OSCILLATION CRITERIA FOR DIFFERENCE EQUATIONS WITH SEVERAL RETARDED ARGUMENTS

КРИТЕРІЇ КОЛИВАНЬ ДЛЯ РІЗНИЦЕВИХ РІВНЯНЬ З ДЕЯКИМИ ЗАГАЮВАЛЬНИМИ АРГУМЕНТАМИ

R. Koplatadze, N. Khachidze

I. Javakhishvili Tbilisi State Univ. University Str., 2, Tbilisi, 0186, Georgia e-mail: r-koplatadze@yahoo.com natiaa.xachidze@gmail.com

The difference equation

$$\Delta u(k) + \sum_{i=1}^{m} p_i(k) u(\tau_i(k)) = 0,$$

is considered, where $m \in N$, the functions, $p_i : N \to R_+$, $\tau_i : N \to N$, $\lim_{k \to +\infty} \tau_i(k) = +\infty$, $\tau_i(k) \le k - 1$, i = 1, ..., m, are defined on a set of natural numbers, and $\Delta u(k) = u(k+1) - u(k)$ is the difference operator. New oscillation criteria for all solutions of the equation are established.

Розглянуто різницеве рівняння

$$\Delta u(k) + \sum_{i=1}^{m} p_i(k) u(\tau_i(k)) = 0,$$

де $m \in N$, функції $p_i \colon N \to R_+, \ \tau_i \colon N \to N$, $\lim_{k \to +\infty} \tau_i(k) = +\infty, \ \tau_i(k) \le k-1, \ i=1,\ldots,m$, задані на множині натуральних чисел, а різницевий оператор має вигляд $\Delta u(k) = u(k+1) - u(k)$. Знайдено нові критерії коливань для всех розв'язків цього рівняння.

1. Introduction. Consider the difference equation

$$\Delta u(k) + \sum_{i=1}^{m} p_i(k) u(\tau_i(k)) = 0,$$
 (1.1)

where $m \ge 1$ is a natural number, $p_i : N \to R_+, \ \tau_i : N \to N$ are functions defined on the set $N = \{1, 2, \ldots\}$ and $\Delta u(k) = u(k+1) - u(k)$. Everywhere below it is assumed that

$$\lim_{k \to +\infty} \tau_i(k) = +\infty \quad \text{and} \quad \tau_i(k) \le k - 1, \quad i = 1, \dots, m.$$
 (1.2)

For each $n \in N$ denote $N_n = \{n, n+1, \ldots\}$.

Definition 1.1. Let $n \in N$. We will call a function $u: N \to R$ a proper solution of equation (1.1) on the set N_n , if it satisfies (1.1) on N_n and $\sup\{|u(i)|: i \ge k\} > 0$ for any $k \in N_n$.

Definition 1.2. We say that a proper solution $u: N_n \to R$ of equation (1.1) is oscillatory, if for any $k \in N_n$ there exist $n_1, n_2 \in N_k$ such that $u(n_1)u(n_2) \leq 0$. Otherwise the solution is called nonoscillatory.

© R. Koplatadze, N. Khachidze, 2018

Definition 1.3. Equation (1.1) is said to be oscillatory, if any of its the proper solution is oscillatory.

The problem of oscillation of solution of linear difference equation (1.1) for m = 1 has been studied by several authors, see [1-3] and reference therein. As to investigation of the analogous problem for equation (1.1) and for differential equations see [4-10].

Some results of this paper without proof is given in [11].

Remark 1.1. Below we assume that

$$\limsup_{k \to +\infty} p_i(k) < +\infty, \quad i = 1, \dots, m,$$

otherwise equation (1.1) is oscillatory.

