM — ¢ —mhg(1) — Mhy(1)) <

<M/€1 ds+m/€0 ds+/ *(s)ds,

where I = [a, a3] U [tar, o).
If u(b) > 0 and u(a) > 0 then multiplying both sides of (76) by A we get

Y. (/gl ds+m/go dH/()ds).

M

A (M 7261(1)(3) ds+m 7250(1)(3) ds + 72q*(3) ds

383

(78)

) » (79)

(80)

Summing the last inequality and (77), according to (49), (64), (73), and (74), we obtain that the

inequality (80) with I = [a, 3] U [tar, 2] holds.
From (75) and (80) we get

m(l— A1) < MCy+||¢"||L + ¢,

M) = 1) < m (min {15 o(1)+ 1) + gl +

where

and

o) :/eou)(s)ds, Dy :/eou)(s)ds.

tm 1
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Due to (15), it is clear that A; < 1 and B; < (3(\, h1). Consequently, (81) and (82) imply
0 <m(l—A)(BA M) —By) <
. 1 *
< mCs (min {1, 3} o))+ D0 ) + (1" + 0+ ta(0) )
(83)
0 < M(1-A)BAM)—By) <
. 1 *
< 3Cs (wmin {1, 3} ho(0) 4 D1 ) + ('L + )2 + ol
Obviously,

(1= A1) (B h1) — B1) > BN, h1) — A1B(A\, ha) — By >

> B(A\ h1) — (A1 + B1) > B\ hy) = [[1(1)][z > 0

and

4 (min{l,i} ho(1) +D1> < (min{l,i} ho(1) + Oy +D1>2 <

< (i {1, o) + ooz )

Hence, from the second inequality in (16) and (83) we obtain

M

IN

ra([[lo(M)lz + 2)(c + llg"[|z),

m < ra([[lo(V)[z + D(e + llg”lz),

A

where
-1
(1£0(1)]|, + min {1, 1} ho(1))”

= | BOWR) — (D)L — 1

Consequently, the estimate (27) holds, where r is defined by

r=ra([lo(D)]|z +2)(c+ llg*||2)-

If (52) holds, the validity of the estimate (27) can be proved analogously.

The lemma is proved.

5. Proofs. Proof of Theorems 1 and 3. The validity of theorems follows from Lemmas 2, 3,
and 4.

Proof of Theorem 2 and 4. The assertion of theorems can be derived from Lemmas 2, 3,
and 5.
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Proof of Corollary 1. 1t is clear that (18), (19) is a particular case of (1), (2) in which a = 0,
b =1, and F| h, and ¢ are defined by the formulae

1

F(z)(t) = dcos 27rt) / ds — gi(t)z(t)e” @) 1 go()|z(t)|
0

fora.e. t € [0,1] and all z € C([0, 1];R) and

sin(2ms)z(s)ds, ¢(z) £ —2z(0)e*/Y 4 arctan z(1/2)

>
—
I
S~—
I
I
—~
=}
S~—
|
[
I
—
—_
S~—
|
o
o _

for z € C(]0,1]; R), respectively. Moreover, the above-defined functional 4 admits the repre-
sentation (4), where A = 1/2 and

1 1
d k/max{sin(?ws),()}z(s) ds, hi(z) o k/max{—sin(Zws),O}z(s) ds
0 0

for z € C([0,1];R).
Now we put

0o(2)(t) £ d max{cos(2nt),0}

O\H

N
—
\]
—
V2)
N—r
S—

QU

“CIJ

01(2)(t) g max{ — cos(2nt),0} / 2r(s)) ds

0

fora.e.t € [0,1] and all z € C([0,1];R).
It is easy to verify that ¢y, {1 € Py, ho,h1 € PFy, and

ol = 6 = 2 ho()) = m(1) = ~.

Therefore, in view of the assumptions (20) and (21), the conditions (7), (8), (13), and (14) of
Theorem 1 are fulfilled. On the other hand, operators F' and ¢ satisfy the assumptions (H;)
and (Hz), the relation (9) with ¢ = 7/2 holds, and the inequality (11) is satisfied on the set
C([0,1];R), where q(t,z) = |g2(t)|z" fora.e. t € [0,1] and allz € R,.

Applying Theorem 1, we establish solvability of the problem (18), (19).
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