2. Main results. Throughout the paper we assume that

$$\tau_*(k) = \min \{ \tau_i(k) \colon i = 1, \dots, m \},$$

$$\eta^{\tau_*}(k) = \max \{ s \colon s \in N, \tau_*(s) \le k \},$$
(2.1)

$$\eta_1^{\tau_*}(k) = \eta^{\tau_*}(k), \qquad \eta_i^{\tau_*}(k) = \eta_1^{\tau_*} \circ \eta_{i-1}^{\tau_*} \qquad \text{for} \quad k \in N, \quad i = 2, 3, \dots.$$

By (1.2) it is obvious that $\eta_i^{\tau_*}(k) < +\infty$ for any $k \in N$ and $\eta_i^{\tau_*}(k) \uparrow +\infty$ for $k \uparrow +\infty$. Let $k \in N$. Denote

$$\psi_1(k) = \prod_{i=1}^m \prod_{j=\tau_i(k)}^k \left(1 + mp^{1/m}(j)\right) \quad \text{for} \quad k \ge k_0,$$
 (2.2)

$$\psi_s(k) = \left(\prod_{i=1}^m \prod_{j=\tau_i(k)}^k \left(1 + mp^{1/m}(s)\psi_{s-1}(j)\right)\right)^{1/m} \quad \text{for} \quad k \ge \eta_s^{\tau_*}(k_0), \quad s = 2, 3, \dots, \quad (2.3)$$

$$p(j) = \prod_{i=1}^{m} p_i(j).$$
 (2.4)

Theorem 2.1. Let there exist $s_0 \in N$ and non-decreasing functions $\sigma_i \colon N \to N$, $i = 1, \ldots, m$, such that

$$\tau_i(k) + 1 \le \sigma_i(k) \le k \quad \text{for} \quad k \in \mathbb{N}, \quad i = 1, \dots, m,$$
 (2.5)

and

$$\limsup_{k \to +\infty} \prod_{\ell=1}^{m} \left(\prod_{i=1}^{m} \sum_{s=\sigma_{\ell}(k)}^{k} p_{i}(s) \prod_{j=\tau_{i}(s)}^{\sigma_{i}(k)-1} \left(1 + m \, p^{1/m}(j) \, \psi_{s_{0}}^{1/m}(j) \right) \right)^{1/m} > \frac{1}{m^{m}}. \tag{2.6}$$

Then equation (1.1) is oscillatory, where ψ_{s_0} is given by (2.2), (2.3) and (2.4), when $s = s_0$.

Corollary 2.1. Let there exist non-decreasing functions $\sigma_i \colon N \to N, \ i = 1, \dots, m,$ such that

$$\limsup_{k \to +\infty} \prod_{\ell=1}^{m} \left(\prod_{i=1}^{m} \sum_{s=\sigma_{\ell}(k)}^{k} p_{i}(s) \prod_{j=\tau_{i}(s)}^{\sigma_{i}(k)-1} \left(1 + m \, p^{1/m}(j) \right) \right)^{1/m} > \frac{1}{m^{m}}. \tag{2.7}$$

Then equation (1.1) is oscillatory, where p is given by (2.4).

ISSN 1562-3076. Нелінійні коливання, 2018, т. 21, № 4

516 R. KOPLATADZE, N. KHACHIDZE

Theorem 2.2. Let (2.5) be fulfilled,

$$\liminf_{j \to +\infty} p(j) > 0$$
(2.8)

and

$$\min \left\{ \frac{\liminf_{k \to +\infty} \prod_{i=1}^{m} \prod_{j=\tau_i(k)}^{k} \left(1 + m\alpha^{1/m} p^{1/m}(j)\right)}{\alpha} : \alpha \ge 1 \right\} > 1.$$
 (2.9)

Then equation (1.1) is oscillatory, where p is given by (2.4).

Corollary 2.2. Let for large $j \in N$

$$p_i(j) \ge p_i > 0, \quad i = 1, \dots, m,$$
 (2.10)

and

$$\overline{p} \liminf_{k \to +\infty} \frac{\left(m + \sum_{i=1}^{m} (k - \tau_i(k))\right)^{m + \sum_{i=1}^{m} (k - \tau_i(k))}}{\left(\sum_{i=1}^{m} (k - \tau_i(k))\right)^{\sum_{i=1}^{m} (k - \tau_i(k))}} > 1.$$
(2.11)

Then equation (1.1) is oscillatory, where $\bar{p} = \prod_{i=1}^{m} p_i$.

Corollary 2.3. Let $n_i \in N$, i = 1, ..., m, for large $k \in N$

$$\tau_i(k) \le k - n_i, \quad n_i \in N, \qquad p_i(k) \ge p_i > 0, \quad i = 1, 2, \dots, m,$$
 (2.12)

and

$$\frac{\overline{p}\left(m + \sum_{i=1}^{m} n_i\right)^{m + \sum_{i=1}^{m} n_i}}{\left(\sum_{i=1}^{m} n_i\right)^{\sum_{i=1}^{m} n_i}} > 1.$$
(2.13)

Then equation (1.1) is oscillatory, where $\bar{p} = \prod_{i=1}^{m} p_i$. Corollary 2.4. Let $n_i \in N$, i = 1, ..., m, for large $k \in N$, (2.12) holds and

$$\overline{p} \sum_{i=1}^{m} n_i > \left(\frac{\sum_{i=1}^{m} n_i}{m + \sum_{i=1}^{m} n_i} \right)^{1 + \frac{1}{m} \sum_{i=1}^{m} n_i}.$$

Then equation (1.1) is oscillatory, where $\overline{p} = \prod_{i=1}^{m} p_i$.

Remark 2.1. It is obvious that

$$\left(\frac{\sum_{i=1}^{m} n_i}{m + \sum_{i=1}^{m} n_i}\right)^{1 + \frac{1}{m} \sum_{i=1}^{m} n_i} \to \frac{1}{e}$$

when $\sum_{i=1}^{m} n_i \to +\infty$.

3. Some auxiliary statements. In this section we establish the estimate of the quotient

$$\frac{u\left(\tau_i(k)\right)}{u(k+1)}, \quad i=1,\ldots,m, \qquad \text{and} \qquad \left(\prod_{i=1}^m \frac{u\left(\tau_i(k)\right)}{u(k+1)}\right)^{1/m},$$

where $u: N_{k_0} \to (0, +\infty)$ is nonoscillatory solution of equation (1.1).

Lemma 3.1. Let $k_0 \in N$ and $u: N_{k_0} \to (0, +\infty)$ is a positive solution of equation (1.1). Then for any $s \in \{1, 2, ...\}$ we have

$$\frac{\left(\prod_{i=1}^{m} u\left(\tau_{i}(k)\right)\right)^{1/m}}{u(k+1)} \ge \left[\prod_{i=1}^{m} \prod_{j=\tau_{i}(k)}^{k} \left(1 + m\left(\prod_{\ell=1}^{m} p_{\ell}(j)\right)^{1/m} \psi_{s}(j)\right)\right]^{1/m}$$

$$for \quad k > \eta_{s}^{\tau_{*}}(k_{0}), \quad s = 1, 2, \dots,$$
(3.1)

where functions ψ_s and $\eta_s^{\tau_*}$ are defined by (2.1) – (2.4).

Proof. From (1.1) we have

$$\frac{u(k)}{u(k+1)} = 1 + \sum_{i=1}^{m} p_i(k) \frac{u(\tau_i(k))}{u(k+1)} \quad \text{for} \quad k \ge \eta_1(k_0)$$
 (3.2)

and

$$\frac{u(\tau_i(k))}{u(k+1)} = \prod_{j=\tau_i(k)}^k \left(1 + \sum_{\ell=1}^m p_{\ell}(j) \frac{u(\tau_{\ell}(j))}{u(j+1)}\right) \quad \text{for} \quad k \ge \eta_2(k_0), \quad i = 1, \dots, m.$$

Using the arithmetic mean-geometric mean inequality, from the last equality we get

$$\frac{u(\tau_i(k))}{u(k+1)} \ge \prod_{j=\tau_i(k)}^k \left(1 + m\left(\prod_{\ell=1}^m p_{\ell}(j)\right)^{1/m} \frac{\left(\prod_{\ell=1}^m u(\tau_{\ell}(j))\right)^{1/m}}{u(j+1)}\right)$$

for
$$k \ge \eta_2(k_0), i = 1, ..., m.$$

Therefore,

$$\frac{\left(\prod_{\ell=1}^{m} u\left(\tau_{\ell}(k)\right)\right)^{1/m}}{u(k+1)} \ge \left(\prod_{i=1}^{m} \prod_{j=\tau_{i}(k)}^{k} \left(1 + m\left(\prod_{\ell=1}^{m} p_{\ell}(j)\right)^{1/m} \frac{\left(\prod_{\ell=1}^{m} u(\tau_{\ell}(j))\right)^{1/m}}{u(j+1)}\right)\right)^{1/m} \tag{3.3}$$

for
$$k \geq \eta_2(k_0)$$
.

Since

$$\frac{\left(\prod_{\ell=1}^{m} u(\tau_{\ell}(k))\right)^{1/m}}{u(k+1)} \ge 1,$$

ISSN 1562-3076. Нелінійні коливання, 2018, т. 21, № 4

518 r. koplatadze, n. khachidze

the inequality (3.1) is obviously fulfilled for s=1. Assume its validity for some $s \in \{1, 2, ...\}$. Then by (3.3) we obtain

$$\frac{\left(\prod_{i=1}^{m} u(\tau_{i}(k))\right)^{1/m}}{u(k+1)} \ge \left(\prod_{i=1}^{m} \prod_{j=\tau_{i}(k)}^{k} \left(1 + m \left(\prod_{\ell=1}^{m} p_{\ell}(j)\right)^{1/m} \psi_{s}(j)\right)\right)^{1/m} \quad \text{for} \quad k \ge \eta_{s+1}^{\tau_{*}}(k_{0}).$$

where function ψ_s , $s=1,2,\ldots$ are given by (2.2) and (2.3). The proof of the lemma is complete.

Lemma 3.2. Let

$$\liminf_{k \to +\infty} p(k) > 0 \tag{3.4}$$

and

$$\min \left\{ \frac{\liminf_{k \to +\infty} \prod_{i=1}^{m} \prod_{j=\tau_i(k)}^{k} \left(1 + m p^{1/m}(j) \alpha\right)}{\alpha} : \alpha \ge 1 \right\} > 1.$$
 (3.5)

Then

$$\lim_{s \to +\infty} \left(\liminf_{k \to +\infty} \psi_s(k) \right) = +\infty, \tag{3.6}$$

where functions p and ψ_s are given by (2.2) – (2.4).

Proof. Suppose contrary. Let

$$\lim_{s \to +\infty} \left(\liminf_{k \to +\infty} \psi_s(k) \right) = \beta < +\infty. \tag{3.7}$$

Then by (3.4) for any $\varepsilon \in (0, \beta - 1)$ there exist $k_0, s_0 \in N$ such that

$$\psi_s(k) \ge \beta - \varepsilon \ge 1$$
 for $k \in N_{k_0}$ and $s \in N_{s_0}$. (3.8)

According to (3.8) from (2.3) we get

$$\psi_s(k) \ge \left(\prod_{i=1}^m \prod_{j=\tau_i(k)}^k \left(1 + m \, p^{1/m}(j) (\beta - \varepsilon) \right) \right)^{1/m} \quad \text{for} \quad s \ge \eta_{s_0}^{\tau_*},$$

where p is given by (2.4).

That is

$$\liminf_{k \to +\infty} \psi_s(k) \ge \liminf_{k \to +\infty} \left(\prod_{i=1}^m \prod_{j=\tau_i(k)}^k \left(1 + m \, p^{1/m}(j) (\beta - \varepsilon) \right) \right)^{1/m}.$$

By (3.8) of the last inequality, we have

$$\beta \ge \liminf_{k \to +\infty} \left(\prod_{i=1}^m \prod_{j=\tau_i(k)}^k \left(1 + m \, p^{1/m}(j) (\beta - \varepsilon) \right) \right)^{1/m}.$$

Therefore,

$$\frac{\liminf_{k\to+\infty} \left(\prod_{i=1}^m \prod_{j=\tau_i(k)}^k \left(1 + m(\beta - \varepsilon) p^{1/m}(j)\right)\right)^{1/m}}{\beta} \le 1.$$
 (3.9)

According to (3.9) for any $\varepsilon \in (0, \beta)$ we get

$$\min \left\{ \frac{\liminf_{k \to +\infty} \left(\prod_{i=1}^m \prod_{j=\tau_i(k)}^k \left(1 + m \, p^{1/m}(j) \, \alpha \right) \right)^{1/m}}{\alpha} : \alpha \ge 1 \right\} \le$$

$$\le \frac{\liminf_{k \to +\infty} \left(\prod_{i=1}^m \prod_{j=\tau_i(k)}^k \left(1 + m \, p^{1/m}(j)(\beta - \varepsilon) \right) \right)^{1/m}}{\beta - \varepsilon} =$$

$$= \frac{\beta}{\beta - \varepsilon} \frac{\liminf_{k \to +\infty} \left(\prod_{i=1}^m \prod_{j=\tau_i(k)}^k \left(1 + m \, p^{1/m}(j)(\beta - \varepsilon) \right) \right)^{1/m}}{\beta} \le \frac{\beta}{\beta - \varepsilon},$$

with implies

$$\min \left\{ \frac{\liminf_{k \to +\infty} \left(\prod_{i=1}^m \prod_{j=\tau_i(k)}^k \left(1 + m \, p^{1/m}(j) \, \alpha \right) \right)^{1/m}}{\alpha} \colon \alpha \ge 1 \right\} \le 1,$$

where p is given by (2.4). This however contradicts (3.5). The obtained contradiction proves that (3.6) holds.

4. Proofs of the theorems. *Proof of Theorem 2.1.* Suppose to the contrary, that equation (1.1) has a non oscillatory proper solution $u \colon N_{k_0} \to R$. Since -u(k) is also a solution (1.1), we confine ourselves only to the case that u is eventually positive solution of equation (1.1). Then there exists $k_1 \ge k_0$ such that $u(\tau_i(k)) > 0$ for $k \in N_i(k)$, $i = 1, \ldots, m$. As seen while proving Lemma 3.1

$$\left(\prod_{i=1}^{m} \frac{u(\tau_i(k))}{u(k+1)}\right)^{1/m} \ge \psi_s(k) \quad \text{for} \quad k \ge \eta_s^{\tau_*}(k_1), \quad s = 1, 2, \dots,$$
(4.1)

where the functions $\eta_s^{\tau_*}$ and ψ_s are defined by (2.1)–(2.4).

From (1.1) by (2.1), (2.5) and (3.2) we have

$$u(\sigma_i(k)) \ge \sum_{s=\sigma_i(k)}^k \sum_{j=1}^m p_j(s) u(\tau_j(s)) \quad \text{for} \quad k \ge \eta_s^{\tau_*}(k_1), \quad s = 1, 2, \dots,$$
 (4.2)

and

$$u(\tau_j(s)) \ge u(\sigma_j(k)) \prod_{t=\tau_j(s)}^{\sigma_j(k)-1} \left(1 + \sum_{\ell=1}^m p_\ell(t) \frac{u(\sigma_\ell(t))}{u(t+1)}\right)$$
 (4.3)

520 r. koplatadze, n. khachidze

for
$$\eta_1^{\tau_*}(k_1) \le s \le k$$
, $j = 1, ..., m$.

Therefore, by (4.2) and (4.3) we get

$$u(\sigma_{i}(k)) \geq \sum_{j=1}^{m} \left(\sum_{s=\sigma_{i}(k)}^{k} p_{j}(s) u(\sigma_{j}(k)) \prod_{t=\tau_{j}(s)}^{\sigma_{j}(k)-1} \left(1 + \sum_{\ell=1}^{m} p_{\ell}(t) \frac{u(\sigma_{\ell}(t))}{u(t+1)} \right) \right) =$$

$$= \sum_{j=1}^{m} u(\sigma_{j}(k)) \left(\sum_{s=\sigma_{i}(k)}^{k} p_{j}(s) \prod_{t=\tau_{j}(s)}^{\sigma_{j}(k)-1} \left(1 + \sum_{\ell=1}^{m} p_{\ell}(t) \frac{u(\sigma_{\ell}(t))}{u(t+1)} \right) \right), \quad i = 1, \dots, m.$$

Using the arithmetic mean-geometric mean inequality, from the last inequality we get

$$u(\sigma_i(k)) \ge m \left(\prod_{j=1}^m u(\sigma_j(k)) \right)^{1/m} \left(\prod_{j=1}^m \sum_{s=\sigma_i(k)}^k p_j(s) \times \prod_{t=\tau_j(s)}^{\sigma_j(k)-1} \left(1 + m \left(\prod_{\ell=1}^m p_\ell(t) \right)^{1/m} \left(\prod_{j=1}^m \frac{u(\sigma_\ell(t))}{u(t+1)} \right)^{1/m} \right) \right)^{1/m}$$
for $k \ge \eta_1^{\tau_*}(k_1), \quad i = 1, \dots, m$.

On the other hand by Lemma 3.1 we have

$$\prod_{i=1}^{m} u(\sigma_{i}(k)) \geq m^{m} \prod_{i=1}^{m} u(\sigma_{i}(k)) \prod_{i=1}^{m} \left(\sum_{s=\sigma_{i}(k)}^{k} p_{i}(s) \prod_{t=\tau_{j}(s)}^{\sigma_{j}(k)-1} \left(1 + m \left(\prod_{\ell=1}^{m} p_{\ell}(t) \right)^{1/m} \psi_{s}(t) \right) \right)^{1/m}$$
for $k \geq \eta_{s}^{\tau_{*}}(k_{1}), \quad s = 1, 2, ...,$

where functions $\eta_s^{\tau_*}$ and ψ_s are given by (2.1) – (2.3). Therefore, for $s=k_0$

$$\limsup_{k \to +\infty} \prod_{i=1}^{m} \left(\prod_{j=1}^{m} \sum_{s=\sigma_{i}(k)}^{k} p_{j}(s) \prod_{t=\tau_{j}(s)}^{\sigma_{j}(k)-1} \left(1 + m \left(\prod_{\ell=1}^{m} p_{\ell}(t) \right)^{1/m} \psi_{k_{*}}(t) \right) \right)^{1/m} \leq \frac{1}{m^{m}},$$

which contradicts (2.6). The proof of the theorem is complete.

Proof of Corollary 2.1. Since $\psi_s(k) \ge 1$ for large $s, k \in N$, this corollary immediately follows from Theorem 2.1.

Proof of Theorem 2.2. Suppose to the contrary, that equation (1.1) has a nonoscillatory solution $u: N_{k_0} \to (0, +\infty)$. Then according to (2.8), (2.9) and Lemma 3.2 condition (3.6) holds. By (2.5) and (2.8), choose M > 0 such that for large k we have

$$\prod_{\ell=1}^{m} \left(\prod_{i=1}^{m} \sum_{s=\sigma_{i}(k)}^{k} p_{i}(s) \prod_{j=\tau_{i}(s)}^{\sigma_{i}(k)-1} \left(1 + mp^{1/m}(j)M^{1/m} \right) \right)^{1/m} > \frac{2}{m^{m}}.$$
 (4.4)

On the other hand according to (3.6) there exist $s_0 \in N$ and $k_0 \in N$ such that $\psi_{s_0}(k) \geq M$ for $k \geq k_0$. Therefore, by (4.4) the condition (2.6) be fulfilled for $s = s_0$, which proved the validity of the theorem.

Proof of Corollary 2.2. It is suffices to show that condition (2.9) holds. Indeed by (2.10) for large k we have

$$\frac{\lim \inf_{k \to +\infty} \prod_{i=1}^{m} \prod_{j=\tau_{i}(k)}^{k} \left(1 + m\alpha^{1/m} p^{1/m}(j)\right)}{\alpha} \ge \frac{\lim \inf_{k \to +\infty} \prod_{i=1}^{m} \left(1 + m\alpha^{1/m} p^{1/m}\right)^{(k-\tau_{i}(k))+1}}{\alpha} = \frac{\lim \inf_{k \to +\infty} \frac{\left(1 + m\alpha^{1/m} p^{1/m}\right)^{\sum_{i=1}^{m} (k-\tau_{i}(k)) + m}}{\alpha}}{\alpha} \ge \frac{\lim \inf_{k \to +\infty} \left\{\min \frac{\left(1 + m\alpha^{1/m} p^{1/m}\right)^{m+\sum_{i=1}^{m} (k-\tau_{i}(k))}}{\alpha} : \alpha \ge 1\right\}, \tag{4.5}$$

where $p = \prod_{i=1}^{m} p_i$. Since

$$\min_{\alpha \ge 1} \frac{\left(1 + m \alpha^{1/m} p^{1/m}\right)^{m + \sum_{i=1}^{m} (k - \tau_i(k))}}{\alpha}$$

$$= \frac{p\left(m + \sum_{i=1}^{m} (k - \tau_i(k))\right)^{m + \sum_{i=1}^{m} (k - \tau_i(k))}}{\left(\sum_{i=1}^{m} (k - \tau_i(k))\right)^{\sum_{i=1}^{m} (k - \tau_i(k))}},$$
(4.6)

according to (4.5) and (4.6) condition (2.9) holds, which proved the validity of the corollary.

Proof of Corollary 2.3. Since function $\frac{(m+x)^{m+x}}{x^x}$ $(1 \le x < +\infty)$ is non-decreasing, according to (2.12) and (2.13) condition (2.9) be fulfilled, which proved the validity of the corollary.

Remark 4.1. It is obvious that if (2.12) be fulfilled and m=1, then Corollary 2.4 is Theorem 7.5.1, [2].

Remark 4.2. The following example illustrate the significance of our results. Consider difference equation

$$\Delta u(k) + p(k) u(k-1) = 0$$

then condition (7.5.2) [2] is reduced to the condition

$$\lim_{k \to +\infty} \inf p(k) > \frac{1}{4} \tag{4.7}$$

and condition (2.9) is reduced by the condition

$$\lim_{k \to +\infty} \inf \left(\sqrt{p(k-1)} + \sqrt{p(k)} \right)^2 > 1.$$
(4.8)

ISSN 1562-3076. Нелінійні коливання, 2018, т. 21, № 4

522 r. koplatadze, n. khachidze

It is obvious that condition (4.7) implies condition (4.8).

On the other hand if $\varepsilon \in \left(0, \frac{1}{4}\right]$, $p(2k) = \varepsilon$ and $p(2k+1) = 1 - \varepsilon$, $k = 1, 2, \ldots$ then it is obvious that condition (4.8) be fulfilled but condition (4.7) is not fulfilled.

References

- 1. *Ladas, G., Philos, Ch. G., Sficas, Y. G.* Sharp conditions for the oscillation of delay difference equations // J. Appl. Math. Simulat. 1989. 2, № 2. P. 101–111.
- Györi I., Ladas G. Oscillation theory of delay differential equations with applications // Oxford Math. Monogr. Clarendon Press. 1991.
- 3. Chatzarakis G. E., Koplatadze R., Stavroulakis I. P. Optimal oscillation criteria for first order difference equations with delay argument // Pacific J. Math. -2008. -235. -N 1. -P. 15-33.
- 4. *Koplatadze R.*, *Pinelas S.* Oscillation criteria for first-order linear difference equation with several delay arguments // Nelin. Kolyvannya. 2014. 17, № 2. P. 248 267.
- 5. *Koplatadze R. G., Chanturiya T. A.* Oscillating and monotone solutions of first-order differential equations with deviating argument // Differents. Uravneniya. 1982. 18, № 8. P. 1463 1465, 1472.
- 6. *Koplatadze R., Kvinikadze G.* On the oscillation of solutions of first-order delay differential inequalities and equations // Georgian Math. J. -1994. -1, No 6. -P.675-685.
- 7. Grammatikopoulos M. K., Koplatadze R., Stavroulakis I. P. On the oscillation of solutions of first order differential equations with retarded arguments // Georgian Math. J. 2003. 10, № 1. P. 63 76.
- 8. *Berikelashvili G. K., Dzhokhadze O. M., Koplatadze R. G.* On an approach to the investigation of the asymptotic properties of solutions of first-order ordinary differential equations with delay // Differents. Uravneniya. − 2008. − 44, № 1. − P. 19 − 38.
- 9. *Infante G., Koplatadze R., Stavroulakis I. P.* Oscillation criteria for differential equations with several retarded arguments // Funkcial. Ekvac. − 2015. − **58**, № 3. − P. 347 − 364.
- 10. *Koplatadze R*. Specific properties of solutions of first order differential equations with several delay arguments // Izv. Nat. Akad. Nauk Armenii. Ser. Mat. − 2015. − **50**, № 5. − P. 24 − 33.
- 11. *Koplatadze R*. On asymptotic behavior of first order difference equations with several delay // Bull. TICMI. 2017. 21, № 2. P. 1 5.

Received 17.02.2018